Skip to main content
Genetics logoLink to Genetics
. 1998 Aug;149(4):1899–1908. doi: 10.1093/genetics/149.4.1899

The genetic basis of Drosophila sechellia's resistance to a host plant toxin.

C D Jones 1
PMCID: PMC1460277  PMID: 9691045

Abstract

Unlike its close relatives, Drosophila sechellia is resistant to the toxic effects of the fruit of its host plant, Morinda citrifolia. Using 15 genetic markers, I analyze the genetic basis of D. sechellia's resistance to this fruit's primary toxin, octanoic acid. D. sechellia's resistance is dominant in F1 hybrids between it and its sister species D. simulans. All chromosomes, except the Y and the dot fourth, carry genes affecting resistance. The third chromosome has the greatest effect and carries at least two factors. The X chromosome has an intermediate effect and harbors at least two genes, whereas the second chromosome carries at least one gene of weak effect. Thus, at least five loci are involved in this adaptation. However, I also identified large chromosome regions having no effect on resistance, suggesting that D. sechellia's resistance is neither very simple nor highly polygenic. Instead, resistance appears to have an oligogenic basis. D. sechellia's resistance to its host may contribute to ecological isolation between it and D. simulans.

Full Text

The Full Text of this article is available as a PDF (166.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashfield T., Keen N. T., Buzzell R. I., Innes R. W. Soybean resistance genes specific for different Pseudomonas syringae avirulence genes are allelic, or closely linked, at the RPG1 locus. Genetics. 1995 Dec;141(4):1597–1604. doi: 10.1093/genetics/141.4.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coyne J. A., Berry A. Effects of the fourth chromosome on the sterility of hybrids between Drosophila simulans and its relatives. J Hered. 1994 May-Jun;85(3):224–227. doi: 10.1093/oxfordjournals.jhered.a111440. [DOI] [PubMed] [Google Scholar]
  3. Coyne J. A. Genetic basis of male sterility in hybrids between two closely related species of Drosophila. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4444–4447. doi: 10.1073/pnas.81.14.4444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coyne J. A. Genetics of a difference in male cuticular hydrocarbons between two sibling species, Drosophila simulans and D. sechellia. Genetics. 1996 Aug;143(4):1689–1698. doi: 10.1093/genetics/143.4.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coyne J. A., Orr H. A. The evolutionary genetics of speciation. Philos Trans R Soc Lond B Biol Sci. 1998 Feb 28;353(1366):287–305. doi: 10.1098/rstb.1998.0210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ffrench-Constant R. H. The molecular and population genetics of cyclodiene insecticide resistance. Insect Biochem Mol Biol. 1994 Apr;24(4):335–345. doi: 10.1016/0965-1748(94)90026-4. [DOI] [PubMed] [Google Scholar]
  7. Gorman M. J., Severson D. W., Cornel A. J., Collins F. H., Paskewitz S. M. Mapping a quantitative trait locus involved in melanotic encapsulation of foreign bodies in the malaria vector, Anopheles gambiae. Genetics. 1997 Jul;146(3):965–971. doi: 10.1093/genetics/146.3.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Houpt D. R., Pursey J. C., Morton R. A. Genes controlling malathion resistance in a laboratory-selected population of Drosophila melanogaster. Genome. 1988 Dec;30(6):844–853. doi: 10.1139/g88-136. [DOI] [PubMed] [Google Scholar]
  9. Liu J., Mercer J. M., Stam L. F., Gibson G. C., Zeng Z. B., Laurie C. C. Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana. Genetics. 1996 Apr;142(4):1129–1145. doi: 10.1093/genetics/142.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pasteur N., Raymond M. Insecticide resistance genes in mosquitoes: their mutations, migration, and selection in field populations. J Hered. 1996 Nov-Dec;87(6):444–449. doi: 10.1093/oxfordjournals.jhered.a023035. [DOI] [PubMed] [Google Scholar]
  11. R' kha S., Moreteau B., Coyne J. A., David J. R. Evolution of a lesser fitness trait: egg production in the specialist Drosophila sechellia. Genet Res. 1997 Feb;69(1):17–23. doi: 10.1017/s0016672396002546. [DOI] [PubMed] [Google Scholar]
  12. R'Kha S., Capy P., David J. R. Host-plant specialization in the Drosophila melanogaster species complex: a physiological, behavioral, and genetical analysis. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1835–1839. doi: 10.1073/pnas.88.5.1835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Raymond M., Callaghan A., Fort P., Pasteur N. Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature. 1991 Mar 14;350(6314):151–153. doi: 10.1038/350151a0. [DOI] [PubMed] [Google Scholar]
  14. Roush R. T., McKenzie J. A. Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol. 1987;32:361–380. doi: 10.1146/annurev.en.32.010187.002045. [DOI] [PubMed] [Google Scholar]
  15. Roush R. T. Occurrence, genetics and management of insecticide resistance. Parasitol Today. 1993 May;9(5):174–179. doi: 10.1016/0169-4758(93)90141-2. [DOI] [PubMed] [Google Scholar]
  16. Severson D. W., Thathy V., Mori A., Zhang Y., Christensen B. M. Restriction fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the mosquito Aedes aegypti. Genetics. 1995 Apr;139(4):1711–1717. doi: 10.1093/genetics/139.4.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Staskawicz B. J., Ausubel F. M., Baker B. J., Ellis J. G., Jones J. D. Molecular genetics of plant disease resistance. Science. 1995 May 5;268(5211):661–667. doi: 10.1126/science.7732374. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES