
Copyright  1998 by the Genetics Society of America

Mapping Quantitative Trait Loci for Milk Production and Health of Dairy Cattle
in a Large Outbred Pedigree

Qin Zhang,* Didier Boichard,† Ina Hoeschele,* Cynthia Ernst,‡ Andre Eggen,‡ B. Murkve,‡

Margaret Pfister-Genskow,‡ LaRee A. Witte,‡ Fernando E. Grignola,* Pekka Uimari,*
Georg Thaller* and Michael D. Bishop‡

*Department of Dairy Science, Virginia Polytechnic Institute, Blacksburg, Virginia 24061-0315, †Station de Genetique Quantitative et Appliquee,
Institut National de la Richerche Agronomique, 78352 Jouy-en-Josas, France and ‡ABS Global Inc., De Forrest, Wisconsin 53532

Manuscript received December 21, 1997
Accepted for publication May 15, 1998

ABSTRACT
Quantitative trait loci (QTL) affecting milk production and health of dairy cattle were mapped in a

very large Holstein granddaughter design. The analysis included 1794 sons of 14 sires and 206 genetic
markers distributed across all 29 autosomes and flanking an estimated 2497 autosomal cM using Kosambi’s
mapping function. All families were analyzed jointly with least-squares (LS) and variance components
(VC) methods. A total of 6 QTL exceeding approximate experiment-wise significance thresholds, 24 QTL
exceeding suggestive thresholds, and 34 QTL exceeding chromosome-wise thresholds were identified.
Significance thresholds were determined via data permutation (for LS analysis) and chi-square distribution
(for VC analysis). The average bootstrap confidence interval for the experiment-wise significant QTL was
48 cM. Some chromosomes harbored QTL affecting several traits, and these were always in coupling
phase, defined by consistency with genetic correlations among traits. Chromosome 17 likely harbors 2
QTL affecting milk yield, and some other chromosomes showed some evidence for 2 linked QTL affecting
the same trait. In each of these cases, the 2 QTL were in repulsion phase in those families appearing to
be heterozygous for both QTL, a finding which supports the build-up of linkage disequilibrium due to
selection.

DAIRY cattle and other livestock species have under- typic, pedigree, and genetic marker information. The
benefits resulting from the mapping collaborations in-gone selection with the goal of improving econom-

ically important traits for a number of generations. Most clude the gaining of basic scientific knowledge about
the genetic basis of quantitative traits, the achievementtraits of economic importance are of quantitative na-

ture, i.e., are influenced by many genes and by environ- of the necessary first step toward fine-mapping and
function evaluation of important QTL, and, in the con-mental factors. Selection has solely relied upon the col-

lection and utilization of phenotypic and pedigree data, text of livestock improvement, an increase in the selec-
tion efficiency for production and health-related traitsand on statistical tools for partitioning the phenotypic
through marker-assisted selection (MAS).performances of individuals into their additive genetic

The granddaughter design (GDD; Geldermann 1975;values plus environmental contributions. At present,
Weller et al. 1990; Georges et al. 1995) is sufficientlymajor collaborative projects are underway to map genes
powerful for the detection of moderate QTL, providedaffecting traits of economic importance in several live-
that it consists of multiple grandsire families with a totalstock species, using moderate resolution genetic marker
of several hundred sons in these families. Georges etmaps. The collaborations are producing genetic maps
al. (1995) have previously mapped QTL in a large grand-and genotypes on the one hand and suitable statistical
daughter design for US Holstein dairy cattle. Since themethods for analysis of these data on the other hand.
completion of their work, the same granddaughter de-There have been substantial advances both in the map
sign has been expanded to include more progeny, withdensities and in the development of statistical methods.
276 additional sons in the same families, two additionalThe latter are needed for QTL (quantitative trait loci)
phenotypic traits (somatic cell score, length of produc-mapping, for genetic parameter estimation (e.g., vari-
tive life), and genotypes for additional markers, with allance contributions at individual QTL), and for the esti-
markers covering nearly 2500 cM or 100% instead ofmation of additive genetic values by combining pheno-
1645 cM or 66% of the estimated length of the male
genome in cattle (Logue and Harvey 1978; cited in
Georges et al. 1995). While in the study of Georges et
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TABLE 1families jointly using two approaches, least-squares (LS)
and variance components (VC) analysis. An advantage Length (in Morgans, using Haldane’s function) of linkage
of analyzing each family separately is that there is no group and number of markers on 29 chromosomes and
need for assuming a particular genetic model specifying average number of informative markers across sires
the number of alleles at a QTL, which may be incorrect.

Length of No. of Average no. ofMaximum likelihood analysis across families has been
Chromosome linkage group markersa inform. markersbased on the assumption of a biallelic QTL (e.g., Weller

1986) although other models of QTL variation should 1 1.795 9 4.64
be assumed (Hoeschele et al. 1997). The VC analysis 2 1.597 10 4.50
by residual maximum likelihood (Grignola et al. 1994, 3 1.300 5 2.36

4 1.687 9 3.791996a,b, 1997; Xu and Atchley 1995) permits an analy-
5 1.569 7 2.50sis across families without the need for estimating allele
6 1.317 9 3.21or genotype frequencies. Hence, the VC analysis, where
7 1.162 8 3.71

QTL allelic effects have a prior normal distribution, 8 0.712 9 4.36
requires fewer parametric assumptions than standard 9 1.032 8 3.71
maximum likelihood, where the effects at a biallelic 10 1.259 8 3.07
QTL are treated as fixed. While the VC analysis has 11 0.737 6 1.64

12 1.473 6 2.86been tested with simulated data and shown to be robust
13 1.404 8 3.00to the number of alleles at a QTL (Grignola et al. 1994,
14 1.196 7 2.711996a,b, 1997; Xu and Atchley 1995), in this study
15 1.149 7 2.14it is applied for the first time to real data in a large 16 1.126 7 2.79

granddaughter design and its results are compared to 17 1.165 5 2.07
those from least-squares analysis, which has been used 18 1.296 6 2.86
previously to map QTL in actual data (e.g., Spelman et 19 1.209 8 1.93

20 0.333 5 2.93al. 1996; Vilkki et al. 1997).
21 0.798 8 3.36
22 0.899 7 2.07
23 0.896 7 2.43MATERIALS AND METHODS
24 0.704 7 2.14
25 0.257 4 1.36Experimental design: The granddaughter design consisted
26 0.879 8 3.00of 14 paternal half-sib families with an average number of 128
27 0.637 4 1.64and a range of 33 to 313 sons per sire, with sire denoting the
28 0.732 7 2.14male parent common to each half-sibship. The total number

of genotyped sons was 1794. The sires have more sons than 29 0.718 7 2.57
those included in the analysis because semen samples from Total 31.038 206
many sons that were culled after the progeny test were dis- Ave. 1.070 7.1 2.81
carded, and genotyping was not possible. Georges et al. (1995)

a Number of markers actually used in the analysis.showed that for production traits the average phenotype of
all sons in one of the families was clearly lower than the average
of those sons with marker information. Although pedigree
information was available, i.e., there were (considerable) rela- linked markers, which represents the estimated genetic length
tionship ties among the 14 sires, these sires were assumed to of the entire male genome of 2500 cM (Logue and Harvey

be unrelated in the analyses for several reasons. First, previous 1978; cited in Georges et al. 1995). Because we employed
simulation studies have shown that inclusion of relationships Haldane’s function to map QTL relative to the markers, the
among sires has only minor effects on power of QTL detection map was reconstructed using this mapping function. The Hal-
and QTL parameter estimation in a GDD with similarly large dane map was 3104 cM in length. The average length of the
numbers of sons per family (Grignola et al. 1996b). Second, linkage groups was 107 (88) cM, with a range from 26 (23)
the marker genotypes in the original granddaughter design cM on chromosome 25 to 179 (138) cM on chromosome 1
were coded within the sire family, and the original allele sizes (values in parentheses are for the Kosambi function). The
were not available. Third, many common ancestors of the sires average length of the marker intervals was 17.8 (14.3) cM.
do not have any genotype information at this time. Heterozygosity measured as the percentage of sires heterozy-

Marker data: Marker data were available on 246 microsatel- gous at a marker was 46.1% on average across all 206 markers,
lite markers. Of these, 222 were assigned to the 29 autosomal compared with 45.8% for the markers used in the previous
chromosomes, while 24 markers were not assigned to a chro- study (Georges et al. 1995). The average number of markers
mosome. Most likely orders of and recombination rates among per chromosome was 7.83, with a range from 4 to 10. However,
markers were estimated with the CRI-MAPprogram (P. Green, the average number of informative markers per chromosome
unpublished results). Because on some chromosomes, 2 to 3 and sire was only 2.81, with a range from 1.36 to 4.64 across
markers were located at the same position, the most informa- chromosomes (averaged over sires). Table 1 contains for each
tive of these markers within each family was chosen for the chromosome the estimated genetic length, the number of
analysis, or these were treated as one locus. Hence, only 206 markers used, and the number of informative markers within
marker positions were actually used in the analyses. Using each sire family averaged across sires.
Kosambi’s mapping function and summing over all linkage Phenotypic data: Seven traits [MY, milk yield; FY, fat yield;

PY, protein yield; F%, fat percentage; P%, protein percentage;groups, we obtained a total of 2497 autosomal cM flanked by
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PL, length of productive life (VanRaden and Klaaskate were performed by computing the F statistic (SSEreduced 2
SSEfull)/(qMSEfull), where SSE (MSE) is the residual sum of1993); and SCS, somatic cell score (Schutz 1994)] were con-

sidered in the analysis. The phenotypic unit of measurement squares (mean-square) at the two positions yielding the small-
est MSEfull under the two-QTL model, and q is the number ofwas daughter yield deviation (DYD; VanRaden and Wiggans

1991), which is the average of the phenotypes of the daughters sire families used for this set of QTL positions. In the reduced
model, the regression coefficients for the first or the secondof a son adjusted for systematic environmental effects and the

additive genetic values of the daughters’ dams. We analyzed QTL were set to zero, and both resulting test statistics were
used in an intersection-union test (Berger 1997; GrignolaDYDs, because a simulation study had shown that there is

virtually no difference in the accuracy of estimation of QTL et al. 1997). Rejection of the null hypothesis of the one-QTL
model required both test statistics to be significant.locations and variance contributions when analyzing DYD or

phenotypes of individual daughters with the VC method (Q. To investigate a potential increase in power for detecting
QTL, a few additional analyses were conducted, where a chro-Zhang and I. Hoeschele, unpublished results). Also available

were the numbers of daughters per son and trait, and the mosome was searched for a single QTL while fitting a second
QTL on another chromosome at the position with the highestreliabilities (REL) for the estimated additive genetic values of

the sons and their sires and dams, with REL representing significance among all experiment-wise significant (see below)
QTL positions for the same trait, which were previously identi-the squared correlation between true and predicted values.

Average REL and number of daughters by trait were 0.85 and fied in the one-QTL analyses. In these analyses, sire families
with no informative markers on either of the two chromo-1200 for MY, FY and F%, 0.83 and 1146 for PY and P%, 0.67

and 1048 for SCS, and 0.63 and1058 for PL. All the phenotypic somes were discarded.
Variance components analysis: The VC analysis is described ininformation was provided by the Animal Improvement Pro-

grams Laboratory of the Agricultural Research Service of the detail by Grignola et al. (1996a,b) for the single-QTL model
and for the two-QTL model by Grignola et al. (1997), whoU.S. Department of Agriculture, Beltsville, MD.

Statistical methods: The statistical methods employed for referred to it as an approximate Residual Maximum Likeli-
hood (AREML) method. For analysis of the two-QTL model,QTL mapping were least-squares (LS) analysis and variance

components (VC) analysis. One chromosome was analyzed at a more efficient search strategy than the two-dimensional
search in LS based on cyclic optimization of the QTL positionsa time, using all markers available on that chromosome and
was employed. In cyclic optimization, the first QTL was fixedwith the genetic variation contributed by all other chromo-
at its current most likely position while the position of thesomes accounted for via polygenic effects in the VC analyses
second QTL was optimized, subsequently the second QTL wasor included in the error in the LS analysis.
fixed while the position of the first QTL was optimized, etc.Least-squares analysis: This method is described in detail by
Testing for linkage (one versus no QTL on the chromosome)Knott et al. (1994), Spelman et al. (1996), and Uimari et al.
was based on a likelihood ratio test as described in Grignola(1996). The model of analysis was
et al. (1996a), and testing for one vs. two QTL was performed
as described by Grignola et al. (1997) and based on theDYDjl 5 m1 sj 1 o

t

i51

bikijPikijl 1 ejl, (1)
intersection-union test as outlined for the LS analysis. The
model for DYD in the VC analysis was

where m is an overall mean, sj is fixed effect of sire j, biki is the
DYDjl 5 m 1 ujl 1 o

t

i51

(v l
ijl 1 v 2

ijl) 1 ejl,regression coefficient for QTL i nested within sire j at QTL
position ki, Pik is the probability of inheriting a QTL allele
from sire j for son l and for QTL i at position ki, t (t 5 1 or

var(ejl) 5
1 2 RELjl

RELjl

s2
e 5 wjl s

2
e , (2)2) is the number of QTL fitted, and ejl is a residual with variance

approximately equal to se
2/RELjl, where RELjl is reliability of

where ujl is the polygenic effect of son j of sire l, and v k
ijl isson jl due to his daughters only, which can be computed as

effect of allele k (k 5 1, 2) at QTL i in son l of sire j. Asdescribed by VanRaden and Wiggans (1991) and Georges

pointed out by Grignola et al. (1996b), when DYD is analyzedet al. (1995). A weighted LS analysis was conducted, with the
with the weights 1/wjl, it has an expected heritability of 0.5.weights equal to 1/RELjl.
Hence, there is the option of treating heritability as known.Using model (1) with t 5 1, an “F” statistic for testing H0

Linkage phases: Probabilities of all possible linkage phases(“all b’s are zero”) versus HA (“some b’s are nonzero”) was
of the sires were computed ascalculated using the standard type III sums of squares at QTL

position intervals of 1 cM on a chromosome. The calculations
were conditional on the most likely linkage phase of the sires P(Gi|M) 5

P(Gi|Mi) pni
j51 oH

s
ij

P(H s
ij |Gi, Mij)P (Hd

ij (H s
ij))

oG i numerator
,

(see below), and were computed using all markers on the (3)chromosome simultaneously and by including not only off-
spring with known but also those with unknown marker allelic where Gi is a particular multi-locus, phase-known marker geno-
inheritance. The distribution of the test statistic was obtained type of sire i, M is the marker information for the sire and its
empirically using data permutation as described below. It hap- sons, Mi is the marker information on the sire, H s

ij is a multi-
pened rarely that a sire did not have any informative markers locus haplotype that son j inherited from sire i, Hd

ij is the
for a particular chromosome. This sire family was then deleted haplotype inherited from the dam that is determined by the
for analyses of that chromosome. haplotype inherited from the sire (dam not genotyped), Mij

For t 5 2 (two-QTL model), a two-dimensional search was is the marker information on son j of sire i, and ni is the number
performed, i.e., all combinations of the positions of the two of sons of the sire. While the first term in the summation over
QTL (in 1-cM intervals) were evaluated. However, to ensure H s

ij in (3) depends on the recombination rates among loci,
estimability of both QTL positions and regression coefficients the second term is a function of the marker allelic frequencies,
(Zeng 1993; Whittaker et al. 1996), only those combinations which were estimated within sire families as described in
of QTL positions that were separated by two markers were Georges et al. (1995). All multi-locus genotypes and haplo-
considered. For any combination, those sire families that did types include only those loci for which the sire is heterozygous.
not have an informative, empty marker interval between the Significance thresholds: QTL findings from the one-QTL

model analyses across families are reported in three ways, bytwo QTL were discarded. Tests of one QTL versus two QTL
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listing (1) all locations significant at the chromosome-wise where n is the number of observations, and SSEreduced and SSEfull

are residual sums of squares of the reduced model (no QTL)ac 5 0.05 type-I error level [with six (5 116 3 0.05) type-I
errors expected by chance under the null hypothesis of no and the full model (one QTL), respectively.

Bootstrap CIs were calculated for those QTL locations ex-QTL segregating, see below], (2) all locations of suggestive
significance (with one type-I error expected by chance), and ceeding experiment-wise thresholds. For bootstrapping, esti-

mates of QTL position from n samples (with replacement)(3) all locations of experiment-wise significance. For experi-
ment-wise significance, the type-I error (ac) for each chromo- were obtained and their 2.5th and 97.5th percentiles deter-

mined for an empirical 95% CI. Three bootstrapping methodssome by trait combination was determined from the equation
aexp 5 1 2 (1 2 ac)n (Weir 1990), where aexp represents the were employed. In the first method, all samples were used

and all families in the original data set were retained. Inexperiment-wise type-I error set equal to 0.05, and n is the
number of independent tests in the entire experiment. Ap- a second method, only those families showing evidence for

segregation of the QTL were retained for sampling. In theproximately, nac 5 0.05. A canonical transformation (Weller

et al. 1996), based on estimates of the genetic correlations third method, all families were used, but only those bootstrap
samples where the QTL was significant were retained. Selectivetaken from the literature (Pearson et al. 1990; Schutz et al.

1990; Weigel et al. 1997), produced four uncorrelated factors bootstrapping has recently been proposed by Lebreton and
Visscher (1997).that accounted for 94% of the total variation. Hence, the

number of independent subexperiments was equal to the
number of chromosomes times the number of uncorrelated
factors, or n 5 29 3 4 5 116, resulting in ac 5 0.0004421. A RESULTSsimilar approach was used by Spelman et al. (1996) and
Uimari et al. (1996). The type-I error for suggestive signifi- LS analysis: Single QTL analysis: Figures 1 and 2 depict
cance (Lander and Kruglyak 1995) was determined simi- the test statistic profiles for all chromosome 3 traitlarly, but with ac calculated from the equation nac 5 1, which

(C 3 T) combinations with profiles exceeding or nearlyis the expected number of type-I errors in the experiment
exceeding the experiment-wise and suggestive signifi-when the null hypotheses of no QTL segregating is true, yield-

ing ac 5 0.008621. Each subexperiment consisted of multiple cance thresholds, respectively, somewhere on the chro-
dependent tests along a chromosome, with dependence mosome. The significance thresholds determined by
among these tests accounted for via data permutation (see permutation varied among traits, as observed by Spel-below).

man et al. (1996), and also among chromosomes. Gener-For LS analysis, the significance thresholds were determined
ally, the variation among traits was smaller than thatby the permutation method of Churchill and Doerge

(1994). A total of 100,000 permutations of the DYD and REL among chromosomes. The profiles in Figure 1 provide
of the sons relative to their marker genotypes were performed strong evidence for the presence of at least one QTL
withinsire families for each chromosome by trait combination. on chromosome (C) 3 for P%, on C6 for MY, F% andFrom each permutation, the largest value of the test statistic

P%, and on C20 for F% and P%. The C6 effects on F%within a chromosome by trait combination was retained. The
and P% may be pleiotropic effects of the same QTLthreshold was then set equal to the (1 2 ac) percentile of

these 100,000 values. For VC analysis, performing 100,000 (same estimated map position) or may be due to closely
permutations for each chromosome by trait combination was linked QTL. The C6 effect on MY appears to have a
too CPU-time-consuming. Grignola et al. (1996b) showed

different map position, although bootstrap CIs are widethat the distribution of the VC likelihood ratio statistic for
and overlap (see Table 2). The QTL for F% and P%zero versus one QTL linked is in between a 1- and a 2-d.f. chi-
on C20 have nearly the same estimated map position,square distribution. Therefore, we are reporting QTL with

test statistics exceeding the 2-d.f. chi-square threshold, as well indicating the possibility of a pleiotropic effect. But un-
as QTL with test statistics in between the 1- and 2-d.f. thresh- expectedly the effect on the percentage traits was not
olds.

accompanied by an effect on MY as opposed to theFor the tests of one vs. two QTL, the significance thresholds
findings for C6. The segregation of additional QTL isin the LS analysis were obtained from the F distribution. For

the VC analysis, a chi-square distribution with 1 d.f. was used, suggested (Figure 2) for C4 and SCS, C9 and FY, C13
as Grignola et al. (1997) showed that using the 1-d.f. chi- and SCS, C14 and SCS, C17 and MY, C26 and F% and
square distribution made the empirical type-I error level under SCS, and C28 and F% and P%. Maximum and meanthe null hypothesis of one QTL close to the nominal value,

values of the estimates of the within-sire QTL substitu-while using 2 or 3 d.f. made it too conservative. No adjustment
tion effects (regression coefficients) are given in Tablefor multiple testing was performed for these tests.

Confidence intervals: Confidence intervals (CIs) for the QTL 3 for the QTL of experiment-wise significance.
position were calculated with the LOD drop-off method Two-QTL analyses: Test statistics and corresponding
(Lander and Botstein 1989) and with bootstrapping (Vis-

QTL map positions under the two-QTL model can be
scher et al. 1996). The LOD drop-off method finds the loca-

found in Table 4 for those C 3 T combinations withtion at either side of the estimated QTL position that corre-
sponds to a decrease of 0.83 units in the LOD score, yielding experiment-wise significance from the single-QTL analy-
a 95% CI (Visscher et al. 1996). The LS and REML test sis and for other combinations with both test statistics
statistics were transformed to LOD scores for this purpose. exceeding the 5% significance threshold for the two-For REML, the test statistic is a likelihood ratio (LR), which

QTL analyses (only C17 and MY). C17 probably harborscan be directly transformed to a LOD score. For LS analysis,
two QTL for MY located at the two opposite ends ofwhen errors are independent and normally distributed, the

likelihood ratio statistic can be computed as (Aitkin et al. the linkage group. C6 also showed some evidence for
1989) two QTL for F%, but the two QTL positions were very

close to each other and the significance was not veryLR 5 n ln(SSEreduced/SSEfull),
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Figure 1.—Test statistic
profiles from LS analysis.
The straight lines repre-
sent experiment-wise signi-
ficance threshold levels from
permutations.

strong. To investigate a potential increase in power for combinations with an experiment-wise significant QTL
from the VC analysis were exactly the same as thosethe suggestive QTL, these were reanalyzed by also fitting

a second QTL on another chromosome, which had ex- from the LS analysis. Most of the suggestive findings
were also in agreement with those from the LS analysis.periment-wise significance in the single-QTL analysis

for the same phenotypic trait. Some QTL positions were There were some minor discrepancies, because for C1
and PY, for C9 and MY, and for a few other combina-different from those of the single QTL analysis, possibly

because in the two-unlinked-QTL analyses, families with- tions, LS statistics were not significant while VC statistics
were. For C28 and P%, however, the LS analysis identi-out informative markers on either chromosome were

discarded. For the same reason, there was no clear in- fied a significant QTL, while VC did not.
Likelihood ratio profiles from VC analyses with herita-crease in the test statistics due to fitting an unlinked

QTL of relatively large effect (results not shown). bility fixed at 0.5 are depicted in Figures 3 and 4, for
the same C 3 T combinations as those shown in FiguresVC analysis: Single QTL analysis: Table 5 contains pa-

rameter estimates and test statistics from VC analysis 1 and 2 for LS analyses. The LS and VC estimates of
the QTL positions were generally in close agreementwith heritability (h2) estimated or fixed at 0.5, and for

comparison, LS position estimates and test statistics. The (Table 5), a finding that is consistent with the agreement
between the LS and VC test statistic profiles, and givenresults in Table 5 pertain to those QTL above or near

experiment-wise or suggestive thresholds from the LS the width of the CIs (see Table 2). The largest difference
in the estimates for QTL position from the LS and VCor VC analyses. Estimates of the QTL parameters n2

(ratio of QTL allelic to total additive genetic variance) analyses was found for chromosome 4 and trait SCS and
amounted to 43 2 0 cM (11 cM) 5 43 cM (32 cM),and d (QTL map position) and likelihood ratios from

both VC analyses (with h2 estimated or fixed) were very with the numbers in parentheses pertaining to VC analy-
sis with heritability fixed.similar except for the QTL position on chromosome 28

for trait F%, where the likelihood ratio profile was very Table 6 contains test statistics, estimates of QTL loca-
tions and estimates of QTL variance contributions fromflat, and the likelihood ratios at the two positions esti-

mated (0.19 and 0.73) were very similar. The C 3 T VC analysis for QTL exceeding chromosome-wise 1-d.f.
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Figure 2.—Test statistic
profiles from LS analysis.
The upper and lower
straight lines represent ex-
periment-wise and sugges-
tive significance thresholds
from permutations, respec-
tively.

chi-square thresholds with ac 5 0.05 but not reaching For those QTL positions with test statistics exceeding
experiment-wise significance thresholds, the LOD drop-suggestive thresholds. Again, for comparison, the corre-

sponding LS test statistics and estimates of QTL loca- off and bootstrap confidence intervals with 95% cover-
age are given in Table 2. The bootstrap CIs are consider-tions were also given. Ten such QTL were found with

an expected number of six type-I errors under the null ably larger than the LOD drop-off ones. The bootstrap
CIs in Table 2 were calculated by using all families inhypothesis of no QTL among the 10 1 18 1 6 5 34 QTL

positions exceeding the chromosome-wise thresholds, the original data and all bootstrap samples. When all
samples but only those families that appeared to bewith 18 QTL also exceeding suggestive thresholds and

6 exceeding experiment-wise thresholds. segregating in the original data were used, virtually the
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TABLE 2

LOD drop-off and bootstrap confidence intervals of QTL positions for QTL above
experiment-wise thresholds: first row, LS analysis; second row,

VC analysis with heritability fixed at 0.5

95% interval

Chromosome Trait QTL position LOD drop-off Bootstrap

3 P% 0.00 [0.00, 0.17] [0.00, 1.30]
0.01 [0.00, 0.16] [0.00, 0.93]

6 MY 0.40 [0.31, 0.54] [0.00, 0.86]
0.41 [0.29, 0.63] [0.02, 0.87]

F% 0.11 [0.00, 0.27] [0.00, 0.33]
0.04 [0.00, 0.24] [0.00, 0.24]

P% 0.12 [0.06, 0.31] [0.04, 0.31]
0.22 [0.15, 0.29] [0.00, 0.31]

20 F% 0.28 [0.21, 0.33] [0.13, 0.33]
0.28 [0.23, 0.31] [0.04, 0.32]

P% 0.28 [0.22, 0.32] [0.20, 0.33]
0.28 [0.24, 0.31] [0.07, 0.32]

same CIs were obtained with the exception of C3 and Georges et al. (1995), who simulated a single family
and used a LOD score of 3. As a consequence, theP%, where the interval was only nearly half as wide, but

still wider than the LOD drop-off interval. When only QTL variance contributions in Table 7 are expected to
overestimate the true variance explained by the identi-those bootstrap samples where the QTL was significant

were used, again virtually the same intervals were ob- fied QTL. However, our analysis did not include those
sons in the same families that were not genotyped, andtained, as the QTL was significant in over 90% of the

samples. most of these sons were culled after progeny test. In
this case, an underestimation of QTL variance is ex-Table 7 presents the variance explained by QTL ex-

ceeding experiment-wise or suggestive significance pected from theory (Im et al. 1989; Mackinnon and
Georges 1992) and has been verified via simulationthresholds for each trait, obtained by adding the vari-

ance estimates for individual QTL in Table 5 for the (Mackinnon and Georges 1992).
Two-QTL analyses: Test statistics and the correspond-same trait. The largest fractions of the additive genetic

variance attributed to QTL were found for F% and SCS. ing QTL map positions under the two-QTL model are
also given in Table 4 together with the results from LSIn a simulation study with a single QTL and analysis

across families by the VC method (results not shown), analysis. None of these combinations seemed to have a
second significant QTL, with the exception of the twowe found that for true QTL variance ranging from 50

to 5% of the additive genetic variance, overestimation MY QTL on chromosome 17. There was good agree-
ment in the QTL positions under the two-QTL modelof this parameter increased from 0 to 114% for those

replicates where the QTL was significant at the experi- between the LS and VC analyses, except for C6 and F%
and C6 and P%. The VC analysis was also run with ament-wise threshold. This finding is in agreement with

TABLE 3

Estimates of within-sire QTL substitution effects (b) and their standard errors
(in parentheses) from LS analysis

Maximum significant |b | Mean significant |b | No. of
significant

Chromosome Trait |b | |b |/sg
a |b | |b |/sg

a familiesb

3 P% 0.047 (0.018) 0.222 (0.085) 0.038 0.179 3
6 MY 1699 (658) 1.188 (0.460) 780 0.546 5

F% 0.145 (0.021) 0.489 (0.071) 0.132 0.445 2
P% 0.090 (0.009) 0.424 (0.042) 0.059 0.278 4

20 F% 0.092 (0.048) 0.310 (0.162) 0.069 0.231 4
P% 0.046 (0.021) 0.217 (0.099) 0.034 0.162 7

a sg: Additive genetic standard deviation (MY:1430, FY:53, PY:41, F%:0.2967, P%:0.2121).
b Total number of families was 14 for chromosomes 3, 6, and 20.
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TABLE 4

Tests of one QTL versus two QTL from least-squares analysis (first row) and VC analysis with
heritability fixed at 0.5 (second row)

Positions (M) Test statistics
No. of sire

Chromosome Trait QTL 1 QTL 2 QTL 1 QTL 2 families

3 P% 0.00 0.58 3.60* 1.24 10
0.00 0.46 15.41* 1.49

6 MY 0.45 0.63 1.61 0.73 7
0.05 0.60 6.16* 3.56

F% 0.00 0.12 2.60* 2.96* 5
0.04 0.65 49.50* 0.09

P% 0.32 0.57 16.01* 2.13 7
0.05 0.27 1.30 6.27*

20 F% 0.13 0.28 1.22 2.12 12
0.00 0.28 0.01 14.20*

P% 0.02 0.28 0.99 3.18* 12
0.03 0.28 0.66 18.59*

17 MY 0.00 1.08 4.25* 4.71* 7
0.00 1.16 7.16* 14.39*

* Above F-threshold (LS analysis) or x2 (d.f. 5 1)-threshold (VC analysis) at 0.05 level.

second, unlinked and experiment-wise significant QTL chromosome, multiple chromosomes, and multiple
traits. We computed and compared confidence intervalsfitted. Results (not reported here) were similar to the

LS findings of very little increase in the test statistics. with LOD drop-off and bootstrap, and estimated the
variances explained by individual QTL.

The VC analysis with random QTL allelic effects re-
quires fewer parametric assumptions than an ML analy-

DISCUSSION sis across families with fixed QTL effects, as the number
of alleles at a QTL does not need to be specified, andThe breakthrough study of Georges et al. (1995)
there is no need for estimating allelic or genotypic fre-demonstrated that QTL affecting milk production can
quencies. The VC method is therefore particularlybe identified in current populations using a grand-
suited for analyses of segregating livestock or humandaughter design. In this study, we have analyzed the
pedigrees.same data set augmented by additional sons, additional

In this study, LS and VC analyses gave similar esti-traits, and additional markers. While Georges et al.
mates of QTL locations. This finding is to be expected(1995) analyzed 1518 sons and 159 markers with 138
for a half-sib design with very large families, similar tomarkers assigned to 27 linkage groups, an estimated
the one analyzed here. An advantage of the LS analysiscoverage of 1645 cM and an average bracket size of 14.8
is that it is computationally feasible to perform a permu-cM (based on the Kosambi function), we analyzed 1794
tation test so that the distribution of test statistics cansons (of the same 14 families) and 206 markers, with
be determined empirically. Advantages of the VC analy-several markers assigned to each of the 29 autosomes,
sis are that it provides an estimate of the additive genetican estimated coverage of 2497 cM (using Kosambi’s
variance in the population attributable to a QTL, rathermapping function), and an average bracket size of
than only estimates of QTL substitution effects for spe-14.3 cM (Kosambi). There is also a major difference
cific sires, and that it is applicable to any design orin the statistical methods employed for QTL mapping.
pedigree. The VC analysis is therefore capable of utiliz-Georges et al. (1995) used maximum likelihood with
ing all the available information, rather than only thefixed QTL effects, analyzed each family separately, and
half-sib relationships, for example. Since the LS analysisemployed a rather stringent significance threshold, not
treats gene substitution effects as fixed rather than ran-accounting, however, for the actual marker map and
dom as in the VC analysis, the estimates are sufficientlycorrelation structure of the phenotypic traits analyzed.
accurate only in very large families. Estimates of geneHere, we analyzed all families jointly using least-squares
substitution or allelic effects and of QTL variance contri-and variance components methods. We also used data
bution are important for marker-assisted selection.permutation techniques and canonical transformation

Our analysis of 29 chromosomes and 7 quantitativeto determine an “effective number of independent
traits of economic importance in a very large US Hol-traits,” leading to (approximate) experiment-wise sig-

nificance thresholds accounting for multiple tests per stein granddaughter design reveals 6 QTL with experi-
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TABLE 5

Test statistics and estimates of QTL positions from LS and VC analyses and estimates of QTL variance
ratios from VC analysis for QTL above or near experiment-wise or suggestive thresholds

Test statistic QTL positions (M)

Chromosome Trait LSa VCb Positionsc Marker bracketd Var. ratioe

3 P% 3.44* 18.89* 0.00 TGLA263(0.00) 0.054
20.55* 0.00/0.00 AGLA247(0.47) 0.059

6 MY 4.13* 19.13* 0.40 BM143(0.24) 0.048
21.69* 0.41/0.40 RM28(0.46) 0.054

F% 6.69* 51.48* 0.11 BM1329(0.01) 0.124
58.13* 0.04/0.04 TGLA37(0.12) 0.139

P% 14.29* 136.13* 0.12 TGLA37(0.12) 0.129
147.09* 0.23/0.22 BM143(0.24) 0.138

20 F% 3.12* 18.57* 0.28 TGLA126(0.14) 0.045
19.65* 0.28/0.28 TGLA153(0.28) 0.047

P% 4.21* 29.97* 0.28 0.075
26.88* 0.28/0.28 0.068

1 PY 2.22 9.57** 0.00 AGLA17(0.00) 0.062
9.93** 0.21/0.27 TGLA57(0.89) 0.092

2 F% 2.76 7.28**** 0.46 TGLA377(0.37) 0.028
7.21**** 0.41/0.42 ETH121(0.49) 0.031

3 MY 2.18 8.96**** 0.07 TGLA263(0.00) 0.041
7.74**** 0.10/0.08 TGLA247(0.47) 0.040

4 SCS 3.44** 13.86*** 0.43 RM188(0.00) 0.272
12.07** 0.00/0.11 TGLA116(0.46) 0.158

6 FY 2.41 6.85 0.24 TGLA37(0.12) 0.026
8.06**** 0.12/0.12 BM143(0.24) 0.031

9 MY 2.47 9.52** 0.83 TGLA427(0.77) 0.029
12.94*** 0.90/0.90 TGLA73(0.91) 0.039

FY 2.67** 6.46 0.89 0.030
7.30**** 0.90/0.80 0.036

PY 2.51 10.39** 0.91 0.036
13.65*** 0.90/0.90 0.048

13 SCS 2.89** 7.26**** 0.91 TGLA381(0.78) 0.054
10.05** 0.91/0.82 AGLA232(1.40) 0.059

14 F% 2.55 12.32** 0.00 ILSTS11(0.00) 0.237
11.67** 0.00/0.00 BM302(0.65) 0.219

FY 2.25 9.16**** 0.00 0.211
9.44**** 0.00/0.00 0.207

SCS 2.74** 14.91*** 0.21 ILSTS11(0.00) 0.149
14.09*** 0.35/0.30 BM302(0.65) 0.152

17 MY 3.02** 12.71*** 1.17 TGLA170(0.68) 0.123
11.51** 1.16/1.16 TGLA322(1.17) 0.125

23 FY 2.39 9.53** 0.66 MGTG7(0.65) 0.027
9.45**** 0.65/0.65 AGLA212(0.74) 0.033

26 F% 3.04** 13.12*** 0.15 TGLA22(0.00) 0.036
13.29*** 0.14/0.14 BM4505(0.56) 0.038

SCS 2.70** 6.94**** 0.72 TGLA429(0.71) 0.030
10.56** 0.72/0.71 BM804(0.82) 0.044

28 F% 3.04** 7.61**** 0.12 TGLA82(0.12) 0.029
6.86 0.19/0.73 TGLA306(0.37) 0.037

P% 2.62** 3.91 0.31 0.021
3.20 0.22/0.21 0.019

a Threshold values were from permutation test.
b Threshold values were from chi-square distribution with 1 or 2 d.f. First row, heritability estimated; second

row, heritability fixed at 0.5.
c Distances from origin of linkage groups: first row, LS estimates; second row, VC estimates (heritability

estimated/fixed at 0.5).
d Pair of markers from published maps (BovMAP, MARC) flanking the estimated QTL position; values in

parentheses are distances from origin of linkage groups.
e Ratio of QTL allelic to additive genetic variance for VC analysis. First row, heritability estimated; second

row, heritability fixed at 0.5.
* Above experiment-wise significance threshold at 0.05 level.
** Above suggestive significance threshold.
*** Between 1 d.f. and 2 d.f. x2 experiment-wise significance thresholds.
**** Between 1 d.f. and 2 d.f. x2 suggestive significance thresholds.
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Figure 3.—Likelihood
ratio profiles from VC analy-
sis. The straight lines repre-
sent experiment-wise sig-
nificance thresholds from
2-d.f. x2 distribution.

ment-wise significance, 18 suggestive QTL locations (1 and seven uncorrelated traits. We checked our results
with thresholds calculated by assuming seven uncorre-expected by chance out of 24), and 10 QTL achieving

chromosome-wise significance (6 expected by chance lated traits. The significance for the experiment-wise
QTL remained the same, but four suggestive significantout of 34). These findings provide very strong evidence

for the segregation of QTL in our pedigree, despite the QTL became nonsignificant at the suggestive level.
These are C2 and F%, C9 and FY, C28 and F%, andcoarse nature of the current marker map. Estimates of

QTL positions were consistent across both methods of C28 and P%.
The current marker structure does not yet permitanalysis. However, CI were large, and bootstrap CIs were

considerably larger than LOD drop-off CIs, emphasizing precision mapping of QTL for several reasons. First, the
average CI (bootstrap) was much wider than a desiredthe need for using the bootstrap. For VC analysis with

heritability fixed at 0.5 and for those QTL surpassing range of 10 to 20 cM. Second, with the exception of
chromosome 17, none of the analyses under the two-the experiment-wise significance thresholds, the aver-

age bootstrap CI (95%) was 47.7 cM (Haldane), the linked-QTL model revealed a significant second QTL,
most likely because the number of families with severalaverage LOD drop-off CI was 17.2 cM, and the minimum

and maximum bootstrap CIs were 25 and 93 cM, respec- informative markers per chromosome was too small (for
LS analysis, two informative markers are needed be-tively, using Haldane’s mapping function.

This analysis involved the problem of multiple corre- tween the QTL positions to ensure the estimability of
QTL positions and effects; Zeng 1993; Whittaker etlated testing. We followed the approach of Spelman et

al. (1996) and Uimari et al. (1996) to transform 7 3 al. 1996; therefore, those sire families, which did not
have an informative, empty marker interval between the29 multiple correlated tests to 4 3 29 independent tests.

Very recently, Weller et al. (1997) studied the empirical two QTL, were discarded). Future genotyping efforts
must concentrate on placing more informative markerstype-I error rates in QTL mapping for multiple corre-

lated traits and found that in their case the empirical in the regions identified to harbor QTL and on increas-
ing the number of individuals genotyped. Only aftertype-I error rates for seven correlated traits were in gen-

eral between the theoretical type-I error rates for six CIs have been reduced to the desired 10- to 20-cM re-
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Figure 4.—Likelihood
ratio profiles from VC analy-
sis. The upper and lower
straight lines represent ex-
periment-wise and sugges-
tive thresholds from 1-d.f.
x2, respectively.

gion, the next step of saturating a region with highly will include the fitting of multiple linked QTL and ac-
counting for heterogeneous variances within families,informative markers to fine-map and clone a QTL can

be undertaken. due to different unlinked QTL segregating in these
families, by fitting residual variances within families orThe analyses conducted here represent an initial ge-

nome scan and could be improved upon in several ways. by fitting multiple unlinked QTL. Further improve-
ments of the analysis might result from including thoseWe expect to reanalyze the most promising regions in

the future, in particular after additional informative sons that have not been genotyped (their data were not
available to us), and from conducting a full pedigreemarkers have been added to the data. Improved analyses
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TABLE 6

Estimates of QTL positions and test statistics for LS and VC analyses (heritability fixed at 0.5) and
estimates of QTL variance ratios from VC analysis for QTL above thresholds for

0.05 chromosome-wise type-I error level

Test statistic QTL positions

Chromosome Trait LSa VCb Positionsc Marker bracketd Var. ratioe

2 FY 2.35 5.57 0.67 ETH121(0.49) 0.052
0.70 TGLA226(0.122)

3 PY 2.00 5.01 0.18 TGLA263(0.00) 0.039
0.18 TGLA247(0.47)

5 FY 2.46 5.19 0.22 TGLA124(0.08) 0.031
0.28 AGLA254(0.32)

8 F% 2.34 4.48 0.58 TGLA339(0.39) 0.024
0.40 TGLA341(0.71)

11 SCS 2.48 4.61 0.46 TGLA340(0.46) 0.034
0.47 TGLA58(0.54)

16 PL 2.19 4.20 0.29 TGLA245(0.02) 0.067
0.31 TGLA53(0.51)

17 PY 2.63 5.90 0.00 TGLA26(0.00) 0.038
0.01 TGLA231(0.34)

17 PL 2.50 5.41 1.17 TGLA170(0.68) 0.192
1.03 TGLA322(1.17)

27 F% 2.89 5.47 0.14 RM209(0.14) 0.025
0.52 BM1857(0.53)

27 FY 2.28 4.59 0.55 BM1857(0.53) 0.021
0.52 BM203(0.64)

a Threshold values were from permutation test.
b Threshold values were from chi-square distribution with 1 or 2 d.f.
c Distances from origin of linkage groups: first row, LS estimates; second row, VC estimates.
d Pair of markers from published maps (BovMAP, MARC) flanking the estimated QTL position; values in

parentheses are distances from origin of linkage groups.
e Ratio of QTL allelic to additive genetic variance for VC analysis.

analysis (possible only when marker alleles have unique confirmed at the experiment-wise level; QTL on C9
for FY and PY, which were confirmed at or near thecodes across families), in which all paternal and mater-

nal relationships are used. suggestive level; a QTL on C10 for FY, which was not
confirmed; and a QTL on C20 for P%, which was con-Several chromosomes, in particular C6, C9, C14, C20,

and C26, are likely to harbor QTL affecting more than firmed at the experiment-wise level. All the confirmed
QTL have similar estimated positions in both analyses.one trait. This finding is expected due to the genetic

correlations among the traits. The QTL on C6 (for F% Ron et al. (1994) selected 10 microsatellite markers
to search for QTL affecting milk production traits in aand P%), C9 (for MY, FY, and PY), C14 (for F% and

FY), and C20 (for F% and P%) have very similar position GDD consisting of seven Israeli Holstein families. These
authors identified one marker on chromosome 21 asso-estimates, while on C6 the estimated position of the MY

QTL is clearly different from those for F% and P%, on ciated with significant effects on MY and PY in one
family. This finding was not confirmed in our study.C14 the position of the SCS QTL is different from those

for F% and FY, and on C26 the QTL for F% and SCS Weller et al. (1995) analyzed 11 microsatellite mark-
ers and the Dairy Bull DNA Repository (DBDR) andhave different estimated locations. Given the sizes of

the bootstrap CIs, however, the positions of QTL on concluded that several markers were associated with
significant effects on milk production and health, in-the same chromosome cannot be declared different

with certainty. For the remaining chromosomes, only cluding C2 for FY and F%, C4 for herdlife, C7 for SCS,
and C15 for FY and F%. Of the seven effects found,QTL affecting a single trait were identified, most likely

due to the stringent thresholds for experiment-wise and four are expected by chance. Our study confirmed only
that the QTL on C2 were at the chromosome-wise andsuggestive significance.

Georges et al. (1995) identified the following: a QTL suggestive levels, respectively, and that the estimated
positions of both QTL were close to the markeron C1 for MY, which was not confirmed in this study; a

QTL on C1 for PY, which was confirmed at the suggestive ETH121, which was also the marker with significant
allele effects for FY and F% in their study. On C4 welevel; QTL on C6 for MY, F% and P%, which were all
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TABLE 7

Proportions of additive genetic variance explained by all significant QTLs or by all significant and
suggestive QTLs within trait

% MY FY PY F% P% SCS PL

Proportion significant 11 0 0 37 53 0 0
Proportion significant

and suggestive 52 61 28 102 57 83 0

Results are from analysis of the actual data.

found a QTL for SCS instead of productive life at the studies were confirmed here while others were not are
that at least some of the families in our study are notsuggestive significance level, which has the same marker

(RM188) association as that for herdlife in their study. the same as those in the other studies, and that some
of the other studies employed significance thresholdsA similar study using DBDR families was carried out

by Ashwell et al. (1997). These authors reported ten for which fairly large numbers of false positives are ex-
pected under the null hypothesis of no QTL segre-significant effects with five expected by chance: C18 for

SCS (not confirmed here), C21 for MY and FY (not gating.
The fraction of the additive genetic variance ex-confirmed), C23 for SCS, FY, and PL (only FY confirmed

at suggestive level), C26 for FY and F% (both con- plained by all QTL exceeding experiment-wise and sug-
gestive significance thresholds was highest for the traitsfirmed at suggestive level), and C27 for PY and P% (not

confirmed; instead we identified QTL for F% and FY F% and SCS. No QTL was identified at the experiment-
wise or suggestive levels for PL, which is a compositeat chromosome-wise significance level). Because the

marker system in their study was quite different from trait and expectedly less appropriate for QTL mapping
than biological or component traits. Our simulationthat in our study, a comparison of the QTL positions

is not possible. study reconfirmed the expected result that QTL vari-
ance contributions are overestimated on average forSpelman et al. (1996) identified a P% QTL on C6 in

a Dutch Holstein-Friesian GDD, which was confirmed those QTL that surpass rather stringent significance
thresholds. To obtain unbiased or less biased estimates,in this study at the experiment-wise level with almost

the same position estimate. one might consider shrinkage estimation of the vari-
ances (those estimates with the least information haveVilkki et al. (1997) analyzed a GDD in Finnish Ayr-

shires. Although these authors did not obtain any sig- the largest positive errors on average but will be
shrunken the most) using an informative Bayesian priornificant results, they reported some evidence in favor of

a QTL on C9 for MY and PY. Both effects were confirmed distribution with minor more likely than major variances
(Hoeschele and VanRaden 1993), increasing the num-here at the suggestive level.

The latest QTL findings were reported at the 6th ber of genotyped offspring in the same families, or re-
estimating the QTL variance contributions in a differentWorld Congress on Genetics Applied to Livestock Pro-

duction. Ron et al. (1998) presented results from an population.
For those chromosomes likely to harbor QTL affect-analysis of DBDR families. They reported a significant

effect of a marker on C3 for MY (confirmed at the ing several traits (C6, C9, C14, C20, and C26), we investi-
gated the direction of the substitution effects in thosesuggestive level), F% (not confirmed), and P% (con-

firmed at the experiment-wise level), a marker on C10 sires with significant regressions for more than one trait.
In every single case, the direction was consistent withfor P% (not confirmed), and a marker on C14 for FY

and F% (both confirmed at the suggestive level). Maki- the genetic correlations among traits. As an example,
for C6 and two families, the allele increasing MY de-Tanila et al. (1998) reported a QTL on C1 for MY, a

QTL on C6 for MY and P%, a QTL on C20 for MY, P%, creased F%. A different situation was found when look-
ing at two QTL situated on the same chromosome andand FY, and a QTL on C23 for P% in Finnish Ayrshire

dairy cattle. Only the QTL on C6 for MY and P% and affecting the same trait. For C17 and one family, the
substitution effects for the two MY loci had oppositeC20 for P% are confirmed at the experiment-wise level

here. Gomez-Raya et al. (1998) reported a QTL on C6 signs, i.e., were linked in repulsion phase. We then
looked at all other two-linked-QTL analyses that had notfor MY in Norwegian dairy cattle, which is confirmed at

the experiment-wise level with similar position estimate. quite reached significance but showed some evidence in
favor of the two-QTL model. In all cases including C17-Reinsch et al. (1998) found significant QTL effects on

C23, C8, and C1 for SCS in three major cattle breeds PY, C6-F%, C6-P%, C6-FY, and C6-PY, the two loci were
linked in repulsion phase in those families where twoin Germany, which are not confirmed in our study.

The main reasons why some of the findings in other QTL appeared to be segregating. Dairy cattle popula-
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