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ABSTRACT
A novel method using the nonparametric bootstrap is proposed for testing whether a quantitative trait

locus (QTL) at one chromosomal position could explain effects on two separate traits. If the single-QTL
hypothesis is accepted, pleiotropy could explain the effect on two traits. If it is rejected, then the effects
on two traits are due to linked QTLs. The method can be used in conjunction with several QTL mapping
methods as long as they provide a straightforward estimate of the number of QTLs detectable from the
data set. A selection step was introduced in the bootstrap procedure to reduce the conservativeness of
the test of close linkage vs. pleiotropy, so that the erroneous rejection of the null hypothesis of pleiotropy
only happens at a frequency equal to the nominal type I error risk specified by the user. The approach
was assessed using computer simulations and proved to be relatively unbiased and robust over the range
of genetic situations tested. An example of its application on a real data set from a saline stress experiment
performed on a recombinant population of wheat (Triticum aestivum L.) doubled haploid lines is also
provided.

THE gradual development of different types of mo- Ronin et al. (1995) and Korol et al. (1995) used the
lecular markers over the past decade has widened correlation between traits to increase the QTL detection

the applicability of quantitative trait locus (QTL) map- power in experiments involving two traits with some
ping to many species, even some for which variability correlation between them of genetic and/or environ-
between lines is limited. Increased marker density has mental origin. In so doing, they assumed pleiotropy for
facilitated accuracy of QTL positioning, which, in turn, every QTL mapped. In cases when this hypothesis was
allows the development of comparative QTL mapping. wrong, Jiang and Zeng (1995) demonstrated that the
Comparisons of coincident associations of markers and estimates of the QTL effects and positions were biased.
QTLs can take place between genomes of related genus While staying within the same framework, the latter
within a family, a subfamily, or a tribe, thus exploiting authors extended the approach to the simultaneous
the conserved synteny between genomes that may exist. analysis of more than two traits without having to assume
It can also take place between different traits and across pleiotropy for every QTL being mapped. They termed
different environments. their method “Joint Mapping.” They were then able to

Among the different sorts of recombinant populations develop a test of close linkage vs. pleiotropy for a set
derived from line crosses, doubled haploid and recom- of n QTLs, i.e., one QTL per trait detected in the same
binant inbred lines are more amenable to comparative genomic region for the n traits. For two traits, the test
QTL mapping between traits and between environ- statistic is the likelihood ratio
ments because the same genotypes can be used in sev-

LR2 5 2 ln(L 20/L 2), (1)eral experiments. The experimental power is thus in-
creased because the different trait distributions are no where L 20 corresponds to the likelihood of the most
longer independent and can be studied as a multivariate likely full model, where the two QTLs are fitted without
z-dimensional distribution (where z is the number of any constraints. L 2 is the likelihood of the model, where
traits or environments studied). Thus, as far as a QTL the two QTLs are fitted with the constraint that they
comparison between traits is concerned, existing ge- must lie at the same position along the chromosome.
netic and environmental correlations can be exploited.

Jiang and Zeng (1995) suggest that this likelihood ratio
asymptotically follows a x2 distribution with 1 d.f. at the
null hypothesis of pleiotropy. In the context of the LOD
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the putative QTL, they are slower than the multiple linearQTL was of small or medium effect. We are not aware
regression, for example, as simplified by Whittaker et al.that simulation studies have been performed to assess
(1996). Multiple linear regression constitutes an approxima-

the distribution of LR2 over a range of situations, so it tion of the maximum likelihood-based interval mapping in
is possible that the same applies to this test of close that only the within-marker class distribution of the residuals

is considered and assumed normal (Martinez and Curnowlinkage vs. pleiotropy.
1992; Xu 1995). However, the method gives almost identicalVisscher et al. (1996) proposed a less biased alterna-
results to those from the maximum likelihood-based methodstive to the LOD support interval. They estimated empiri-
(Haley and Knott 1992). Walling et al. (1998) could never-

cally a curve of probability density of the QTL’s position theless show, by using a large number of replicated simula-
using the nonparametric bootstrap, in which the origi- tions, the existence of a small but significant bias that tends

to place the estimated QTL position closer to the nearestnal data are resampled N times with replacement and
flanking marker. In this study we used two regression-basedthen plotted the frequency of the different positions
QTL mapping methods for the assessment of the test of link-observed. This procedure yielded confidence intervals
age vs. pleiotropy.

on the QTL’s position that performed better than LOD The first QTL mapping procedure was used in situations
support intervals but tended to be too conservative when of saturated coverage of the genetic map with one marker

every centimorgan, to minimize any possible confounding ef-the QTL accounted for ,10% of the total trait variance.
fects due to the bias described above. Applying the principlesLebreton and Visscher (1998) managed to reduce
established by Stam (1991), Zeng (1993), Rodolphe andthe conservativeness and the size of the confidence in-
Lefort (1993), and Wright and Mowers (1994), given the

tervals to a nearly unbiased level by conditioning the high and regular marker density over the genome, a simple
bootstrap on the genetic model, provided there was no marker-regressor selection was implemented to identify the

QTLs. Because of their computational speed, regression meth-bias on the QTL’s position estimate.
ods lend themselves to resampling schemes. The QTLs wereIn this study, we have used the selective bootstrap
fitted at the positions of the selected markers, and thereforeconcept to develop a novel method to test close linkage
there were as many QTLs declared as there were markers

vs. pleiotropy. In so doing, we replaced the likelihood selected. Their estimated additive effect was the partial regres-
ratio test statistic of Jiang and Zeng (1995) by a confi- sion coefficient related to the corresponding marker-regres-
dence interval on the estimated distance between two sor. During the marker selection, a first, relatively lax, forward

procedure, with an inclusion F-ratio of 4.0, adds a subset ofQTLs affecting different traits that are suspected to cor-
all the markers of the chromosome, some of which are in-respond to the same locus (hypothesis of pleiotropy).
cluded by chance (as discussed by Lebreton and VisscherOur aim is to propose a test that is easy to implement 1998). Then, a stringent backward procedure was imple-

and program (in the C-shell of a UNIX system, for mented to reject some markers. The stringency chosen deter-
example) with a variety of QTL mapping methods. The mines the risk of type I error, i.e., the risk of retaining a

false QTL. The stringent F-threshold is calculated empiricallytest must also be as little biased as possible over a range
according to the protocol presented in Lebreton andof genetic configurations commonly encountered. An
Visscher (1998) and follows the principles described byabsence of bias means that the null hypothesis is only
Churchill and Doerge (1994).

rejected at the nominal frequency of type I error speci- The second QTL mapping procedure was applied in situa-
fied by the user. The bias and the power of the method tions where the robustness of the test was assessed with nonsat-

urated marker coverage of the genome. In a first stage, aare assessed by simulations using a range of genetic
subset of markers was chosen in the same way as the firstconfigurations. Finally, an example of its application to
method. Then, an “interpretation” stage followed, duringa real data set that comes from a saline stress experiment
which the number of QTLs and the sign of their additive

performed on a recombinant population of wheat (Triti- effect (for the doubled haploid populations simulated in the
cum aestivum L.) doubled haploid lines is presented. context of this study) were estimated. A selected isolated

marker, i.e., a marker for which no adjacent markers were
selected, was interpreted as evidence of a single QTL situated
nearby. If two adjacent markers were selected with “apparent”MATERIALS AND METHODS
effects (i.e., the partial regression coefficient of the marker-
regressor in the fitted multilinear model) of the same sign, aQTL mapping procedures: The test of close linkage vs.
single QTL was assumed between the two markers. If thepleiotropy that we propose can be implemented for any QTL
“apparent” effects of the two selected adjacent markers weremapping method that lends itself to an easy QTL model identi-
of opposite signs, two QTLs were assumed nearby. In any case,fication. However, as the method is based upon resampling,
the sign of the QTL effects was inferred to be that of thethe speed of the QTL mapping procedure is important in

allowing the assessment of the test on thousands of simulated respective linked markers. This procedure constitutes a mini-
mum estimate of the number of QTLs, but regardless, nodata sets. Interval mapping-based methods, such as the interval

mapping (stricto sensu) of Lander and Botstein (1989), the linear method can fit more than one QTL per marker interval.
This estimate of the number of QTLs on the chromosome ofcomposite interval mapping of Zeng (1993, 1994) and Basten

et al. (1996), or the multiple-QTL models of Jansen (1993) interest and the sign of their effect constitutes the basis on
which the bootstrapped sample is rejected or not, as will beand Jansen and Stam (1994) provide asymptotically unbiased

QTL parameter estimates due to the property of the maximum explained later. It is followed by a third stage, if the sample
is retained, which consists of estimating the effect and positionlikelihood-based analysis. However, as these methods imple-

ment an iterative algorithm (the EM algorithm; Dempster et of the QTLs within marker intervals. Thus, if an isolated
marker was selected in the first stage, both its flanking markersal. 1977) that must perform several cycles to converge to an

estimate of the QTL parameters at each tested position of were tested in turn by including them in the model. The
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marker that reduces the residual sum of squares the most is hence, in cases of poor experimental power, the span of a
confidence interval on D could be larger than the chromo-retained. The most likely interval that contains the QTL is

thereby identified. The partial regression coefficients of the some length. Unlike in Jiang and Zeng (1995), QTL position
trait 2 and QTL position trait 1 were estimated independentlyflanking marker-regressors fitted one at a time are used to

estimate the QTL’s additive effect and position within the with our QTL mapping procedures. Note that, more generally,
our nonparametric bootstrap test could be applied to theinterval according to Equations 2 and 3, as presented in

Lebreton and Visscher (1998): original data regardless of the QTL mapping procedure that
is implemented.

Dj,k 5 1⁄4ln bj11 2 1⁄4ln bj 1 1⁄2Dj,j11 (2) In this article, for simplicity we considered only a population
of doubled haploid lines. Thus, let Xn,m be the matrix con-a 5 exp (1⁄2ln bj 1 1⁄2ln bj11 1 Dj,j11). (3)
taining all the marker genotypes made of n row-vectors, n
being the number of genotypes, and of m column-vectors, mDj,k is the estimated distance in centimorgans between the

marker on the left and the QTL; a is the estimated additive being the total number of markers covering the genome. Also,
let Y1 and Y2 be the vectors containing the n phenotypic valueseffect of the QTL; bj and bj11 are partial regression coefficients

of the trait phenotype on the marker-type, the markers j and for trait one and trait two, respectively. The marker and the
phenotypic data for the two traits of an individual are resam-j 1 1 being fitted in turn; and Dj,j11 is the distance in centi-

morgans between the flanking markers ( j and j 1 1). pled jointly (xi,1, xi,2, . . . xi,m , y1,i , y2,i) and constitute one “resam-
pleable” data point.In the case when two adjacent markers are selected, with

apparent effects of the same sign, the most likely interval that As in Lebreton and Visscher (1998), a selective nonpara-
metric bootstrap was compared to a nonselective one. Withcontains the QTL is de facto identified. One of the flanking

markers, say the one on the left of the interval, is removed, the selective scheme, after the QTL mapping procedure was
applied to the resampled data set, the parameter estimatesand the partial regression coefficient of the one on the right

is calculated. Then the two markers are swapped over in the contributed values to their estimated empirical distribution
only if the QTL model, i.e., the number of QTLs and the signmodel, and the partial regression coefficient of the marker

on the left is calculated. Then Equations 2 and 3 are applied to of their effects on the chromosome under study, conformed,
for both traits, to those inferred from the original data setthese coefficients. When the adjacent markers are of opposite

signs the QTLs are fitted at the respective marker loci, and (see Figure 1B). Data sets producing other outcomes were
rejected, and the original data were resampled again untilthe apparent effects are retained as the estimate of the QTLs’

effects—this as an ad hoc compromise between bias in QTL N conforming outcomes were recorded. In the nonselective
parameter estimation and speed of computation. If x (x . 2) bootstraps, the same number of QTLs as that observed in the
adjacent markers were selected with “apparent” effects of the original data set was fitted whether they were significant or
same sign, x 2 1 QTLs in coupling would be assumed. How- not in every resampled data set. All of the QTLs contributed
ever, our linear approximation was no longer able to estimate values to the estimated empirical distributions of the parame-
the QTLs’ 2(x 2 1) parameters (position and additive effect ters. Visscher et al. (1996) demonstrated that 150 bootstrap
for each QTL) because there were only x values (the partial samples gave a sufficiently low bootstrap resampling error
regression coefficients) to solve a system of 2(x 2 1) equations component (due to the limited number of resampled data
with 2(x 2 1) unknowns. Whittaker et al. (1996) also demon- sets as opposed to the error due to the limited size of the
strated the insolvability of this configuration when only the original data set itself; Efron and Tibshirani 1993). So we
markers’ “apparent” additive effects are available. Thus, com- retained that value for the assessment of our test.
pared to other regression-based QTL mapping methods that The general assessment protocol for our test: The aim of
include other markers as background parameters so that the the protocol is to assess empirically the bias and the power of
full model tested explains as much genetic variance as possible, our test by evaluating the frequency of rejection of the null
such as MQTL (Tinker and Mather 1995), our method hypothesis of pleiotropy over many data sets that are the real-
should yield very similar results, with only a slightly lower QTL izations of a given genetic configuration. The protocol was
detection power. This small decrease in QTL detection power largely inspired by that described in Visscher et al. (1996)
is due to the fact that the pairs of adjacent markers are not and is depicted in Figure 1A. In a real data set, it is trivial to
systematically included in the compared models. say that the test of close linkage vs. pleiotropy would not be

The test of close linkage vs. pleiotropy: The principle of applied if either of the two QTLs tested did not show a signifi-
the test consists of using bootstrap resampling to obtain an cant effect. This is why, in our simulations, a prior selection
empirical estimate of the sampling distribution of the “dis- was made in the original data sets (which we call replicates
tance” between the two QTLs—one per trait—that map in from now on) so that only the replicates that yielded the
the same genomic region. Here we use the word distance in simulated number of QTLs and had effects of the right sign
the loose sense because this quantity can actually take negative were kept. A genome-wise risk of 5% type I error in this prior
values and is defined as selection was chosen to provide a stringency equal to what

would realistically be applied in a real data set. Then thed 5 QTL position trait 2 2 QTL position trait 1, (4)
bootstrap test to be assessed was applied to each of these
retained replicates with a specified risk of 5% type I errorwhere QTL positions are measured in centimorgans from the
(risk of wrongly rejecting the null hypothesis of pleiotropy,leftmost marker on the chromosome. In the rest of this article,
as specified above) for all the simulations. The proportion ofwe shall use D as its estimate. For a chosen type I error X %
outcomes for which the null hypothesis was rejected consti-for our test, i.e., an X % risk of rejecting the null hypothesis
tuted either: (1) an estimate of the power of the test when aof pleiotropy when pleiotropy was nevertheless the real con-
situation of close linkage for the QTL pair studied was simu-figuration, a symmetrical X% confidence interval was calcu-
lated, or (2) an estimate of the frequency of type I errorslated by taking the lower and upper [(100 2 X )/2]th percen-
when pleiotropy was simulated, i.e., an estimate of the bias oftiles of the empirical distribution. If the interval did not
the method, because the unbiased expectation for this ob-contain the value “0,” this value was considered as an outlier
served value should be the X% that was used to define theto the distribution of d, and the null hypothesis of pleiotropy
confidence interval on the value of d.was rejected. It accrues from the definition of d that it could

vary within a range twice as large as the chromosome length, The genetic configurations tested: For simplicity, genomes
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Figure 1.—Comparative diagram of the selective bootstrap test, assessed on simulated data (A) and applied on real data (B).

were made of one chromosome only, with a length of either per genotype were used. The NaCl experiment was started at
the end of May and finished in August 1994. The Na2SO4160 or 180 cM. Populations of doubled haploid lines of sizes

ranging between 100 and 200 lines were simulated, with one experiment was started on 11 January 1996 and finished in
the middle of April 1996. Before sowing, seeds were soakedQTL per trait in general. Heritabilities were defined as the

ratio of the phenotypic variance of genetic origin between in water, in Petri dishes at 48 overnight and then left at room
temperature to germinate. When coleoptiles reached 1–2 mm,the line means over the total phenotypic variance between

the line means. The trait’s heritability was either 0.1 or 0.2. the seedlings were transferred to rockwool blocks. For the
first 5 days, plants were grown in water that was then replacedOnly the mean of each line was simulated. Three QTLs per

trait, on the same chromosome and in repulsion with a trait with “Sangral” nutrient medium. The nutrient medium was
gradually salinized when leaf one was fully expanded to reachheritability of 0.6, were also simulated to assess the test in more

complex genetic configurations. No epistatic interactions were a final concentration of 200 mm · liter21 in NaCl and 100
mm · liter21 in Na2SO4, respectively. Both experiments weresimulated. The residuals were normally distributed.

Application of the test to real data: A recombinant popula- performed in a greenhouse with a 16-hr day length. Daytime
and nighttime temperatures were maintained at z208 andtion of 96 doubled haploid lines of bread wheat (T. aestivum

L.) was used for some QTL studies on abiotic stress resistance 158, respectively, and the air humidity was maintained at a
level of 50–60%. Plants were harvested at maturity. The aver-by Quarrie et al. (1994). It is derived from the cross Chinese

Spring 3 SQ1, with Chinese Spring being the maternal parent. age spike length in the NaCl experiment and the length of
leaf five in the Na2SO4 experiment were then measured. TheSQ1 is a sibling line at F7 of the line 25/3/2 from the cross

Highbury 3 TW269 and was selected for high abscisic acid data analysis was carried out on the means of each genotype.
The genome was covered with 331 markers, mostly RFLPsproduction under drought conditions. It is also an early line

that flowers z25 days before Chinese Spring in the absence of and AFLPs, plus a few morphological markers including the
Vrn1 gene (Galiba et al. 1995). This is the main gene control-vernalization. Chinese Spring is known for its relative salinity

tolerance. ling the vernalization requirements of European wheat varie-
ties. It was scored as days to ear emergence in unvernalizedPhysiological, biochemical, and yield traits were measured

on plants grown in a controlled environment and subjected plants. In our population, it produced a clear-cut segregation
for the flowering time between the genotypes. Each of the 14to saline stress treatments comparing NaCl and Na2SO4, in

two different experiments. In both experiments, five plants chromosomes of the A and B genomes were covered with 20
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markers on average. However, due to a lack of variability in P value calculated as twice the minimum percentage of out-
the D genome of T. aestivum L. as described by Cadalen et comes with an estimated d either above or below zero. It
al. (1997), we could place only 3.7 markers per D genome corresponds to the integrated area of the empirical distribu-
chromosome. tion’s tail beyond zero and is multiplied by two because our

The marker map was constructed using the software Map- test is two-tailed; it is the equality of a variable (d) to a specific
maker (version 3.0b) with the Haldane mapping function. A value (zero) that is tested. Thus, P is the maximum risk of
set of 21 nulli-tetrasomic lines, 1 for each chromosome, al- type I error one would need to adopt to be able to reject the
lowed us to assign unambiguously from one to eight markers null hypothesis of pleiotropy.
to each chromosome as anchor points. Other markers were
then grouped around these anchor points using a LOD thresh-
old of 3.0 and a maximum recombination fraction of 0.3.

RESULTSUnlinked linkage blocks with anchor markers on the same
chromosome were then forced into one linkage group and Biases in conservativeness of the selective bootstrap:
oriented relative to each other according to Gale et al.’s

Table 1 presents the results of a series of simulations(1995) consensus map for the RFLP markers. Segregation
aimed at assessing the bias of the selective bootstrapdistortion of the marker genotypes was investigated using a

x2 test with 1 d.f. The normality of the trait distribution among method to test close linkage vs. pleiotropy in a low
the genotype means was checked using Shapiro and Wilk’s power experimental design (although the heritability
W-statistic (Royston 1982). The QTLs were mapped, and the of an individual QTL can reach 20%). Nine genetic
test of close linkage vs. pleiotropy was performed using the

configurations were explored. In all of them, only oneprocedures described above that we implemented in a pro-
QTL was simulated per trait, for two traits, on a genomegram in Fortran 90 (Ellis et al. 1994). No epistatic effects

were fitted. The F-significance thresholds to retain markers composed of a 180-cM-long chromosome. Because it
in the backward selection stage of the QTL mapping proce- was the bias that was being explored, the QTLs were
dure were determined empirically using 1000 permutations simulated at the same position for both traits. The simu-
as described in Churchill and Doerge (1994) to achieve a

lated values for the additive effects were equal to unity.target risk of 10% type I error genome-wise. Then, if the QTL
The correlation between the residuals, i.e., the environ-was isolated (i.e., no QTLs in the adjacent intervals), the

F-statistic of a QTL was calculated by comparing the full model, mental correlation between the traits, was equal to zero.
including the markers flanking the QTL, to the reduced one Replicates were created until 2000 had been retained
that did not contain them. Otherwise, if the QTL was fitted that conformed to the model simulated. For example,
at the marker position in the specific cases described above,

when a QTL of 10% heritability was simulated for bothonly this marker was removed from the full model to calculate
traits, 2260 replicates on average were generated to re-the F-statistic.

The output of our test of close linkage vs. pleiotropy was a tain 1000 of them. The total number of replicates fell

TABLE 1

Frequencies of nonrejection of the null hypothesis of pleiotropy and sizes of the confidence intervals
of the estimated distance between two QTLs for pleiotropic QTLs

Select (20 cM) Select saturated Nonselect

No. Pos A Pos B H2A H2B P (95%) CI size P (95%) CI size P (95%) CI size

1 90 90 10 10 97.7 102.84 95.7 113.7 99.2 146.0
2 15 15 10 10 96.4 114.83 96.1 121.2 98.8 195.8
3 5 5 10 10 94.0 108.7 95.8 126.9 98.5 210.9
4 5 5 10 20 88.4a 87.24 92.2a 98.2 96.6a 165.8
5 90 90 10 20 95.6 91.22 97.8 96.9 98.8 121.8
6 5 5 20 20 95.8 71.48 92.2 67.7 92.3 123.5
7 90 90 20 20 96.2 62.94 96.3 74.5 97.9 91.4
8 5 5 15 7.5 93.2a 110.3 94.6a 117.1 97.6a 198.3
9 90 90 15 7.5 94.4 103.8 96.0 110.4 99.2 139.7

No., number of the genetic configurations simulated; Pos A, position of QTL for trait A in centimorgans
from the leftmost marker; Pos B, position of QTL for trait B in centimorgans from the leftmost marker; H2A,
heritability of trait A; H2B, heritability of trait B; Select (20 cM), selective bootstrap with one marker every 20
cM; Select saturated, selective bootstrap with one marker every centimorgan; Nonselect, nonselective bootstrap
with one marker every centimorgan; P (95%), frequency (percentage) of nonrejection of the null hypothesis
(pleiotropy), using 95% confidence intervals on the estimated difference (QTL position trait B 2 QTL position
trait A); CI size, average width of the 95% confidence intervals, in centimorgans. Both P (95%) and CI size
were estimated over 2000 selected replicates. The simulated populations were made of 100 doubled-haploid
lines. Five percent is the theoretical (expected) frequency of type 1 errors, and a significant departure of the
P (95%) observed frequency from the nominal 95% indicates a bias of the test in the particular configuration.

a Configurations for which there is a significant bias in the estimate of the difference (QTL position trait B
2 QTL position trait A).



936 C. M. Lebreton et al.

to 1200 when a QTL of 20% heritability was simulated distance between the two tested QTLs vary from more
than 210 cM in the least powerful design to z90 cM infor both traits (results not shown). A saturated marker

coverage of one marker every centimorgan was com- the most powerful of the simulated set, with the nonse-
lective scheme. They can be reduced to about 125 andpared to a density of only one marker every 20 cM.

The percentage estimates of inclusion of the value 67 cM, respectively, with the selective scheme. These
confidence interval widths were estimated within confi-“0” by the 95% confidence intervals for the estimate of

d were within confidence limits of 61.3%. The estimates dence margins of 61 cM only. Thus, the greatest reduc-
tion in confidence interval size is achieved for the leastof the QTL additive effects were significantly biased

upward due to the selection of the replicates and then powerful designs, which makes sense, because a greater
proportion of bootstrap samples were then rejected withof the bootstrapped samples. This bias is very small for

QTL heritabilities of 20%: 15.6% 6 2% on average the selective bootstrap.
Figure 2 illustrates the effect of the selection step inover the replicates and 19.5% 6 2% on average over

the bootstrap samples, for both marker densities. For the bootstrap resampling, where two QTLs at different
positions were simulated. It appears that the selection,a heritability as low as 7.5%, the bias became more

important: 133% 6 2% on average over the replicates in addition to reducing the bias of the test, quite dramat-
ically increases its power, especially when the heritabilityand 149% 6 2% on average over the bootstrap samples

with the dense marker coverage (results not shown). is low. However, heritabilities as low as 10% offer limited
resolution in the population we studied because, evenBiases were significantly higher with the sparse coverage

of one marker every 20 cM: 140% 6 3% and 158% 6 when the QTLs are 180 cM apart, the power of the
selective bootstrap test reached only 88.4%.2%, respectively.

Overall, the percentages of inclusion of the value “0” Effect of the marker density on the power of the test:
In Figure 3, three marker densities were tested for twowere quite close to their expected values (95%), which

demonstrates the small bias of the method. The method population sizes—100 and 200 genotypes. The results
demonstrated that a higher marker density significantlywas even unbiased when the QTLs were as close as 5

cM to a chromosome end, because 95.8% of the 95% increased the resolution of the test for both sizes. For
a population size of 100 genotypes, a difference of 10–confidence intervals contained the value “0” for a QTL

with a heritability of 10% with the dense marker cover- 15% in power of the test was consistently observed be-
tween a sparse coverage of one marker every 20 cM andage and 94% with the sparse coverage (configuration 3

in Table 1). This last result contrasts with the properties a saturated coverage of one marker every centimorgan,
over the different distances between the QTLs. Withof the confidence interval on a QTL’s position, calcu-

lated using the same selective bootstrap, in which case the higher QTL detection power provided by the larger
population size of 200, an even larger difference in QTLit is anticonservative when the QTL is close to a chromo-

some end, as demonstrated by Lebreton and Visscher separation power was observed between the different
marker densities.(1998). Only when the heritabilities of the two QTLs

tested differed markedly, as in configuration 4 in Table Effect of the environmental correlation between the
traits on the power of the test: In Figure 4, the results1, was the estimate of the “distance” significantly bi-

ased—by about 5 cM—for both marker densities. Even
then, there was not a big discrepancy between the ob-
served and the expected percentages of inclusions with
the tight marker coverage. However, the bias was more
important with the sparse coverage.

Selective vs. nonselective bootstrap: In Table 1, the
selective bootstrap was also compared to the nonselec-
tive one. The 95% confidence intervals obtained with
the nonselective bootstrap appeared consistently con-
servative, even very conservative when the QTLs were
centrally situated (99.2%) in configuration 1. This im-
plies that the hypothesis of pleiotropy is rejected too
infrequently and therefore that the power of the test of
close linkage vs. pleiotropy is not maximized with the
nonselective scheme. The only configuration for which Figure 2.—Comparison of the power of the test with the

selective and the nonselective bootstrap methods, across athe confidence intervals were not too large was one in
range of distances (d) between the two QTLs, for two differentwhich two QTLs of high heritability (20%) were simu-
heritabilities. The genome map was saturated with one markerlated near a telomere. The method was rather anticons-
every centimorgan. The simulated population size was 100.

ervative, and the percentage of inclusion did not differ The chromosome length was 180 cM. Powers were estimated
much from that obtained using the selective bootstrap. over 500 replicates for each configuration. r e is the environ-

mental correlation between the traits.Average confidence interval widths on the estimated
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of d, the distance between the two QTLs, when r had a
high absolute value. For r 5 0, the average width of the
95% confidence interval of d was 77 cM but only 64 cM
for r 5 0.9 (results not shown).

Results presented in Figure 5 explore the effect of
the environmental correlation in a less powerful design.
The simulations followed the same protocol as that in
Figure 4, and the population size was also the same,
but the heritabilities of both traits were only 0.1. The
maximum absolute value of r was also increased to 0.95
to accentuate any possible effect of this parameter. A
very different pattern for the effect of r was observed.

Figure 3.—Comparison of the power of the test across three First, it was very asymmetrical around the value zero.
marker densities and two population sizes, over a range of Negative values of r dramatically increased the powerdistances between the two QTLs. Only the selective bootstrap

of the test, unlike positive values. Surprisingly, the lowerwas applied. The powers were estimated over 500 replicates
density of one marker every 20 cM provided a slightlyfor each configuration. The simulated population sizes were

100 and 200, and the correlation coefficient between the resid- better resolution except when r 5 0.45. The average
uals was 0.45. The chromosome length was 180 cM. Both trait widths of the 95% confidence interval of d varied sig-
heritabilities were 0.2.

nificantly between the different simulated configura-
tions, from 112 6 5 cM when r 5 0 to 97 6 6 cM when
r 5 20.95, for a marker spacing of 20 cM. Besides theof a series of simulations, where different degrees of
differences in the size of the confidence interval of d,environmental correlation were combined with differ-
a bias in the estimate of d seemed to further exacerbateent marker spacings, are plotted. The population size
the difference in power associated with r. Thus, in Tablewas 100, the trait heritability was 0.2, and the effect of
2, this bias was studied further. The average observedthe environmental correlation was symmetrical around
value of d was calculated over 2000 retained replicatesthe value zero. The power of the test increased with a
and for the same range of genetic configurations as thathigh absolute value of the environmental correlation
simulated in Figures 4 and 5. Biases were significant(r). The effect of an increase in r was more pronounced
only with the lower simulated trait heritability of 0.1for tight marker coverage than for loose marker cover-
and larger with the lower marker density of one everyage. Thus, with one marker every 20 cM, we observed
20 cM. A negative value for r tended to bias the estimatean increase of only 5% in the power of the test between
of d upward (17.2 cM for r 5 20.95 and one markerr 5 0 and r 5 0.9, whereas with one marker every centi-
every 20 cM) and a positive value, downward (26.9 cMmorgan the increase was 20%. This increase was ex-
for r 5 0.95 and one marker every 20 cM). Likewise,plained by a smaller confidence interval on the estimate

Figure 4.—Comparison of the power of the test across five Figure 5.—Comparison of the power of the test across five
values for the environmental correlation and three markervalues for the environmental correlation and three marker

densities, for a distance of 40 cM between the two tested QTLs densities, for a distance of 40 cM between the two tested QTLs
and trait heritabilities of 0.1. Only the selective bootstrap wasand trait heritabilities of 0.2. Only the selective bootstrap was

applied. The powers were estimated over 500 replicates for applied. The powers were estimated over 500 replicates for
each configuration. The chromosome length was 180 cM. Theeach configuration. The chromosome length was 180 cM. The

simulated population size was 100. simulated population size was 100.
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TABLE 2 mate of the distance between QTL 1 and QTL 2 was
very slightly biased upward by 1.6 cM and that betweenAverage estimated distance between QTL for trait B
QTL 3 and QTL 4 was biased downward by z4–5.6 cM,and QTL for trait A for linked QTLs
depending on the simulated position of QTL 5. The
null hypothesis of pleiotropy, for QTL 5, was rejectedMarker

h2 re spacing (cM) D sD rpos with varying frequencies, from 3.6%, when the QTL was
simulated in the middle of the interval, to 9.8% when0.2 20.9 10 39.8 0.30 0.011 NS
it was simulated at only 2 cM away from the flanking20 40.6 0.36 20.014 NS
marker on the left. Simulations with the saturated map0.0 10 39.7 0.30 0.0

20 39.6 0.36 0.0 showed biases in the same directions as those observed
10.9 10 39.7 0.30 20.027 NS with one marker every 20 cM for the three positions of

20 38.6 0.34 20.02 NS QTL 5, respectively (results not shown). This indicates
0.1 20.95 10 43.6 0.52 20.146*** not only that the biases observed for QTL 5 are due to

20 47.2 0.55 20.093***
the within-marker interval bias on QTL position esti-0.0 10 37.8 0.57 0.0
mates but also that the linkage with other strong effect20 39.2 0.59 0.0
QTLs differing for the two tested QTLs tends to affect10.95 10 36.0 0.49 0.242***

20 33.1 0.53 0.205*** the estimated distribution of d and the conservativeness
of the test. The power of the test was relatively low forh2, heritability of the trait; re, simulated correlation coeffi-
the other two pairs of nonpleiotropic QTLs. It rangedcient between the residuals; D, average estimated distance
from only 4.2 to 7.2%, for QTL 3 and QTL 4, whichbetween the QTL for trait A and the QTL for trait B; sD,

standard error of the mean; rpos, correlation coefficient be- were 8 cM apart, depending on the simulated position
tween QTL position estimates; NS, nonsignificant correlation; of the linked QTL 5. The power of the test for QTL 1
***, significant at a risk of type I error ,0.001. The simulated and QTL 2 was not affected by the position of QTL 5
distance between the QTL for trait A and the QTL for trait

and was z44%.B was 40 cM.
Application of the test to real data: There was a sig-

nificant difference between the parents for the length
of leaf five. For Chinese Spring the value was 338.0 mmthe correlation coefficients between the QTL position

estimates were only significant with the lower simulated on average and for SQ1 was 214.5 mm. The distribution
of this trait among the recombinant genotypes did nottrait heritability of 0.1, but with both marker densities.

A negative correlation between the residuals of the phe- differ significantly from normality. The intensity of the
stress generated by Na2SO4 reduced the number ofnotypic trait values generated a negative correlation be-

tween the QTL position estimates and vice versa. spikes to fewer than one per plant. SQ1 produced on
average one spike per plant, whereas Chinese SpringBehavior of the method in more complex genetic

situations: The power and the bias of the test were also did not produce any spikes in any plant. Twenty-three
genotypes did not produce any spikes at all. This gener-investigated in more complex configurations of several

QTLs per trait. The model was three QTLs per trait, on ated as many missing data for the average spike length
trait. However, the distribution of the mean values of thea 160-cM-long chromosome. The QTLs were of equal

effect and linked in repulsion. Both trait heritabilities remaining genotypes did not differ significantly from
normality.were 0.6, and the residuals were correlated with r 5 0.2.

The population was made of 150 doubled haploid lines. Segregation distortion in the marker genotypes was
observed on 11 chromosomes, representing every ho-One thousand replicates were simulated. The results

are summarized in Table 3. QTLs 1, 3, and 5 affected moeologous group except group 6. In particular, chro-
mosome 7A showed some segregation distortion in sev-trait 1, whereas QTLs 2, 4, and 5 affected trait 2. Thus,

QTL 5 was pleiotropic by definition, and we had two eral regions. Markers at the telomeric end of the short
arm of chromosome 5A, i.e., the two leftmost markerstestable pairs of QTLs: QTLs 1 and 2 in one region of

the chromosome and QTLs 3 and 4 in another region. on our map, showed significant segregation distortion
(P , 0.001) in favor of the Chinese Spring-type alleles inThe QTLs were 13 cM apart for the first pair and only

8 cM apart for the second pair. This design was inspired a 72:28 ratio. A relatively good correlation was observed
between the lines’ phenotypic means for the two traitspartly by that of Jiang and Zeng (1995), although they

simulated F2 populations. The simulated chromosome (R2 5 0.3, results not shown).
The detected QTLs for the two traits are listed inwas covered with only one marker every 20 cM to assess

the robustness of the test in a realistic configuration. Table 4. The 1000 permutations determined an F-sig-
nificance threshold of 13.35 for spike length and 12.87Both testable pairs of QTLs in close linkage were situ-

ated in the same marker interval. QTL 5 was the only for leaf length. Four QTLs were detected for spike
length and these accounted for 58% of the phenotypicQTL in its interval and was separated from the nearest

one by one empty marker interval. Three positions variance among the line means. Two QTLs mapped
on chromosome 5A. The first QTL was quite stronglywithin this interval were simulated for QTL 5. The esti-
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TABLE 3

Parameters of QTL positions and effects and their estimates for data sets with three QTLs affecting each trait

QTL1 QTL2 QTL3 QTL4 QTL5

Parameters
Position (cM) 23 36 81 89 127

122
130

Distance (cM) 13 8 0
Effect

a1 1 21 1
a2 21 1 21

Estimates
Distance (cM) 14.67 6 0.66 4.14 6 0.70 0.07 6 0.5

3.90 6 0.60 20.11 6 0.3
2.52 6 0.66 2.44 6 0.9

Effect (over replicates)
a1 1.0 6 0.02 20.95 6 0.02 1.36 6 0.06

20.95 6 0.02 0.98 6 0.02
20.95 6 0.02 1.54 6 0.06

a2 21.06 6 0.03 1.48 6 0.06 21.63 6 0.06
1.52 6 0.06 21.5 6 0.06
1.32 6 0.06 21.45 6 0.03

Effect (over bootstraps)
a1 1.15 6 0.02 21.02 6 0.02 1.36 6 0.04

21.06 6 0.02 1.10 6 0.02
21.03 6 0.02 1.47 6 0.04

a2 21.19 6 0.02 1.47 6 0.04 21.58 6 0.04
1.54 6 0.04 21.54 6 0.04
1.37 6 0.04 21.45 6 0.04

Power 0.444 6 0.031 0.066 6 0.015 0.054 6 0.013
0.076 6 0.016 0.098 6 0.018
0.042 6 0.012 0.022 6 0.004

Position (cM), position of the QTLs in centimorgans from the leftmost marker, on the unique chromosome; Distance (cM),
difference (QTL position trait 2 2 QTL position trait 1) for a pair of QTLs testable for pleiotropy vs. close linkage; a1, additive
effect of the QTLs affecting trait 1, with its 95% confidence limits; a2, additive effect of the QTLs affecting trait 2, with its 95%
confidence limits. Power, for QTLs 1–4: power of the test of close linkage vs. pleiotropy, i.e., frequency at which the null hypothesis
of pleiotropy is rejected for a nominal risk of type I error of 5%; for QTL 5, percentage of type I error for a nominal risk of
5%.

The trait heritabilities are 0.6, the population size is 150, and the environmental correlation coefficient between the traits is
0.2. The chromosome is 160 cM long and covered with one marker every 20 cM. For QTL 5, three positions were simulated,
and the three respective percentages of type I errors are listed bottom right. The corresponding powers of the test for QTLs 3
and 4 are also detailed. QTLs 1, 3, and 5 affect trait 1. QTLs 2, 4, and 5 affect trait 2. QTL 5 is therefore the only pleiotropic
QTL.

significant (F 5 44.8) and was estimated at 168.8 cM Only one QTL was detected for leaf length in the ge-
nome scan and this was at 202.6 cM on 5A, z20 cMfrom the leftmost marker on our map. It is close to

Vrn1, which mapped at 179.1 cM. The empirical distri- from Vrn1, which required too high a risk of type I error
(7%) to be rejected as its candidate gene. Figure 6 showsbution of its position estimate, using the selective boot-

strap procedure described in Lebreton and Visscher the comparative empirical distributions of the first
QTL’s position for the spike length and that of the QTL(1998), did not allow us to reject Vrn1 as its candidate

gene. One would have had to adopt a 26% type I error for the leaf length on 5A. Applying our test of close
linkage vs. pleiotropy to these two QTLs that mappedrisk for this rejection (results not shown elsewhere).

The second QTL on 5A for this trait mapped in a poorly near Vrn1 showed that the hypothesis of pleiotropy
could be rejected with a stringency that allowed a 1%covered region of the chromosome at position 229.0

cM in a 34.2-cM-wide marker interval and was linked in type I error risk. Figure 7 shows the empirical distribu-
tion of D, and zero clearly appears as an outlier torepulsion with the first QTL. Vrn1 could be rejected as

its candidate gene with a 1% type I error risk, again using the distribution. Figure 8 shows that the correlation
between the two QTLs’ estimated positions was not atLebreton and Visscher’s (1998) confidence intervals.
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TABLE 4

List of the QTLs detected for the average spike length and the leaf length characters

Chromosome QTL no. Position Effect F

Average spike length (adjusted R 2 5 0.58)
5a 1 168.8 0.59 44.80
5a 2 229.0 20.60 32.56
5b 1 0.7 0.31 19.81
7a 1 414.39a 0.27 16.41

Leaf length (adjusted R2 5 0.34)
5a 1 202.6 239.08 48.15

Chromosome, name of the chromosome on which the QTL was detected; QTL no., order of the QTL on
the particular chromosome; position, estimated distance in centimorgans from the leftmost marker on the
chromosome; effect, estimated effect of the QTL; F, F-statistic of the QTL.

a The total genetic length is likely to be grossly overestimated due to some wide gaps between several linking
blocks on this chromosome.

all significant. The test was also applied to the second The QTL mapping method: Although the estimation
of our QTL effect and position used the informationQTL on 5A for the spike length, despite the poor marker

coverage in its proximity, and to the QTL for the leaf from both flanking markers, the detection of the QTLs
was carried out by selecting individual markers as op-length. Figure 9 shows the comparative distributions of

these two QTLs’ position estimates. Figure 10 shows the posed to testing pairs of adjacent markers as in the
interval mapping or its multiple-linear approximationsempirical distribution of D for this test.
(Haley and Knott 1992). However, the consequent
loss of power in our configurations with one marker

DISCUSSION every 20 cM is not very high, as shown by Knott and
Haley (1992) and Rebai et al. (1995).We have introduced a novel way of testing close link-

The selective bootstrap: The selection step insertedage vs. pleiotropy. Our method is based upon the empir-
in the bootstrap resampling scheme was identical to thatical distribution of the distance between QTLs mapped
described in Lebreton and Visscher (1998). Because afor different traits in the same chromosome region. The
significance threshold greater than zero was imposedmethod is very easy to implement and does not make
to retain a QTL when analyzing an original data set, itany assumptions about the distribution of data or test
was reasonable to apply the same threshold in order tostatistics. Over the range of configurations tested with
follow the same procedure when analyzing the boot-one QTL per chromosome, the method presented little

bias, in that under the null hypothesis of pleiotropy the
proportion of nonrejection was close to its expected
value.

Figure 7.—Empirical distribution of the distance between
the two QTLs of the first pair tested for close linkage vs.Figure 6.—Comparative empirical distributions of the esti-

mated QTL positions obtained from 200 selective bootstraps pleiotropy, obtained from 200 joint resamplings of the original
data, using the selective bootstrap method. D is the estimatedapplied on the original data, for the first pair of QTLs tested

for close linkage vs. pleiotropy. distance between the two QTLs.
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strapped data sets to work out the empirical distribution and, as observed in our simulations, the estimated dis-
tance could differ significantly from zero. Even then,of our d statistic (see Efron and Tibshirani 1993). This

means that we only retained the bootstrap outcomes the conservativeness of the test did not seem overly
decreased, which demonstrates the general robustnessthat showed the same QTLs for both traits. Selection was

also imposed on the sign of the QTLs. This is because a of the method.
Concerning the biases observed in the estimates ofconfidence interval on a QTL’s parameter is defined

on the condition that this QTL exists. In other words, the QTL effects after the two selection stages, they are
not solely an artificial consequence of the experimentalthere is a genetic factor present somewhere along the

chromosome, acting in a given direction on the trait. protocol to assess our bootstrap method, but corre-
spond to what would be observed when a set of realA QTL detected with an effect of opposite sign violates

this condition and cannot logically be retained to con- data is analyzed. Indeed, regarding the bias due to the
tribute a value to the estimate of the statistic’s empirical first selection, if a pair of QTLs is to be tested for close
distribution. Nevertheless, the selection step generates linkage vs. pleiotropy, their observed effects would have
an upward bias in the absolute value of the estimated to be significant for the QTLs to be detected in the first
QTL effect. As QTLs of higher effects have smaller con- place. Imposing a significance threshold on the QTL
fidence intervals on their position estimate, a prerequi- effect for their detection involves a bias on their esti-
site of the bootstrap is violated, namely that the statistic mated effects, as investigated by Hyne et al. (1995). As
estimated from the bootstrapped data follows the same for the bias due to the selection stage introduced in the
distribution law as that estimated from the original data bootstrap resampling, it grows with the percentage of
set. Because we did not find the means to solve the issue outcomes rejected, which is inversely related to the size
analytically, we resorted to simulations. of the QTL effects.

In contrast to the situation in which the bootstrap Effect of the environmental correlation and of the
resampling was applied on a single QTL’s position, as marker spacing: We observed that the environmental
in Lebreton and Visscher (1998) when the distance correlation had a different pattern of effect, depending
between two QTLs was resampled, in this study, no bias on the heritability of the traits. Thus, when the heritabil-
was observed when the pleiotropic QTL was situated ity was such that the experimental power was high
near a telomere, provided that the percentages of vari- (power of the test of close linkage vs. pleiotropy .50%),
ance that it accounts for are similar for both traits. In then the resolution power of our test also increased
other words, on average, the distance is close to zero. significantly with a high absolute value of the environ-
Yet the individual estimated QTL’s positions were biased mental correlation r. This increase in resolution and
toward the middle of the chromosome, as investigated the resolution of the test itself were greater with a higher
by Hyne et al. (1995). The fact that two QTLs of similar marker density. When the traits’ heritability was lower,
significance, at the same position, are subject to similar a totally different pattern emerged. The effect of r was
biases may explain why their estimated distance re- no longer symmetrical around the value zero, and it
mained close to the expected value of zero. Conversely, was the less dense marker density that provided a slightly
if a pleiotropic QTL explained a markedly different higher resolution power of the test. When the heritabil-
proportion of the variance of the two traits, the biases in
the two estimated QTL positions would also be different

Figure 9.—Comparative empirical distributions of the esti-Figure 8.—Fitted regression between the estimated QTL
positions of the first pair of QTLs tested for close linkage mated QTL positions obtained from 200 selective bootstraps

applied on the original data, for the second pair of testedvs. pleiotropy, over the joint resamplings from the selective
bootstrap method. QTLs.
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gain in resolution obtainable from the correlation of
the environmental residuals.

In the absence of bias on the QTL position estimates,
the test of close linkage vs. pleiotropy showed very little
bias itself. It also turned out to be robust in the presence
of such biases on the QTL position estimates, whether
they were due to differences between the two traits’
heritabilities or to linkage with other QTLs at different
distances as in the example presented in Table 3, pro-
vided that the marker density was high. However, when
the marker density decreased, the test became more
sensitive to these biases, including the within-marker
interval bias on QTL position estimate.

Analysis of the wheat data set: The population sizes
were small because data for a maximum of 96 doubled
haploid lines were present in the data set. However, the

Figure 10.—Empirical distribution of the distance between
high heritabilities of the traits studied compensated forthe two tested QTLs of the second pair tested for close linkage
the small sizes of our sample. The relevant chromosomevs. pleiotropy, obtained from 200 joint resamplings of the
span was covered with one marker every 6 cM on averageoriginal data, using the selective bootstrap method. D is the

estimated distance between the two QTLs. for the first pair of QTLs tested for close linkage vs.
pleiotropy, which mapped at some 34 cM away from
each other. This allowed us to separate them with a

ity was lower, the residuals represented a higher part maximum 1% type I error risk. The risk of type I error
of the phenotypic variation. Thus a strong correlation at which the second QTL for the spike length on chro-
between the residuals such as those observed by Chev- mosome 5A can be separated from the QTL of leaf
erud et al. (1997), for example, can have a dramatic length is to be considered with caution because of the
effect on the resolution power as our simulations poor marker coverage around the former. Because our
showed. The direction and magnitude of this effect are QTL mapping method fitted all the detectable QTLs
hard to predict intuitively. We observed that a positive on all the chromosomes, in the full model, no residual
r generated a positive correlation of the QTL position correlation of genetic origin was left. There was no
estimates between the two traits. This is expected to correlation of environmental origin between the residu-
decrease the variance of D and therefore increase the als because the data came from two separate experi-
power of the test. A negative r generates a negative ments for the two traits. As a consequence, there was
correlation of the QTL position estimates between the also no correlation between the reestimated QTL posi-
two traits. This is expected to increase the variance of tions and no extra power to be gained from a joint
D and therefore decrease the power of the test. However, resampling of the data in this particular case. More
we also showed empirically that a positive r also gener- generally, for traits measured on the same individuals
ates a downward bias of D, which, if no other effects (as opposed to the case presented above), when imple-
were present, would increase the apparent separation menting a QTL mapping method that includes all the
power of the test and vice versa. The overall effect is detectable genetic effects in its full model, such as the
thus difficult to predict, and the simulations showed composite interval mapping of Zeng (1993, 1994) or
that the negative correlation between the residuals had the multiple-QTL model of Jansen (1993), we also ex-
the greatest effect in increasing the resolution; there- pect little extra power to be drawn from a joint resam-
fore, the bias on the QTL position estimates had the pling of the data if the correlation of environmental
prevailing effect. origin between the traits is low. However, in this config-

It also appears that the correlation between the envi- uration, the nonselective bootstrap method still has the
ronmental residuals of the two traits studied could not merit of supplying an assumption-free nonparametric
increase the resolution beyond a certain limit despite test that is robust in a variety of situations.
very high values of r. This is due to the fact that even In conclusion, the selective nonparametric bootstrap
if the environmental residuals were totally correlated, offers a robust alternative, with little bias, to the LOD-
there would still be some discrepancy between the two based method to test close linkage vs. pleiotropy over
traits’ phenotypic scores—i.e., the two vectors corre- an acceptable range of genetic configurations. It is com-
sponding to these scores would not be colinear—due puter intensive, but using our regression-based analysis
to the recombination between the two QTLs. In reality, the test is completed in, at most, a few minutes on
of course, it is very likely that the traits would be deter- any relatively new computer because only z150–200
mined by some additional genetic factors differing be- bootstraps are necessary. Another element of its attrac-

tiveness is the simplicity of its principle, hence its easetween the two traits. This would further decrease the
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