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ABSTRACT
The distribution of the number of pairwise differences calculated from comparisons between n haploid

genomes has frequently been used as a starting point for testing the hypothesis of linkage equilibrium.
For this purpose the variance of the pairwise differences, VD, is used as a test statistic to evaluate the null
hypothesis that all loci are in linkage equilibrium. The problem is to determine the critical value of the
distribution of VD. This critical value can be estimated either by Monte Carlo simulation or by assuming
that VD is distributed normally and calculating a one-tailed 95% critical value for VD, L, L 5 E(VD) 1

1.645 √Var(VD), where E(VD) is the expectation of VD, and Var(VD) is the variance of VD. If VD (observed) .
L, the null hypothesis of linkage equilibrium is rejected. Using Monte Carlo simulation we show that the
formula currently available for Var(VD) is incorrect, especially for genetically highly diverse data. This has
implications for hypothesis testing in bacterial populations, which are often genetically highly diverse. For
this reason we derive a new, exact formula for Var(VD). The distribution of VD is examined and shown to
approach normality as the sample size increases. This makes the new formula a useful tool in the investiga-
tion of large data sets, where testing for linkage using Monte Carlo simulation can be very time consuming.
Application of the new formula, in conjunction with Monte Carlo simulation, to populations of Bradyrhizo-
bium japonicum, Rhizobium leguminosarum, and Bacillus subtilis reveals linkage disequilibrium where linkage
equilibrium has previously been reported.

BACTERIA might be called “facultative sexuals” be- Burkholderia cepacia (Wise et al. 1995), Helicobacter pylori
(Go et al. 1996), and fluorescent Pseudomonas (Hau-cause they can exchange genetic material through

conjugation, transformation, and transduction, but ge- bold and Rainey 1996).
The conclusion of linkage equilibrium reached innetic exchange is not a part of their reproductive mode.

these studies is based on the variance of the distributionJust how frequently recombination takes place in bacte-
of the number of pairwise differences (VD) among bacte-ria has been a topic of debate since the first major study
rial isolates that have been subjected to genetic analysisof bacterial population genetics, in which Escherichia
at multiple loci. VD can be compared to a critical valuecoli genomes were assumed to recombine frequently
obtained under the null hypothesis that all loci are inleading to linkage equilibrium (Milkman 1973). Sel-
linkage equilibrium. This approach was first developedander and Levin (1980) showed that this assumption
by Brown et al. (1980), who applied it to allozyme datawas incorrect and that E. coli populations consisted of
from wild barley, Hordeum spontaneum. Whittam et al.many asexual clones evolving in genetic isolation from
(1983) pioneered its use in bacterial population genet-all other clones comprising the species (cf. Maruyama
ics, and more recently this method served as the basis forand Kimura 1980, but see Guttman and Dykhuizen
an extensive comparative study of bacterial population1994). During the 1980s this clonal model was thought
structure (Maynard Smith et al. 1993).to hold for all bacterial populations until Istock et al.

There are two methods of calculating a critical value(1992) reported that a local population of Bacillus subti-
for VD. (1) The null distribution of VD can be simulatedlis was in linkage equilibrium and argued that this re-
on a computer, and (2) assuming the null distributionsulted from frequent mixis. In addition to B. subtilis,
of VD is normal, a critical value can be calculated by thelinkage equilibrium has been reported for Neisseria go-
well-known method of adding x standard deviations tonorrhoeae (O’Rourke and Stevens 1993), subpopula-
E(VD). But, as it is not known whether the null distribu-tions of Rhizobium (Souza et al. 1992; Maynard Smith
tion of VD is normal, Monte Carlo simulation has re-et al. 1993; Bottomley et al. 1994; Strain et al. 1995),
cently emerged as the preferred way for testing linkage
equilibrium in bacterial populations (Souza et al. 1992;
Wise et al. 1995; Haubold and Rainey 1996). However,
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tion of normality for hypothesis testing. In this case the
Var(VD)old 5

(n 2 1)2

n3
m4correct test depends above all on an accurate estimator

of the variance of VD.
2

(n 2 1)(n 2 3)
n3

E(VD)2 ≈ m4 2 E(VD)2

n
,

(6)
THE TRADITIONAL METHOD OF COMPUTING

THE VARIANCE OF VD where

Suppose we have n sampled haploid individuals, arbi- m4 5 ohj 2 7oh2
j 1 12oh3

j 2 6oh4
jtrarily numbered from 1 to n, that have been genetically

1 3(ohj 2 oh2
j )2 (7)assayed at q loci. Let dij denote the number of loci at

which individuals i and j differ. Then the variance of
(Brown et al. 1980).pairwise differences is by definition equal to

In the next section we derive a formula for the vari-
ance of VD under the randomization scheme of Souza

VD 5 o
n21

i51
o
n

j .i
(dij 2 d)2Y1n22, (1) et al. (1992) and show that (6) is inappropriate for

calculating the variance of VD under these circum-
stances.

where

d 5 o
n21

i51
o
n

j .i
dijY1n22. (2) COMPUTING THE VARIANCE OF VD

In this section we obtain an exact expression for the
variance of VD under the shuffling of alleles across indi-The distribution of VD depends on how replicate samples
viduals (the sampling without replacement method; seewould be generated. In this article, we assume that repli-
also Hudson 1994). In the following, dij denotes thecate samples are generated by randomly shuffling the
random number of loci at which individual i and j differoriginal alleles among the sampled haplotypes. In this
in a shuffled sample. First we write VD in terms of sij, theway, the numbers of alleles and the frequencies of the
number of loci at which individuals i and j are identical.alleles at individual loci are exactly the same in each
Noting that sij 5 q 2 dij, it follows thatreplicate as in the original sample, but there is no statisti-

cal association of alleles on haplotypes except that which
arises by chance. This shuffling method is the method VD 5 o

n21

i51
o
n

j .i
(sij 2 s)2Y1n22 5 1o

n21

i51
o
n

j .i
s 2

ijY1n222 2 s 2, (8)
suggested by Souza et al. (1992). The distribution of
VD under this randomization is taken to be our null

wheredistribution. We note that the distribution of VD would
be slightly different if sampling were done with replace-
ment. Under our randomization scheme the expecta- s 5 o

n21

i51
o
n

j .i
sijY1n22 5 q 2 d. (9)

tion of VD is

Because under the randomization scheme that we areE(VD) 5 o
r

j51

hj(1 2 hj), (3)
considering s is a constant, it follows that

where
Var(VD) 5 Var 1o

n21

i51
o
n

j .i
s 2

ijY1n222
hj 5 1 n

n 2 12 11 2 o
i
p2

ij2 (4)

5
1

1n22
2 o

n21

i51
o
n

j .i





o
n21

k51
o
n

l .k
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ij ,s 2
kl)



and where pij is the frequency in the sample of the ith

allele at the j th locus. We note that hj is an unbiased
estimator of the population genetic diversity.

Brown et al. (1980) suggested that the one-tailed 95% 5
1

1n22
o

n21

k51
o
n

l .k
Cov(s 2

12,s 2
kl)

critical value for VD could be calculated assuming that
the distribution of VD is normal. Thus they estimated
this critical value by

5
1

1n22
3Var(s 2

12) 1
(n 2 2)(n 2 3)

2
Cov(s 2

12,s 2
34)

L old 5 E(VD) 1 1.645 √Var(VD)old, (5)

where Var(VD)old is an estimate of the variance of VD 1 2(n 2 2)Cov(s 2
12,s 2

13)4calculated as
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sums and products of single sums of terms involving
powers of the φi’s.5

1

1n22
3E(s4

12) 1
(n 2 2)(n 2 3)

2
E(s 2

12s 2
34)

Similarly, to calculate the other terms in (10) we de-
fine zk to be one if individuals 3 and 4 are identical at
locus k and zero otherwise, and we define yk to be one

1 2(n 2 2)E(s 2
12s 2

13)42 E(s 2
12)2,

(10) if individuals 1 and 3 are identical at locus k. It follows
thatwhere E denotes expectation under the randomization

scheme.
E(s 2
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34) 5 E 31o
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4We now proceed to derive expressions for each of
the terms on the right-hand side of the last line of
Equation 10. Let xk be an indicator variable, equal to 5 o

q

i
o

q

j?i
φi φj 1 2o

q

i51
o

q

j?i
o

q

k?i,j
φi φj φk

one if individual 1 and individual 2 are identical at locus
k, and zero otherwise. Then
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Di φj φk , (16)E(s12) 5 o

q

k51

φk 5 s, (12)

where Dk is the probability that individuals 1 and 2 are
where φk is the probability that two randomly chosen identical at locus k and individuals 3 and 4 are also
individuals are identical at locus k. For our case, identical at this locus. Recall that alleles are assigned to

individuals randomly without replacement, soφk 5 o
m

pmk(npmk 2 1)/(n 2 1), (13)

Dk 5 o
m
1pmk

(npmk 2 1)
n 2 1 21(npmk 2 2)

n 2 2
(npmk 2 3)

n 2 3
where pmk is the frequency of the mth allele at the kth
locus in the original sample, and the sum is over all
alleles at locus k. Similarly,
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To calculate E(s4
ij), we write
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φi φj φkφl . (15) One can now calculate Var(VD) using (10) together with

(15), (16), and (17).
To arrive at the last line, we have used the fact that an We can write the results in a way that does not require
indicator variable to any power is equal to the indicator double, triple, or quadruple sums. For example, note
variable itself. (For example, x4

k 5 xk.) We have also that
made use of the fact that xk is independent of xj, for
j ? k. We show later that the double, triple, and quadru- o
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i
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φi φj 5 o

q

i
φi o

q

j?i
φj 5 o

q

i
φi(s 2 φi)ple sums on the last line of (15) can be written as single
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In a similar fashion, the other multiple sums can be
reduced to terms involving the following single sums:
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i
φk

i , k 5 1, . . . , 4
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Dk
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Dk 5 o
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i , k 5 1, 2

Gk 5 o
q

i
Gi φk

i , k 5 1, 2.
Figure 1.—Comparison between three methods of comput-

ing the variance of VD,Var(VD). Single random input matrices
After some manipulation, the result is with 100 strains and 10 loci, each locus with the same genetic

diversity (as described in the text), were analyzed and Var(VD)
Var(VD) 5 [4s3 2 s2 2 6s41 8s1s3 2 4s1s2 computed according to Equation 6 (d), by resampling 10,000

times without replacement (n), or by using Equation 10 (h).
1 2s 2

2 2 4s 2
1 s2 2 4D11 8D2 1 d1 1 2d 2

1

2 2d2 2 8D1s1 1 4d1s1 1 4d1s 2
1 2 4d1s2]

The second data set was made up of 88 strains of the
major genotype and 3 strains of each of the minor geno-11 4

n 2 1
2

6
n(n 2 1)2 types and so on until a data set of maximum genetic

diversity was reached consisting of 20 strains of each3 [4(1 1 2s1)(D1 2 G 1) 1 8(G 2 2 D2)
genotype. In this way we obtained artificial data sets

1 (1 1 4s1 1 4s 2
1 2 4s2)(g1 2 d1) with genetic diversities ranging from 0.078 to 0.8, which

represent the range of genetic diversities to which the1 2(g 2
1 2 d 2

1 1 2(d2 2 g2)]
test developed by Brown et al. (1980) has been applied.
The completely linked artificial data sets were then un-1 1 2

n(n 2 12[s1 2 6s2 1 8s3 2 12s1s2 1 6s 2
1

linked by one round of resampling without replace-
ment.

1 4s 3
1 1 4G 1 2 8G2 2 g1 2 2g 2

1 1 2g2 1 8G 1s1 For each sample, Var(VD)old and Var(VD) were com-
2 4g1s1 2 4g1s 2

1 1 4g1s2]. (18) puted (using Equations 6 and 10, respectively). In addi-
tion, the randomization method suggested by Souza et

Finally, we define an z95% critical value as al. (1992) was applied to each sample. That is, the alleles
at each locus were shuffled randomly (resampling with-Lnew 5 E(VD) 1 1.645 √Var(VD). (19)
out replacement) and VD calculated for each of 10,000
such shuffled samples. This allowed the calculation of
the simulated sampling variance of VD, Var(VD)MC.

RESULTS AND DISCUSSION When Var(VD)old was compared with Var(VD)MC, it was
found that the two values diverged dramatically for in-To convince ourselves of the correctness of the above
put matrices of high genetic diversity (Figure 1). Thisalgebra and to demonstrate the inadequacy of Var(VD)old
causes similar divergence between true and estimatedwe used Monte Carlo simulations. Eleven artificial sam-
critical values (data not shown) and has implicationsples were constructed in the following way: The first
for testing linkage equilibrium in bacterial populationsdata set containing 100 strains and 10 loci with five
that will be discussed later. Clearly, Equation 6 shouldalleles at each locus was constructed from 96 strains of
not be used. No discrepancies were found betweengenotype
Var(VD)MC and the variance calculated with Equation 10

1 1 1 1 1 1 1 1 1 1 (see Figure 1).
The usefulness of (19) for hypothesis testing dependsand one each of genotype

on whether the distribution of VD is approximately nor-
mal under our null hypothesis of linkage equilibrium2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 with replicates being produced by shuffling of alleles
on haplotypes. For multilocus data sets there are three4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 . variables that may influence the shape of the distribu-
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Figure 2.—Cumulative proba-
bility plot of 2500 resampled VD

values. The values expected if the
distribution was normal (2) and
those observed (s) diverge at
both extremes of the distribution,
although for testing the hypothe-
sis of linkage equilibrium only the
positive skew apparent in the high
cumulative probability values is of
interest. The resampled artificial
input data set consisted of 100
strains and 10 loci, each with a
genetic diversity of 0.558.

tion of VD, the number of loci, the degree of diversity the resampled VD values exceeded the 5% normal criti-
cal value (Table 1). For a sample of 480 strains theat each locus, and the number of strains. We investigated

the effect of these three variables on the skewness of discrepancy between 5.13% and 5.0% was negligible.
Note that the probabilities of exceeding the normalthe distribution of VD through Monte Carlo simulation
critical values were always slightly too large, as wouldby calculating g1 as a measure of skewness from sets of
be expected from the positive skewness of the distribu-resampled VD values,
tion of VD. For real data this means that whenever a
sample has been diagnosed as being in linkage equilib-g1 5

m 3

m 3/2
2

, (20)
rium, the same conclusion would be reached by Monte
Carlo simulation. Further, the more time consuming itwhere m 3 and m 2 are the second and third moment of
becomes to test the hypothesis of linkage equilibriumthe distribution of VD (Sokal and Rohlf 1981, p. 114).
due to large sample size, the more useful our formulaFor a normal distribution g1 5 0; a positive g1 indicates
becomes. This is because the sampling distribution ofskewness to the right, a negative g1, skewness to the left.
VD approaches normality for large samples.We found that the distribution of VD always had positive

Several recent reports of panmixis in bacteria haveskewness, that is, at the upper extreme of the distribu-
tion, slightly more values lie beyond the normal critical
values (Figure 2). This was not affected by the number
of loci (data not shown). In contrast, the degree of
genetic diversity at each locus had a strong effect on
the shape of the distribution. On the whole, the greater
the genetic diversity, the closer the distribution was to
normality, but this relation was not linear with the
strongest changes occurring at the extreme values of
mean genetic diversity (h; Figure 3). Sample size also
had a strong effect on skewness. In general, the larger
the sample, the closer the sampling distribution of VD

approached normality (Table 1).
Given that the distribution of VD has positive skewness

even for large samples, we investigated the effect of this
deviation from normality on hypothesis testing. Data
sets consisting of between 15 and 480 strains and 10
loci, each with genetic diversity of 0.444, were resampled

Figure 3.—Skewness of the distribution of VD (g1) as ato calculate the frequency with which VD exceeded the
function of mean genetic diversity (h). Single random input

critical values that would be obtained if the distribution matrices with 100 strains and 10 loci, each locus with the
of VD was normal. Even for small data sets the discrep- same genetic diversity, were resampled 10,000 times without

replacement.ancy was slight. For instance, with 15 strains 6.69% of
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TABLE 1

Relationship between skewness and the probability of exceeding normal critical
values for various levels of significance

Probability of exceeding normal critical values for a 5

n g1 0.1 0.05 0.025 0.01 0.005

15 0.7229 0.1143 0.0669 0.0427 0.0256 0.0167
30 0.5125 0.1091 0.0649 0.0405 0.0213 0.0134
60 0.3683 0.1068 0.0609 0.0351 0.0164 0.0111

120 0.2965 0.1084 0.0603 0.0327 0.0156 0.0100
240 0.2061 0.1101 0.0564 0.0306 0.0137 0.0077
480 0.1445 0.1006 0.0513 0.0278 0.0111 0.0059

Single random input matrices were resampled without replacement 10,000 times and a VD value computed
each time. Subsequently, the frequency with which these VD values exceeded the critical values obtained,
assuming normality, was computed. n, number of strains; g1, measure of skewness of the distribution of VD

values obtained through resampling.

used the observed variance of pairwise differences (VD) (5 2.608), while Lold (5 2.985) not only overestimates
the critical value of VD, but would also lead to the spuri-as a test statistic. Panmixis was concluded if the critical

value of VD was greater than the observed value of VD ous conclusion that E. coli is in linkage equilibrium as
Lold . VD (Table 2).(Maynard Smith et al. 1993; Bottomley et al. 1994;

Duncan et al. 1994; Strain et al. 1995; Go et al. 1996). B. japonicum: Bottomley et al. (1994) reported link-
age equilibrium for a B. japonicum population repre-The original method to calculate the critical value was

devised for plant populations, which are only moder- sented by 17 electrophoretic types. This claim is clearly
ately diverse [e.g., h (H. spontaneum) 5 0.145 (Brown rejected by Monte Carlo simulation, which shows sig-
et al. 1980)], compared to bacterial populations (cf. Ta- nificant linkage for this population (LMC 5 2.593 ,
ble 1). In this study we showed by Monte Carlo simula- VD 5 3.985; Table 2). The same conclusion is reached
tion that high genetic diversity leads to an artificial by comparing Lnew (5 2.557) with VD. Surprisingly, VD

inflation of Var(VD)old (Figure 1). This problem was over- also exceeds Lold, on which the original claim of linkage
come by rederiving Var(VD) (Equation 10; Figure 1). equilibrium had been based. This discrepancy is re-

Bacterial populations: To test the usefulness of this solved if Lold is calculated on the basis of the biased
derivation in the study of bacterial population genetics, estimator
we investigated published allozyme data for the ECOR

hb
j 5 1 2 o

i
p2

ij ,collection of E. coli (Ochman and Selander 1984),
which is a well-known example of a clonal population

rather than on the unbiased estimator (Equation 4)(Miller and Hartl 1986). In addition, data sets from
employed in this study. Using hb

j , Lold 5 3.996, which isBradyrhizobium japonicum, B. subtilis, and Rhizobium legu-
slightly greater than VD 5 3.985. This result is due tominosarum were included in the analysis, because for
the large difference between biased and unbiased esti-these populations claims of linkage equilibrium have
mators of the genetic diversity per locus in a samplebeen based on incorrect formulas for the variance of
consisting of only 17 ETs.VD. Finally, an allozyme data set from N. gonorrhoeae was

R. leguminosarum: Strain et al. (1995) obtained evi-reexamined, as this taxon is considered a prime example
dence of linkage disequilibrium in their U.K. popula-of a sexual bacterial population (Maynard Smith et al.
tion of R. leguminosarum by using Monte Carlo simula-1993; O’Rourke and Stevens 1993).
tion, but H0 was not rejected on the basis of Lold. WeGenerally we observed that bacterial populations are
obtained the same result, reinforcing the inappropri-highly diverse (h 5 0.311 to 0.691; Table 2) and that
ateness of Lold for hypothesis testing. We further foundthe genetic diversity varies strongly between loci (stan-
that Lnew (5 2.911) was again a good alternative todard deviation 5 0.178 to 0.304; Table 2). Further, the
the lengthy calculations necessary for obtaining LMCdistribution of VD displayed positive skewness in all cases,
(5 2.967; Table 2) through simulation. Strain et al.as observed in the simulations (Table 2).
(1995) also analyzed groups I 1 III 1 IX and I 1 IIIE. coli: As expected from previous work (Miller and
of their R. leguminosarum U.K. population and reportedHartl 1986), the electrophoretic types of the ECOR
linkage equilibrium for both subpopulations. We foundcollection of E. coli are in linkage disequilibrium when
that H0 is rejected for groups I 1 III 1 IX and I 1 IIIthe critical value obtained through the Monte Carlo
on the basis of LMC and Lnew (Table 2).process, LMC, is compared to VD(LMC , VD; Table 2).

Further, Lnew (5 2.592) is a good estimator of LMC B. subtilis: Duncan et al. (1994) reported linkage equi-
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TABLE 2

Assessment of multilocus structure in bacterial populations and comparison of old and new estimators of the critical values of VD

Estimators of the 95%
critical value for VD

Linkage
Population Sample size Loci h g1 VD E(VD) LMC Lnew Lold detected?

E. coli (Ochman and Selander 1984) 46 ETs 11 0.493 6 0.225 0.440 2.954 2.245 2.608 2.592 2.985 Yes
B. japonicum (Bottomley et al. 1994) 17 ETs 13 0.691 6 0.230 0.380 3.985 2.142 2.592 2.557 3.295 Yes
R. leguminosarum, UK population

(Strain et al. 1995) 32 ETs 13 0.472 6 0.275 0.449 3.414 2.332 2.731 2.695 3.250 Yes
R. leguminosarum, UK population,

groups I 1 III 1 IX (Strain et al.
1995) 23 ETs 13 0.450 6 0.261 0.569 3.467 2.392 2.967 2.911 3.497 Yes

R. leguminosarum, UK population,
groups I 1 III (Strain et al. 1995) 18 ETs 13 0.400 6 0.256 0.612 3.264 2.333 3.014 2.931 3.535 Yes

B. subtilis, groups B & D combined
(Duncan et al. 1994) 50 ETs 13 0.491 6 0.304 0.465 4.128 2.138 2.422 2.397 2.822 Yes

B. subtilis, group D (Duncan et al.
1994) 27 isolates 13 0.376 6 0.302 0.531 2.953 1.957 2.387 2.347 2.795 Yes

B. subtilis, group B (Duncan et al.
1994) 28 isolates 13 0.354 6 0.269 0.629 2.590 2.106 2.664 2.605 3.002 No

N. gonorrhoeae (O’Rourke and
Stevens 1993) 228 isolates 9 0.311 6 0.178 0.211 1.750 1.675 1.837 1.831 1.920 No

ET, electrophoretic type; h, mean genetic diversity per locus 6 standard deviation; VD, observed variance of pairwise differences; E(VD), expected variance of pairwise
differences in case of linkage equilibrium; LMC, 95% critical value estimated by Monte Carlo simulation; Lnew, 95% critical value as defined in Equation 19; Lold, 95% critical
value as defined in Equation 15.
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ported by grants from the Royal Society, Oxford University and thelibrium for the 50 electrophoretic types of B. subtilis
Biotechnology and Biological Sciences Research Council (Unitedcontained in the B and D subdivisions of their sample.
Kingdom).

In contrast, we found that the combined electrophoretic
types of groups B and D display strong linkage (Table
2) with VD (5 4.128) far exceeding LMC (5 2.422) and

LITERATURE CITED
Lnew (5 2.397). Group D on its own is also not in linkage

Bottomley, P. J., H.-H. Cheng and S. R. Strain, 1994 Geneticequilibrium with LMC and Lnew , VD, but note that as for
structure and symbiotic characteristics of a Bradyrhizobium popula-E. coli, R. leguminosarum, and B. japonicum, application
tion recovered from a pasture soil. Appl. Environ. Microbiol. 60:

of Lold would lead to an inappropriate conclusion of 1754–1761.
Brown, A. H. D., M. W. Feldman and E. Nevo, 1980 Multilocuslinkage equilibrium. We further concluded on the basis

structure of natural populations of Hordeum spontaneum. Geneticsof LMC (5 2.664) and Lnew (5 2.605) that group B is 96: 523–536.
indeed in linkage equilibrium (Table 2). Duncan, K. E., N. Ferguson, K. Kimura, X. Zhou and C. Istock,

1994 Fine-scale genetic and phenotypic structure in naturalN. gonorrhoeae: This group of bacteria is the best es-
populations of Bacillus subtilis and Bacillus licheniformis: implica-tablished example of a bacterial population in linkage tions for bacterial evolution and speciation. Evolution 48: 2002–

equilibrium. An extensive allozyme data set comprising 2025.
Go, M. F., V. Kapura, D. Y. Graham and J. M. Musser, 1996 Popula-228 isolates has been published and reported to be in

tion genetic analysis of Helicobacter pylori by multilocus enzymelinkage equilibrium (Maynard Smith et al. 1993; electrophoresis: extensive allelic diversity and recombinational
O’Rourke and Stevens 1993). Moreover, N. gonorrhoeae population structure. J. Bacteriol. 178: 3934–3938.

Guttman, D. S., and D. E. Dykhuizen, 1994 Clonal divergence inis naturally competent and frequently encounters differ-
Escherichia coli as a result of recombination, not mutation. Scienceent genotypes of the taxon due to the sexual habits of 266: 1380–1383.

its host. As expected, we found that this population is Haubold, B., and P. B. Rainey, 1996 Genetic and ecotypic structure
of a fluorescent Pseudomonas population. Mol. Ecol. 5: 747–761.in linkage equilibrium according to LMC (5 1.837); Lnew

Hudson, R. R., 1994 Analytical results concerning linkage disequilib-(5 1.831) gave the same result, further confirming the rium in models with genetic transformation and conjugation. J.
usefulness of this algebraic confidence limit (Table 2). Evol. Biol. 7: 535–548.

Istock, C. A., K. E. Duncan, N. Ferguson and X. Zhou, 1992 Sexu-For all the bacterial populations tested, LMC and Lnew ality in a natural population of bacteria: Bacillus subtilis challenges
agreed well. This contrasted with the strong divergence the clonal paradigm. Mol. Ecol. 1: 95–103.

Maruyama, T., and M. Kimura, 1980 Genetic variability and effec-of Lold from LMC, which led to conflicting conclusions
tive population size when local extinction and recolonizationabout the genetic structure of E. coli, B. japonicum, R.
of subpopulations are frequent. Proc. Natl. Acad. Sci. USA 77:

leguminosarum, and B. subtilis. Using computer simula- 6710–6714.
Maynard Smith, J., 1994 Estimating the minimum rate of genetictions, Maynard Smith (1994) showed that a recombi-

transformation in bacteria. J. Evol. Biol. 7: 525–534.nation rate only 20 times the rate of mutation was suffi-
Maynard Smith, J., N. H. Smith, C. G. Dowson and B. G. Spratt,

cient to unlink bacterial genomes. The detection of 1993 How clonal are bacteria? Proc. Natl. Acad. Sci. USA 90:
4384–4388.linkage disequilibrium in the soil-dwelling populations

Milkman, R., 1973 Electrophoretic variation in Escherichia coli fromof B. japonicum, R. leguminosarum, and B. subtilis pre-
natural sources. Science 182: 1024–1026.

sented in this article indicates that the recombination Miller, R. D., and D. L. Hartl, 1986 Biotyping confirms a nearly
clonal population structure in Escherichia coli. Evolution 40: 1–12.rates in these groups are probably very low. This has

Ochman, H., and R. K. Selander, 1984 Standard reference strainsalso been found experimentally for B. subtilis (Roberts
of Escherichia coli from natural populations. J. Bacteriol. 157: 690–

and Cohan 1995). 693.
O’Rourke, M., and E. Stevens, 1993 Genetic structure of NeisseriaWe conclude that past attempts to detect linkage dis-

gonorrhoeae populations: a non-clonal pathogen. J. Gen. Micro-equilibrium in haploid multilocus data sets through the biol. 139: 2603–2611.
computation of a critical value for VD were based on an Roberts, M. S., and F. M. Cohan, 1995 Recombination and migra-

tion rates in natural populations of Bacillus subtilis and Bacilluserroneous formula for the variance of VD. The correct
mojavensis. Evolution 49: 1081–1094.formula for Var(VD) communicated in this article forms Selander, R. K., and B. R. Levin, 1980 Genetic diversity and struc-

the basis of a simple test of linkage. Furthermore, we ture in Escherichia coli populations. Science 210: 545–547.
Sokal, R. R., and F. J. Rohlf, 1981 Biometry, Ed. 2. W. H. Freeman,find that VD is approximately normally distributed (espe-

New York.cially for large samples). Hence the algebraic test pro- Souza, V., T. T. Nguyen, R. R. Hudson, D. Piñero and R. E. Lenski,
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