Detecting Linkage Disequilibrium in Bacterial Populations

Bernhard Haubold,* Michael Travisano,* Paul B. Rainey* and Richard R. Hudson†

**Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom and* † *Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92717*

> Manuscript received April 2, 1998 Accepted for publication August 21, 1998

ABSTRACT

The distribution of the number of pairwise differences calculated from comparisons between *n* haploid genomes has frequently been used as a starting point for testing the hypothesis of linkage equilibrium. For this purpose the variance of the pairwise differences, V_D , is used as a test statistic to evaluate the null hypothesis that all loci are in linkage equilibrium. The problem is to determine the critical value of the distribution of V_D . This critical value can be estimated either by Monte Carlo simulation or by assuming that V_D is distributed normally and calculating a one-tailed 95% critical value for V_D , L , $L = E(V_D)$ + 1.645 $\sqrt{Var(V_D)}$, where $E(V_D)$ is the expectation of V_D , and $Var(V_D)$ is the variance of V_D . If V_D (observed) > *L*, the null hypothesis of linkage equilibrium is rejected. Using Monte Carlo simulation we show that the formula currently available for $Var(V_D)$ is incorrect, especially for genetically highly diverse data. This has implications for hypothesis testing in bacterial populations, which are often genetically highly diverse. For this reason we derive a new, exact formula for Var(V_D). The distribution of V_D is examined and shown to approach normality as the sample size increases. This makes the new formula a useful tool in the investigation of large data sets, where testing for linkage using Monte Carlo simulation can be very time consuming. Application of the new formula, in conjunction with Monte Carlo simulation, to populations of *Bradyrhizobium japonicum*, *Rhizobium leguminosarum*, and *Bacillus subtilis* reveals linkage disequilibrium where linkage equilibrium has previously been reported.

BACTERIA might be called "facultative sexuals" be *Burkholderia cepacia* (Wise *et al.* 1995), *Helicobacter pylori*
Co *et al.* 1996), and fluorescent Pseudomonas (Hau-
antication transformation and transformation but t conjugation, transformation, and transduction, but ge- bold and Rainey 1996). netic exchange is not a part of their reproductive mode. The conclusion of linkage equilibrium reached in Just how frequently recombination takes place in bacte- these studies is based on the variance of the distribution ria has been a topic of debate since the first major study of the number of pairwise differences (V_D) among bacteof bacterial population genetics, in which *Escherichia* rial isolates that have been subjected to genetic analysis *coli* genomes were assumed to recombine frequently at multiple loci. V_D can be compared to a critical value leading to linkage equilibrium (Milkman 1973). Sel- obtained under the null hypothesis that all loci are in ander and Levin (1980) showed that this assumption linkage equilibrium. This approach was first developed was incorrect and that E. coli populations consisted of by Brown et al. (1980), who applied it to allozyme data was incorrect and that *E. coli* populations consisted of by Brown *et al.* (1980), who applied it to allozyme data many asexual clones evolving in genetic isolation from the mon wild barley, *Hordeum spontaneum*. Whittam many asexual clones evolving in genetic isolation from all other clones comprising the species (*cf.* Maruyama (1983) pioneered its use in bacterial population genetand Kimura 1980, but see Guttman and Dykhuizen ics, and more recently this method served as the basis for 1994). During the 1980s this clonal model was thought an extensive comparative study of bacterial population
to hold for all bacterial populations until Istock *et al.* structure (Maynard Smith *et al.* 1993). to hold for all bacterial populations until Istock *et al.* structure (Maynard Smith *et al.* 1993).
(1992) reported that a local population of *Bacillus subti* There are two methods of calculating a critical value (1992) reported that a local population of *Bacillus subtilis* was in linkage equilibrium and argued that this re-
sulted from frequent mixis. In addition to *B*, *subtilis*, on a computer, and (2) assuming the null distribution sulted from frequent mixis. In addition to *B. subtilis*, linkage equilibrium has been reported for *Neisseria go*-
 norrhoeae (O'Rourke and Stevens 1993), subpopula-

Well-known method of adding x standard deviations to *norrhoeae* (O'Rourke and Stevens 1993), subpopula-
tions of Rhizobium (Souza *et al.* 1992; Maynard Smith $E(V_D)$. But, as it is not known whether the null distributions of Rhizobium (Souza *et al.* 1992; Maynard Smith et al. 1993; Bottomley et al. 1994; Strain et al. 1995), tion of V_D is normal, Monte Carlo simulation has re-

cently emerged as the preferred way for testing linkage equilibrium in bacterial populations (Souza *et al.* 1992; Corresponding author: Bernhard Haubold, Max-Planck-Institut für
Chemische Ökologie, Tatzendpromenade 1a, D-07745 Jena, Germany.
E-mail: haubold@ice.mpg.de workers have preferred to use the simplifying assumpworkers have preferred to use the simplifying assump-

tion of normality for hypothesis testing. In this case the correct test depends above all on an accurate estimator of the variance of V_D .

THE VARIANCE OF V_D where

Suppose we have *n* sampled haploid individuals, arbi*^j* trarily numbered from 1 to *n*, that have been genetically assayed at *q* loci. Let d_{ii} denote the number of loci at $\qquad + 3(\sum h_i - \sum h_i^2)^2$ (7) which individuals *i* and *j* differ. Then the variance of pairwise differences is by definition equal to (Brown *et al.* 1980).
In the next section we derive a formula for the vari-

$$
V_{\rm D} = \sum_{i=1}^{n-1} \sum_{j>i}^{n} (d_{ij} - \overline{d})^2 / \binom{n}{2}, \qquad (1)
$$

$$
\overline{d} = \sum_{i=1}^{n-1} \sum_{j>i}^{n} d_{ij} / \binom{n}{2}.
$$
 (2)

would be generated. In this article, we assume that repli-
cate samples are generated by randomly shuffling the also Hudson 1994). In the following, d_{ij} denotes the cate samples are generated by randomly shuffling the also Hudson 1994). In the following, d_{ij} denotes the original alleles among the sampled haplotypes. In this random number of loci at which individual *i* and *j* diff original alleles among the sampled haplotypes. In this way, the numbers of alleles and the frequencies of the $\frac{1}{2}$ in a shuffled sample. First we write V_D in terms of s_{ij} , the alleles at individual loci are exactly the same in each number of loci at which individual alleles at individual loci are exactly the same in each number of loci at which individuals *i* and j are i replicate as in the original sample, but there is no statistical association of alleles on haplotypes except that which arises by chance. This shuffling method is the method suggested by Souza *et al.* (1992). The distribution of V_D under this randomization is taken to be our null distribution. We note that the distribution of V_D would where be slightly different if sampling were done with replacement. Under our randomization scheme the expecta-
tion of V_D is $\bar{s} = \sum_{i=1}^{n} \sum_{j>i} S_{ij} / \binom{n}{2} = q - \bar{d}$. (9)

$$
E(V_{\rm D}) = \sum_{j=1}^r h_j (1-h_j), \qquad (3)
$$

where

$$
h_j = \left(\frac{n}{n-1}\right)\left(1 - \sum_j p_{ij}^2\right) \tag{4}
$$

and where p_{ij} is the frequency in the sample of the *th* allele at the *j*th locus. We note that h_i is an unbiased estimator of the population genetic diversity.

Brown *et al.* (1980) suggested that the one-tailed 95% critical value for V_D could be calculated assuming that the distribution of V_D is normal. Thus they estimated this critical value by

$$
L_{\text{old}} = E(V_{\text{D}}) + 1.645 \sqrt{\text{Var}(V_{\text{D}})}_{\text{old}}, \tag{5}
$$

where Var(*V*_{D)old} is an estimate of the variance of *V*_D $+ 2(n - 2)Cov(s_{12}^2,s_{13}^2)$

\n (a) The probability of the probability of the variable
$$
Y = \frac{(n-1)^2}{n^3} m_4
$$
.\n

\n\n (b) The variance of V_D .\n

\n\n (c) The probability of the variance of V_D .\n

\n\n (d) The probability of the variance of V_D .\n

\n\n (e) The probability of the variance of V_D .\n

\n\n (f) The probability of the variance of V_D .\n

\n\n (g) The probability of the variance of V_D .\n

\n\n (h) The probability of the variance of V_D .\n

\n\n (i) The probability of the variance of V_D .\n

\n\n (ii) The probability of the variance of V_D .\n

\n\n (b) The probability of the variance of V_D .\n

\n\n (c) The probability of the variance of V_D .\n

\n\n (d) The probability of the variance of V_D .\n

\n\n (e) The probability of the variance of V_D .\n

\n\n (f) The probability of the variance of V_D .\n

\n\n (g) The probability of the variance of V_D .\n

\n\n (h) The probability of the variance of V_D .\n

\n\n (i) The probability of the variance of V_D .\n

\n\n (ii) The probability of the variance of V_D .\n

\n\n (b) The probability of the variance of V_D .\n

$$
m_4 = \sum h_j - 7 \sum h_j^2 + 12 \sum h_j^2 - 6 \sum h_j^4
$$

+ 3($\sum h_j - \sum h_j^2$)² (7)

ance of V_D under the randomization scheme of Souza et al. (1992) and show that (6) is inappropriate for calculating the variance of V_D under these circumstances. The stances of the stances of the stances of the stances of the stances.

COMPUTING THE VARIANCE OF V_D

In this section we obtain an exact expression for the The distribution of V_{D} depends on how replicate samples variance of V_{D} under the shuffling of alleles across indi-
would be generated. In this article, we assume that repli-viduals (the sampling without repl

$$
V_{\rm D} = \sum_{i=1}^{n-1} \sum_{j>i}^{n} (s_{ij} - \bar{s})^2 / \left(\frac{n}{2}\right) = \left(\sum_{i=1}^{n-1} \sum_{j>i}^{n} s_{ij}^2 / \left(\frac{n}{2}\right)\right) - \bar{s}^2, \qquad (8)
$$

$$
\bar{s} = \sum_{i=1}^{n-1} \sum_{j>i}^{n} s_{ij} / \binom{n}{2} = q - \bar{d}.
$$
 (9)

E Because under the randomization scheme that we are considering *s* is a constant, it follows that

$$
Var(V_{D}) = Var\left(\sum_{i=1}^{n-1} \sum_{j>i}^{n} s_{ij}^{2} / \binom{n}{2}\right)
$$

\n
$$
= \frac{1}{\binom{n}{2}} \sum_{i=1}^{n-1} \sum_{j>i}^{n} \left\{\sum_{k=1}^{n-1} \sum_{l>k}^{n} Cov(s_{ij}^{2}, s_{kl}^{2})\right\}
$$

\n
$$
= \frac{1}{\binom{n}{2}} \sum_{k=1}^{n-1} \sum_{l>k}^{n} Cov(s_{12}^{2}, s_{kl}^{2})
$$

\n
$$
= \frac{1}{\binom{n}{2}} \left[Var(s_{12}^{2}) + \frac{(n-2)(n-3)}{2} Cov(s_{12}^{2}, s_{34}^{2}) + 2(n-2) Cov(s_{12}^{2}, s_{13}^{2})\right]
$$

$$
= \frac{1}{\binom{n}{2}} \left[E(s_{12}^4) + \frac{(n-2)(n-3)}{2} E(s_{12}^2 s_{34}^2) + 2(n-2) E(s_{12}^2 s_{13}^2)\right] - E(s_{12}^2)^2,
$$
\n(10)

where *E* denotes expectation under the randomization that

scheme.
We now proceed to derive expressions for each of $E(s_{12}^2 s_{34}^2) = E\left[\sum_{k=1}^q X_k\right]^2 \left(\sum_{k=1}^q Z_k\right)^2\right]$ the terms on the right-hand side of the last line of Equation 10. Let x_k be an indicator variable, equal to one if individual 1 and individual 2 are identical at locus *k*, and zero otherwise. Then

$$
s_{12} = \sum_{k=1}^{q} x_k \tag{11}
$$

and

$$
E(s_{12}) = \sum_{k=1}^{q} \phi_k = \bar{s}, \qquad (12)
$$

$$
\phi_k = \sum_{m} p_{mk} (np_{mk} - 1) / (n - 1), \qquad (13)
$$

where *pmk* is the frequency of the *m*th allele at the *k*th locus in the original sample, and the sum is over all alleles at locus *k*. Similarly,

$$
E(s_{12}^2) = E\left[\left(\sum_{k=1}^q x_k\right)^2\right] = E\left[\sum_{k=1}^q x_k^2 + \sum_{j \neq i} x_j x_j\right]
$$

\n
$$
= \sum_{k=1}^q \phi_k + \sum_{j \neq i} \phi_j \phi_j
$$

\n
$$
= \bar{s} + \bar{s}^2 - \sum_{j=1}^q \phi_j^2.
$$

\n(Similary,
$$
E(s_{12}^2 s_{13}^2) = E\left[\left(\sum_{k=1}^q x_k^2 + \sum_{j \neq i} x_j x_j\right)\right]
$$

\n
$$
= \sum_{j=1}^q \phi_j^2.
$$

\n(14)

To calculate *E*(*s* 4 *ij*), we write

$$
E(s_{12}^{4}) = E\left[\sum_{k=1}^{q} X_{k}\right] + 4 \sum_{i=1}^{q} \sum_{j=1}^{q} \sum_{j \neq i}^{n} X_{i}^{3} X_{j} + \left(\frac{4}{2}\right) \sum_{i=1}^{q} \sum_{j \neq i}^{n} X_{i}^{2} X_{j}^{2} / 2 + 4 \sum_{i=1}^{q} \sum_{j=1}^{q} \sum_{j \neq i}^{n} \sum_{k \neq i, j}^{n} X_{j}^{2} X_{k}^{2} + 4 \sum_{i=1}^{q} \sum_{j \neq i}^{n} \sum_{k \neq i, j}^{n} \sum_{k \neq i, j}^{n} \sum_{k \neq i, j}^{n} \sum_{k \neq i, j}^{n} X_{j}^{2} X_{k}^{2} X_{k}^{2} + 4 \sum_{i=1}^{q} \sum_{j \neq i}^{n} \sum_{k \neq i, j}^{n} \sum_{k \neq i, j}^{n} \sum_{k \neq i, j}^{n} X_{j} X_{k} X_{k}^{2} X_{j} + \sum_{i=1}^{q} \sum_{j \neq i}^{q} \sum_{k \neq i, j}^{n} \sum_{k \neq i, j}^{n} \sum_{k \neq i, j}^{n} \phi_{i} \phi_{j} \phi_{k} + \sum_{i=1}^{q} \sum_{j \neq i}^{q} \sum_{k \neq i, j}^{n} \phi_{i} \phi_{j} \phi_{k}.
$$
\n(15) One can now calculate V

To arrive at the last line, we have used the fact that an indicator variable to any power is equal to the indicator wariable in a way that does not require double, triple, or quadruple sums. For example, note that (15) , *k* made use of the fact that x_k is independent of x_j , for $j \neq k$. We show later that the double, triple, and quadruple sums on the last line of (15) can be written as single

sums and products of single sums of terms involving powers of the ϕ_i 's.

Similarly, to calculate the other terms in (10) we define z_k to be one if individuals 3 and 4 are identical at locus *k* and zero otherwise, and we define y_k to be one if individuals 1 and 3 are identical at locus *k*. It follows if individuals 1 and 3 are identical at locus *k*. It follows

d to derive expressions for each of
\nright-hand side of the last line of
\n
$$
K_{k}
$$
 be an indicator variable, equal to
\nand individual 2 are identical at locus
\n
$$
S_{12} = \sum_{k=1}^{q} X_{k}
$$
\n
$$
S_{12} = \sum_{k=1}^{q} X_{k}
$$
\n
$$
S_{13} = \sum_{k=1}^{q} X_{k}
$$
\n
$$
S_{14} = \sum_{k=1}^{q} \sum_{j=1}^{q} \sum_{j=1}^{q} \sum_{j=1}^{q} \sum_{j=1}^{q} \sum_{j=1}^{q} \sum_{j=1}^{q} \phi_{i} \phi_{j} \phi_{k} + \sum_{i=1}^{q} \Delta_{i}
$$
\n
$$
S_{15} = \sum_{k=1}^{q} X_{k}
$$
\n
$$
S_{16} = \sum_{k=1}^{q} \sum_{j=1}^{q} \sum_{j=1}^{q} \sum_{j=1}^{q} \sum_{j=1}^{q} \sum_{j=1}^{q} \sum_{j=1}^{q} \Delta_{j} \phi_{j} \phi_{k}
$$
\n
$$
S_{16} = \sum_{k=1}^{q} \sum_{j=1}^{q} \sum_{j=1}^{q} \sum_{j=1}^{q} \sum_{j=1}^{q} \Delta_{j} \phi_{j} \phi_{k},
$$
\n
$$
S_{17} = \sum_{k=1}^{q} \phi_{k} = \overline{s},
$$
\n
$$
S_{18} = \sum_{k=1}^{q} \sum_{j=1}^{q} \sum_{j=1}^{q} \sum_{j=1}^{q} \Delta_{j} \phi_{j} \phi_{k},
$$
\n
$$
S_{18} = \sum_{k=1}^{q} \sum_{j=1}^{q} \sum_{j=1}^{
$$

where ϕ_k is the probability that two randomly chosen
individuals are identical at locus k. For our case,
individuals are identical at locus k. For our case,
identical at this locus. Recall that alleles are assigned to individuals randomly without replacement, so

$$
\Delta_k = \sum_{m} \left(p_{mk} \frac{(np_{mk} - 1)}{n-1} \right) \left(\frac{(np_{mk} - 2)}{n-2} \frac{(np_{mk} - 3)}{n-3} + \sum_{j \neq m} \frac{np_{jk}}{n-2} \frac{(np_{jk} - 1)}{n-3} \right).
$$

Similarly,

$$
(s_{12}^{2} s_{13}^{2}) = E \left[\left(\sum_{k=1}^{q} X_{k} \right)^{2} \left(\sum_{k=1}^{q} y_{k} \right)^{2} \right]
$$

\n
$$
= \sum_{i}^{q} \sum_{j \neq i}^{q} \phi_{i} \phi_{j} + 2 \sum_{i=1}^{q} \sum_{j \neq i}^{q} \sum_{k \neq i, j}^{q} \phi_{i} \phi_{j} \phi_{k}
$$

\n
$$
+ \sum_{i=1}^{q} \sum_{j \neq i}^{q} \sum_{k \neq i, j}^{q} \sum_{k \neq i, j, k}^{q} \phi_{i} \phi_{j} \phi_{k} \phi_{l} + \sum_{i=1}^{q} \Gamma_{i}
$$

\n
$$
+ 4 \sum_{i=1}^{q} \sum_{j \neq i}^{q} \Gamma_{i} \phi_{j} + 2 \sum_{i=1}^{q} \sum_{j \neq i}^{q} \Gamma_{i} \Gamma_{j}
$$

\n
$$
+ 4 \sum_{i=1}^{q} \sum_{j \neq i}^{q} \sum_{k \neq i, j}^{q} \Gamma_{i} \phi_{j} \phi_{k}, \qquad (17)
$$

 $\mathcal{A} + \left(\frac{4}{2}\right) \sum_{j=1}^{\infty} \sum_{j \neq i} \sum_{k \neq i, j} \sum_{k \neq j} \sum_{j \neq i} \sum_{k \neq i, j} \sum_{k \neq j, k} \sum_{k \neq j, k} \sum_{k \neq j, k} \sum_{k \neq j, k} \sum_{k \neq j} \sum_{k \neq j$

$$
\Gamma_k=\sum_{m}p_{mk}\frac{(np_{mk}-1)}{n-1}\frac{(np_{mk}-2)}{n-2}.
$$

One can now calculate $Var(V_D)$ using (10) together with

$$
\sum_{j}^{q} \sum_{j \neq i}^{q} \phi_j \phi_j = \sum_{j}^{q} \phi_j \sum_{j \neq i}^{q} \phi_j = \sum_{j}^{q} \phi_j (\bar{s} - \phi_j)
$$

$$
= \overline{s} \sum_{i}^{q} \phi_i - \sum_{i}^{q} \phi_i^2 = \overline{s}^2 - \sum_{i}^{q} \phi_i^2.
$$

In a similar fashion, the other multiple sums can be reduced to terms involving the following single sums:

$$
s_k = \sum_{i}^{q} \phi_i^k, \quad k = 1, \ldots, 4
$$

\n
$$
d_k = \sum_{i}^{q} \Delta_i^k, \quad k = 1, 2
$$

\n
$$
g_k = \sum_{i}^{q} \Gamma_i^k, \quad k = 1, 2
$$

\n
$$
D_k = \sum_{i}^{q} \Delta_i \phi_i^k, \quad k = 1, 2
$$

\n
$$
G_k = \sum_{i}^{q} \Gamma_i \phi_i^k, \quad k = 1, 2.
$$

$$
r(V_{D}) = [4s_{3} - s_{2} - 6s_{4} + 8s_{1}s_{3} - 4s_{1}s_{2} \t\t\t compline 1
$$
\n
$$
+ 2s_{2}^{2} - 4s_{1}^{2}s_{2} - 4D_{1} + 8D_{2} + d_{1} + 2d_{1}^{2}
$$
\n
$$
- 2d_{2} - 8D_{1}s_{1} + 4d_{1}s_{1} + 4d_{1}s_{1}^{2} - 4d_{1}s_{2}]
$$
\n
$$
+ \left(\frac{4}{n-1} - \frac{6}{n(n-1)}\right)
$$
\n
$$
\times [4(1 + 2s_{1})(D_{1} - G_{1}) + 8(G_{2} - D_{2})
$$
\n
$$
+ (1 + 4s_{1} + 4s_{1}^{2} - 4s_{2})(g_{1} - d_{1})
$$
\n
$$
+ 2(g_{1}^{2} - d_{1}^{2} + 2(d_{2} - g_{2})]
$$
\n
$$
+ \left(\frac{2}{n(n-1)}\right)[s_{1} - 6s_{2} + 8s_{3} - 12s_{1}s_{2} + 6s_{1}^{2}]
$$
\n
$$
+ 4s_{1}^{3} + 4G_{1} - 8G_{2} - g_{1} - 2g_{1}^{2} + 2g_{2} + 8G_{1}s_{1}
$$
\n
$$
+ 4s_{1}^{3} + 4G_{1} - 8G_{2} - g_{1} - 2g_{1}^{2} + 2g_{2} + 8G_{1}s_{1}
$$
\n
$$
+ 4s_{1}^{3} - 4g_{1}s_{1} - 4g_{1}s_{1}^{2} + 4g_{1}s_{2}].
$$
\n(18)puted

$$
L_{\text{new}} = E(V_{\text{D}}) + 1.645 \sqrt{\text{Var}(V_{\text{D}})}.
$$
 (19)

algebra and to demonstrate the inadequacy of Var (*V*_{D)old} put matrices of high genetic diversity (Figure 1). This we used Monte Carlo simulations. Eleven artificial same causes similar divergence between true and estima we used Monte Carlo simulations. Eleven artificial sam-
nles were constructed in the following way: The first critical values (data not shown) and has implications ples were constructed in the following way: The first data set containing 100 strains and 10 loci with five for testing linkage equilibrium in bacterial populations
alleles at each locus was constructed from 96 strains of that will be discussed later. Clearly, Equation 6 shou alleles at each locus was constructed from 96 strains of genotype not be used. No discrepancies were found between

Figure 1.—Comparison between three methods of comput-After some manipulation, the result is ing the variance of V_D , $Var(V_D)$. Single random input matrices with the same genetic with 100 strains and 10 loci, each locus with the same genetic diversity (as described in the tex $Var(V_D) = [4s_3 - s_2 - 6s_4 + 8s_1s_3 - 4s_1s_2$ computed according to Equation 6 (.), by resampling 10,000 times without replacement (\triangle) , or by using Equation 10 (\square) .

The second data set was made up of 88 strains of the major genotype and 3 strains of each of the minor genotypes and so on until a data set of maximum genetic diversity was reached consisting of 20 strains of each genotype. In this way we obtained artificial data sets with genetic diversities ranging from 0.078 to 0.8, which represent the range of genetic diversities to which the test developed by Brown *et al.* (1980) has been applied. The completely linked artificial data sets were then unlinked by one round of resampling without replace-

For each sample, $Var(V_D)_{old}$ and $Var(V_D)$ were com-18) puted (using Equations 6 and 10, respectively). In addition, the randomization method suggested by Souza *et* Finally, we define an ^z95% critical value as *al.* (1992) was applied to each sample. That is, the alleles *Let* each locus were shuffled randomly (resampling without replacement) and V_D calculated for each of 10,000 such shuffled samples. This allowed the calculation of the simulated sampling variance of *V*_D, Var(*V*_{D)MC}.
When Var(*V*_{D)old} was compared with Var(*V*_{D)MC}, it was

To convince ourselves of the correctness of the above found that the two values diverged dramatically for in-
gebra and to demonstrate the inadequacy of Var $(V_0)_{ab}$ but matrices of high genetic diversity (Figure 1). Thi $Var(V_D)_{MC}$ and the variance calculated with Equation 10
(see Figure 1).

and one each of genotype $\begin{array}{c}\n\text{The usefulness of (19) for hypothesis testing depends on whether the distribution of } V_D \text{ is approximately non-} \end{array}$ mal under our null hypothesis of linkage equilibrium with replicates being produced by shuffling of alleles 4444444444 on haplotypes. For multilocus data sets there are three variables that may influence the shape of the distribu-

tion of V_D , the number of loci, the degree of diversity the resampled V_D values exceeded the 5% normal critiat each locus, and the number of strains. We investigated cal value (Table 1). For a sample of 480 strains the the effect of these three variables on the skewness of discrepancy between 5.13% and 5.0% was negligible. the distribution of V_D through Monte Carlo simulation Note that the probabilities of exceeding the normal by calculating *g*1 as a measure of skewness from sets of critical values were always slightly too large, as would resampled *V*_D values, be expected from the positive skewness of the distribu-

$$
g1 = \frac{m_3}{m_2^{3/2}},\tag{20}
$$

the distribution of V_D (Sokal and Rohlf 1981, p. 114). becomes to test the hypothesis of linkage equilibrium
For a normal distribution $\rho_1 = 0$: a positive ρ_1 indicates due to large sample size, the more useful our For a normal distribution $g1 = 0$; a positive $g1$ indicates due to large sample size, the more useful our formula
skewness to the right, a negative $g1$ skewness to the left becomes. This is because the sampling distribu skewness to the right, a negative *g*1, skewness to the left. Becomes. This is because the sampling distribution of V_0 always had positive *g*¹ approaches normality for large samples. We found that the distribution of V_D always had positive V_D approaches normality for large samples.
 Several recent reports of panmixis in bacteria have skewness, that is, at the upper extreme of the distribution, slightly more values lie beyond the normal critical values (Figure 2). This was not affected by the number of loci (data not shown). In contrast, the degree of genetic diversity at each locus had a strong effect on the shape of the distribution. On the whole, the greater the genetic diversity, the closer the distribution was to normality, but this relation was not linear with the strongest changes occurring at the extreme values of mean genetic diversity (*h*; Figure 3). Sample size also had a strong effect on skewness. In general, the larger the sample, the closer the sampling distribution of V_D approached normality (Table 1).

Given that the distribution of V_D has positive skewness even for large samples, we investigated the effect of this deviation from normality on hypothesis testing. Data sets consisting of between 15 and 480 strains and 10 loci, each with genetic diversity of 0.444, were resampled
to calculate the frequency with which V_{D} exceeded the
critical values that would be obtained if the distribution
of V_{D} was normal. Even for small da ancy was slight. For instance, with 15 strains 6.69% of replacement.

Figure 2.—Cumulative probability plot of 2500 resampled V_D values. The values expected if the distribution was normal $(-)$ and those observed (\circ) diverge at both extremes of the distribution, although for testing the hypothesis of linkage equilibrium only the positive skew apparent in the high cumulative probability values is of interest. The resampled artificial input data set consisted of 100 strains and 10 loci, each with a genetic diversity of 0.558.

tion of V_D . For real data this means that whenever a *^g*¹ ⁵ sample has been diagnosed as being in linkage equilib- *^m*³ rium, the same conclusion would be reached by Monte where m_3 and m_2 are the second and third moment of Carlo simulation. Further, the more time consuming it the distribution of V_2 (Sokal and Rohl f 1981 n 114) becomes to test the hypothesis of linkage equilibrium

TABLE 1

Relationship between skewness and the probability of exceeding normal critical values for various levels of significance

\boldsymbol{n}	g1	Probability of exceeding normal critical values for α =				
		0.1	0.05	0.025	0.01	0.005
15	0.7229	0.1143	0.0669	0.0427	0.0256	0.0167
30	0.5125	0.1091	0.0649	0.0405	0.0213	0.0134
60	0.3683	0.1068	0.0609	0.0351	0.0164	0.0111
120	0.2965	0.1084	0.0603	0.0327	0.0156	0.0100
240	0.2061	0.1101	0.0564	0.0306	0.0137	0.0077
480	0.1445	0.1006	0.0513	0.0278	0.0111	0.0059

Single random input matrices were resampled without replacement $10,000$ times and a V_D value computed each time. Subsequently, the frequency with which these V_D values exceeded the critical values obtained, assuming normality, was computed. n , number of strains; $g1$, measure of skewness of the distribution of V_D values obtained through resampling.

as a test statistic. Panmixis was concluded if the critical the critical value of V_D , but would also lead to the spurivalue of V_D was greater than the observed value of V_D ous conclusion that *E. coli* is in linkage equilibrium as (Maynard Smith *et al.* 1993; Bottomley *et al.* 1994; $L_{\text{old}} > V_{\text{D}}$ (Table 2). Duncan *et al.* 1994; Strain *et al.* 1995; Go *et al.* 1996). *B. japonicum:* Bottomley *et al.* (1994) reported link-The original method to calculate the critical value was age equilibrium for a *B. japonicum* population repredevised for plant populations, which are only moder-
sented by 17 electrophoretic types. This claim is clearly ately diverse $[e.g., h (H. *spontaneum*) = 0.145 (Brown)$ rejected by Monte Carlo simulation, which shows sig*et al.* 1980)], compared to bacterial populations (*cf.* Ta- nificant linkage for this population (L_{MC} = 2.593 < ble 1). In this study we showed by Monte Carlo simula- $V_D = 3.985$; Table 2). The same conclusion is reached tion that high genetic diversity leads to an artificial by comparing L_{new} (= 2.557) with V_D . Surprisingly, V_D inflation of $Var(V_D)_{old}$ (Figure 1). This problem was over- also exceeds L_{old} , on which the original claim of linkage

derivation in the study of bacterial population genetics, estimator we investigated published allozyme data for the ECOR *collection of <i>E. coli* (Ochman and Selander 1984), which is a well-known example of a clonal population (Miller and Hartl 1986). In addition, data sets from rather than on the unbiased estimator (Equation 4) been based on incorrect formulas for the variance of mators of the genetic diversity per locus in a sample in a sample in $V_{\rm b}$. Finally, an allozyme data set from N, *gonorrhoeae* was consisting of only 17 ETs. *V*_D. Finally, an allozyme data set from *N. gonorrhoeae* was consisting of only 17 ETs.
reexamined, as this taxon is considered a prime example *R. leguminosarum: St* rain *et al.* (1995) obtained evireexamined, as this taxon is considered a prime example *R. leguminosarum:* Strain *et al.* (1995) obtained eviof a sexual bacterial population (Maynard Smith *et al.* 1993; O'Rourke and Stevens 1993). tion of *R. leguminosarum* by using Monte Carlo simula-

highly diverse ($\hbar = 0.311$ to 0.691; Table 2) and that the genetic diversity varies strongly between loci (stan- ateness of *L*old for hypothesis testing. We further found dard deviation = 0.178 to 0.304; Table 2). Further, the that L_{new} (= 2.911) was again a good alternative to distribution of V_D displayed positive skewness in all cases, the lengthy calculations necessary for obtaining L_{MC} as observed in the simulations (Table 2). (5 2.967; Table 2) through simulation. Strain *et al.*

Hartl 1986), the electrophoretic types of the ECOR of their *R. leguminosarum* U.K. population and reported collection of *E. coli* are in linkage disequilibrium when linkage equilibrium for both subpopulations. We found the critical value obtained through the Monte Carlo that H_0 is rejected for groups I + III + IX and I + III process, L_{MC} , is compared to $V_D(L_{MC} < V_D)$; Table 2). on the basis of L_{MC} and L_{new} (Table 2). process, L_{MC} , is compared to $V_D(L_{MC} < V_D;$ Table 2). Further, L_{new} (= 2.592) is a good estimator of L_{MC} *B. subtilis:* Duncan *et al.* (1994) reported linkage equi-

used the observed variance of pairwise differences (V_D) (= 2.608), while L_{old} (= 2.985) not only overestimates

come by rederiving Var(*V*_D) (Equation 10; Figure 1). equilibrium had been based. This discrepancy is re-**Bacterial populations:** To test the usefulness of this solved if L_{old} is calculated on the basis of the biased

$$
h_j^b = 1 - \sum_j p_{ij}^2 ,
$$

Bradyrhizobium japonicum, *B. subtilis*, and *Rhizobium legu* employed in this study. Using h^b_j , $L_{old} = 3.996$, which is *minosarum* were included in the analysis, because for slightly greater than $V_D = 3.985$. This result is due to these populations claims of linkage equilibrium have the large difference between biased and unbiased estithese populations claims of linkage equilibrium have the large difference between biased and unbiased esti-
been based on incorrect formulas for the variance of the mators of the genetic diversity per locus in a sample

Generally we observed that bacterial populations are tion, but H_0 was not rejected on the basis of L_{old} . We ghly diverse ($\hbar = 0.311$ to 0.691; Table 2) and that obtained the same result, reinforcing the inappropri-*E. coli:* As expected from previous work (Miller and (1995) also analyzed groups I + III + IX and I + III

Assessment of multilocus structure in bacterial populations and comparison of old and new estimators of the critical values of V_D

ET, electrophoretic type; *h*, mean genetic diversity per locus ± standard deviation; *V*_D, observed variance of pairwise differences; *E*(*V*_D), expected variance of pairwise differences in case of linkage equilibrium; *L_{MC},* 95% critical value estimated by Monte Carlo simulation; *L_{new}, 95% critical value as defined in Equation 19; L_{old}, 95% critical* value as defined in Equation 15.

contained in the B and D subdivisions of their sample. Biotechnology E and D subdivisions of their sample. Kingdom). types of groups B and D display strong linkage (Table 2) with V_D (= 4.128) far exceeding L_{MC} (= 2.422) and *LITERATURE CITED*
 L_{new} (= 2.397). Group D on its own is also not in linkage equilibrium with L_{MC} and $L_{new} < V_D$, but note that as for Bottomley, P. J., H.-H. Cheng and S. R. Strain, 1994 Genetic F_{cell} denotion structure and symbiotic characteristics of a *Bradyrhizobium* population *E. coli, R. leguminosarum,* and *B. japonicum,* application
of L_{old} would lead to an inappropriate conclusion of instances in a pasture soil. Appl. Environ. Microbiol. 60:
linkage equilibrium. We further concluded on th linkage equilibrium. We further concluded on the basis Brown, A. H. D., M. W. Feldman and E. Nevo, 1980 Multilocus
of L_{∞} (- 2.664) and I_{∞} (- 2.605) that group B is structure of natural populations of *Hordeum* of L_{MC} (= 2.664) and L_{new} (= 2.605) that group B is

indeed in linkage equilibrium (Table 2).
 N. gonorrhoeae: This group of bacteria is the best es-
 N. gonorrhoeae: This group of bacteria is the best es-

1994

populations of *Bacillus subtilis* and *Bacillus licheniformis*: implica- tablished example of a bacterial population in linkage tions for bacterial evolution and speciation. Evolution **48:** 2002– equilibrium. An extensive allozyme data set comprising 228 isolates has been published and reported to be in Go, M. F., V. Kapura, D. Y. Graham and J. M. Musser, 1996 Popula-
linkage equilibrium (Maynard Smith et al. 1993) tion genetic analysis of *Helicobacter pylori* by mult tinkage equilibrium (Maynard Smith *et al.* 1993;
C'Rourke and Stevens 1993). Moreover, *N. gonorrhoeae* population structure. J. Bacteriol. 178: 3934-3938. O'Rourke and Stevens 1993). Moreover, *N. gonorrhoeae* population structure. J. Bacteriol. **178:** 3934–3938. ent genotypes of the taxon due to the sexual habits of

its host. As expected, we found that this population is Haubold, B., and P. B. Rainey, 1996 Genetic and ecotypic structure its host. As expected, we found that this population is Haubold, B., and P. B. Rainey, 1996 Genetic and ecotypic structure
in linkage equilibrium according to I_{ABC} (= 1 837): I_{c} of a fluorescent *Pseudomonas* popula in linkage equilibrium according to L_{MC} (= 1.837); L_{new} of a fluorescent *Pseudomonas* population. Mol. Ecol. 5: 747-761.

(= 1.831) gave the same result, further confirming the usefulness of this algebraic confidenc

For all the bacterial populations tested, L_{MC} and L_{new} lstock, C. A., K. E. Duncan, N. Ferguson and X. Zhou, 1992 Sexuality in a natural population of bacteria: *Bacillus subtilis* challenges agreed well. This contra of *L*_{old} from *L*_{MC}, which led to conflicting conclusions Maruyama, T., and M. Kimura, 1980 Genetic variability and effec-
about the genetic structure of *F* coli *B ianonicum R* tive population size when local ex about the genetic structure of E. coli, B. japonicum, R.

leguminosarum, and B. subtilis. Using computer simulations are frequent. Proc. Natl. Acad. Sci. USA 77:

tions, Maynard Smith (1994) showed that a recombi-

Maynard mation rate only 20 times the rate of mutation was sufficially transformation in bacteria. J. Evol. Biol. 7: 525–534.
Cient to unlink bacterial genomes. The detection of 1993 How clonal are bacteria? Proc. Natl. Acad. Sci. linkage disequilibrium in the soil-dwelling populations and the settlement of the settlement of the solid of the solid from the soli of *B. japonicum, R. leguminosarum*, and *B. subtilis* pre-
sented in this article indicates that the recombination
rates in these groups are probably very low. This has
rates in these groups are probably very low. This ha rates in these groups are probably very low. This has clonal population structure in *Escherichia coli.* Evolution 40: 1–12.
clonal population structure in *Escherichia coli.* Evolution 40: 1–12.
Colman, H., and R. K. Sel also been found experimentally for *B. subtilis* (Roberts changed and K. K. Setander, 1984 Standard reference strains
and Cohan 1995).
We conclude that past attempts to detect linkage dis-
We conclude that past attempts to

equilibrium in haploid multilocus data sets through the *generrhoeae* populations: a non-cional pathogen. J. Gen. Micro-
computation of a critical value for $V_{\rm D}$ were based on an $\frac{199}{\rm{Roberts}}$, M. S., and F. M. Coh erroneous formula for the variance of *V*_D. The correct tion rates in natural populations of *Bacillus subtilisting* to the *Bacillus subtilisting Bacillus subtilisting Bacillus subtilisting Bacillus 1981–1094.* formula for $Var(V_b)$ communicated in this article forms
the basis of a simple test of linkage. Furthermore, we
find that V_b is approximately normally distributed (espe-
find that V_b is approximately normally distributed cially for large samples). Hence the algebraic test pro-
posed here is a useful alternative to Monte Carlo simula-
1992 Hierarchical analysis of linkage disequilibrium in Rhizoor time consuming. A computer program written in Strain, S. R., T. S. Whittam and P. J. Bottomley, 1995 Analysis FORTRAN77, which implements both the algebraic as of genetic structure in soil populations of *Rhizobium leguminosarum*

well as the Monte Carlo test, can be obtained from B.H. recovered from the USA and the UK. Mol. Ecol. well as the Monte Carlo test, can be obtained from B.H.

We thank J. Maynard Smith for first drawing our attention to the problem of testing linkage equilibrium from mismatch data and for
helpful discussion. Thanks are also due to P.J. Bottomley for providing
the Rhizobium allozyme data, and to T. S. Whittam and two anony-
tia. Appl. Environ. mous reviewers for comments on the manuscript. This work was sup-

Communicating editor: P. L. Foster

ported by grants from the Royal Society, Oxford University and the contained in the R and D subdivisions of their sample Biotechnology and Biological Sciences Research Council (United contained in the R and D subdivision

-
-
- *N. gonorrhoeae:* This group of bacteria is the best es-

populations of *Bacillus subtilis* and *Bacillus licheniformis*: implica-

populations of *Bacillus subtilis* and *Bacillus licheniformis*: implica-
	-
- is naturally competent and frequently encounters differ-
Escherichia coli as a result of recombination, not mutation. Science
	-
- usefulness of this algebraic confidence limit (Table 2). Evol. Biol. 7: 535–548.
For all the bacterial populations tested *Luc* and *L* Istock, C. A., K. E. Duncan, N. Ferguson and X. Zhou, 1992 Sexu-
	-
	-
	- Maynard Smith, J., 1994 Estimating the minimum rate of genetic transformation in bacteria. J. Evol. Biol. 7: 525-534.
	-
	-
	-
	-
	- We conclude that past attempts to detect linkage dis- O'Rourke, M., and E. Stevens, 1993 Genetic structure of *Neisseria*
		-
		-
		-
- 1992 Hierarchical analysis of linkage disequilibrium in *Rhizo*tion in cases where simulation is deemed too expensive *bium* populations: evidence for sex? Proc. Natl. Acad. Sci. USA
	-
- Whittam, T. S., H. Ochman and R. K. Selander, 1983 Multilocus
genetic structure in natural populations of *Escherichia coli*. Proc.
We thank J. Maynard Smith for first drawing our attention to the
problem of testing linkag
	-