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ABSTRACT
Estimating the resolution power of mapping analysis of linked quantitative trait loci (QTL) remains a

difficult problem, which has been previously addressed mainly by Monte Carlo simulations. The analytical
method of evaluation of the expected LOD developed in this article spreads the “deterministic sampling”
approach for the case of two linked QTL for single- and two-trait analysis. Several complicated questions
are addressed through this evaluation: the dependence of QTL detection power on the QTL effects,
residual correlation between the traits, and the effect of epistatic interaction between the QTL for one
or both traits on expected LOD (ELOD), etc. Although this method gives only an asymptotic estimation
of ELOD, it allows one to get an approximate assessment of a broad spectrum of mapping situations. A
good correspondence was found between the ELODs predicted by the model and LOD values averaged
over Monte Carlo simulations.

MANY efforts have been devoted to increasing the a complicated problem arising when the considered
chromosome contains several QTL (e.g., Jiang andefficiency of marker analysis of quantitative traits,
Zeng 1995; Korol et al. 1998). If one tries to fit a single-including interval analysis (Lander and Botstein 1989;
locus model to such a case, a ghost QTL can be detectedKnott and Haley 1992), selective sampling (Lebowitz
in an interval that has no effect on the trait (Knottet al. 1987; Darvasi and Soller 1992, 1994; Weller
and Haley 1992; Martinez and Curnow 1992;et al. 1997), replicated progeny testing (Soller and
Wright and Kong 1997). Especially difficult are situa-Beckmann 1990), and sequential experimentation
tions with trans effects of linked QTL (Knott and(Boehnke and Moll 1989; Motro and Soller 1993).
Haley 1992; Luo and Kearsey 1992). That trans-associ-Recently, a general method to improve the efficiency
ation of QTL could be a common phenomenon evenof quantitative trait loci (QTL) mapping was proposed
in interspecific crosses has been demonstrated byby taking into account simultaneous segregation at
DeVicente and Tanksley (1993) in tomato: they foundmany genomic segments that affect the trait in question
that up to 36% of the detected QTL had alleles with(Jansen and Stam 1994; Zeng 1994). A situation in
effects opposite to the direction expected from the pa-which one QTL (or a chromosome segment) affects
rental differences.several traits simultaneously can also be considered to

The usual way of dealing with several linked QTL isresult in increased power (Korol et al. 1987, 1994, 1995,
multiple regression analysis or mixture model analysis1998; Jiang and Zeng 1995; Ronin et al. 1995; Zeng
that includes markers as regression cofactors to account1997). Such an analysis may be important in marker-
for segregation of QTL of the same chromosome (Jan-assisted breeding strategies, dissecting heterosis as a
sen and Stam 1994; Zeng 1994). The third possibilitymultilocus multitrait phenomenon, developing opti-
is to construct two- to three-interval mixture models,mized programs for evaluation and bioconservation of
although this approach is rather cumbersome andgenetic resources, and revealing genetic architecture of
needs intensive calculations. Employing Monte Carlofitness systems in natural populations, etc. Multiple-trait
simulations with mixture models, we demonstrated re-mapping analysis proved to be very useful within the
cently the advantage of multiple trait analysis in detec-framework of the selective genotyping design (Weller
tion of linked QTL effects (Korol et al. 1998). Theet al. 1997; Ronin et al. 1998).
goal of this article is to elaborate an analytical modelThe multiple-trait approach may help in coping with
enabling us to evaluate in a general form the expected
LOD values in cases of two linked QTL. Such a model
can be used as a tool to predict the expected resolution

Corresponding author: A. B. Korol, Institute of Evolution, University
in different complicated situations. As a practical appli-of Haifa, Mt. Carmel, Haifa 31905, Israel.

E-mail: korol@esti.haifa.ac.il cation one can consider the possibility of calculating

Genetics 151: 387–396 ( January 1999)



388 Y. I. Ronin, A. B. Korol and E. Nevo

the minimum sample size needed to detect linked QTL
with certain effects on either of the correlated quantita-
tive traits or to prove the existence of epistasis for any
of the traits. Likewise, the proposed analysis allows us
to predict situations where a ghost QTL will be detected
using interval analysis and to evaluate the minimum
marker density needed to prevent such a possibility for
given effects of the linked QTL. Recently, a similar tech-
nique, referred to as “deterministic sampling,” was ap-
plied to single-QTL situations in single-trait analysis,
with the expected LOD values calculated numerically
(Mackinnon and Weller 1995; Mackinnon et al. 1996;
Wright and Kong 1997). Our major target here is
analytical and numerical deterministic sampling for two- Clearly, situations (d) and (e) are equivalent (up to
trait analysis with linked QTL. We first treat the case of parameter replacement) to (b) and (a), respectively.
a single-trait analysis and then generalize the results for Our intention is to evaluate how misspecification of
the two-trait analysis. The consideration will be based on the model (assumption of one QTL when actually two
a modification of the maximum-likelihood technique linked QTL reside on the chromosome) affects the pa-
relevant to asymptotic properties of the LOD test, which rameter estimation. This is done by scanning across a
will be referred to as “regression of the log-likelihood large number of markers, so that besides situations (a),
function.” For the case of single-marker analysis this (c), and (e), one could also encounter situations close
modification is equivalent to the usual procedure of to those of (b) and (d). Moreover, in all of the cases
expected LOD (ELOD) calculation (Lander and Bot- we assume that the trial marker exactly coincides with
stein 1989) with the only difference that it is a function the putative (single) QTL. Due to the foregoing assump-
of the variable position of marker. tions, the true expected densities of the trait distribution

in the alternative marker groups for an arbitrary marker
will be

SINGLE-TRAIT ANALYSIS
hMM(x) 5 h1 5 a1f11(x) 1 a2f12(x) 1 b2f21(x) 1 b1f22(x),

The major target of our analysis is analytical and nu-
hmm(x) 5 h2 5 b1f11(x) 1 b2f12(x) 1 a2f21(x) 1 a1f22(x),merical deterministic sampling with linked QTL. There-

fore, analytical expression of ELOD should be obtained where in case
that allows us to compare H2 (two linked QTL) and H1

(single QTL) for any set of parameter values.
Single-QTL models: Let a trait x be dependent on

two linked loci Q1/q1 and Q2/q2 and let the trait values
in the four QTL groups Q1Q1Q2Q2, Q1Q1q2q2, q1q1Q2Q2, and
q1q1q2q2 of a mapping population have normal densities
f11(x), f12(x), f21(x), and f22(x) with (unknown) means
m*11, m*12, m*21, and m*22 and standard deviations s*11, s*12,

(a) a1 5 (1 2 r1)(1 2 r), a2 5 (1 2 r1)r,

b1 5 r1(1 2 r), b2 5 r1r,

(b) a1 5 1 2 r, a2 5 r,

b1 5 0, b2 5 0,

(c) a1 5 (1 2 r1)(1 2 r2), a2 5 (1 2 r1)r2,

b1 5 r1r2, b2 5 r1(1 2 r2),

(d) a1 5 1 2 r, a2 5 0,

b1 5 0, b2 5 r,

(e) a1 5 (1 2 r)(1 2 r2), a2 5 rr2,

b1 5 (1 2 r)r2, b2 5 r(1 2 r2).

s*21, and s*22, respectively. Usually, the mapping proce-
dure is started with the assumption of one QTL in the
chromosome and then one can try to apply some ver-
sions of single-marker or interval analysis. Reduced test
power, biased parameter estimates, and detection of
ghost factors may result from this simplification, as dem- (1)

onstrated by simulation studies (Knott and Haley Then the expected mean values and variances in the
1992; Luo and Kearsey 1992; Martinez and Curnow alternative groups can be represented as
1992; Korol et al. 1998). This question is treated here
analytically for both single-marker and single-interval m̃1 5 a1m*11 1 a2m*12 1 b2m*21 1 b1m*22,
analysis (see also Wright and Kong 1997).

m̃2 5 b1m*11 1 b2m*12 1 a2m*21 1 a1m*22,Consider a random sample of individuals genotyped
s̃2

1 5 a1s*2
11 1 a2s*2

12 1 b2s*2
21 1 b1s*2

22 1 G(a1, a2, b1, b2),for marker loci from the chromosome that carries the
two QTL. With a dense molecular map, one analyzes s̃2

2 5 b1s*2
11 1 b2s*2

12 1 a2s*2
21 1 a1s*2

22 1 G(b1, b2, a1, a2),
consequently a series of markers with five different loca-
tions relative to the linked QTL: (2)
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TABLE 1

Asymptotic estimates of parameters and max ELODs (mELODs) of a single-QTL model when applied
to the case of two linked QTL (r 5 0.25) for coupling and repulsion phases

Phase d*1 d*2 d1 d2 s1 s2q mELOD11 mELOD12 mELOD2

C 0.5 0.75 0.75 10.11 10.11
0.5 0.83 0.83 3.84

R 20.5 0.25 20.25 1.22 1.22

C 0.3 0.86 13.19 —
0.7 — 0.81 — 1.41

R 20.3 0.55 5.92 —

The results of application of single marker sliding are presented. It appears that the ELOD function may
have two local maxima (mELOD11 and mELOD12) coinciding with the true positions of the QTL (see also
Hyne and Kearsey 1995; Wright and Kong 1997), resulting in two sets of parameter estimates. For comparison,
we also provide the results of two-QTL sliding, mELOD2 for the hypothesis H2 (two linked QTL) vs. H1 (single
QTL), assuming the sample size n 5 250. C and R stand for coupling and repulsion phases, respectively; d*1 ,
d*2 , d1, and d2, are the true and estimated values of the effects of the first and second QTL, respectively; s1

and s2 are the estimates of the residual standard deviations (the true value was s* 5 0.8). Note that the same
values of mELOD2 are presented for the two linkage phases, C and R (for further details see the two-trait
analysis section).

where a single-QTL mapping model to a situation with two
linked QTL. In particular, we compare the expected

G(a, b, c, d) 5 a(c(m*11 2 m*22) 1 d(m*11 2 m*21))2

LOD scores corresponding to the hypotheses H1, “one
QTL in the considered chromosome” and H0, “no QTL1 b(c(m*12 2 m*22) 1 d(m*12 2 m *21))2

in the chromosome.” Then, we have consequently
1 d(a(m*21 2 m*11) 1 b(m*21 2 m*12))2

for H1 → ma
l
x V1(s̃1(l), s̃2(l)) 5 V1; for H0 → U0(m, s)

1 c(a(m*22 2 m*11) 1 b(m*22 2 m*12))2

5 E logp
n

i51

(s√2p)21 exp(2(xi 2 m)2/(2s2)),1 a b(m*11 2 m*12)2(1 1 c 1 d)

1 c d(m*22 2 m*21)2(1 1 a 1 b). and
Assuming that our trial marker is tightly linked to (or

V0 5 max
m,s

U0(m, s)
coincides with) the putative (single) QTL and that the
trait distributions in alternative groups are normal, we 5 E logp

n

i51

(ŝ√2p)21exp(2(xi 2 m̂)2/(2ŝ2)),
can calculate the regression of the log-likelihood as a
function of parameter set u 5 (m1,m2,s1,s2): where

U1(u) 5 Eo
n1

i51

logh(s1√2p)21exp[2(xi 2 m1)2/(2s2
1)]j m̂ 5 1⁄2(1 2 r)m*11 1 1⁄2rm*12 1 1⁄2rm*21 1 1⁄2(1 2 r)m*22,

ŝ2 5 1⁄2(1 2 r)s*2
11 1 1⁄2rs*2

12 1 1⁄2rs*2
21 1 1⁄2(1 2 r)s*2

221 E o
n

i5n111

logh(s2√2p)21exp[2(xi 2 m2)2/(2s2
2)]j,

1 G(1⁄2(1 2 r), 1⁄2r, 1⁄2(1 2 r), 1⁄2r).
where E stands for expectations. To obtain the asymp- It is easy to show that V0 5 2 0.5n(1 1 log(2p) 1 log
totic estimates of parameter values, one can calculate

ŝ2) and one can obtain the expression for the maximum
max U1(u): expected LOD value, max ELOD 5 V1 2 V0.

These results allow us to evaluate the consequencesma
u
xU1(u) 5 U1(m̃1, m̃2, s̃1, s̃2)

of model misspecification. The behavior of the score
5 20.5n(1 1 log(2ps̃1s̃2)) 5 V1(s̃1, s̃2),

ELOD 5 V1(·) 2 V0 as a function of trial marker position
and the parameters characterizing the effect of Q1/q1where s̃1 and s̃2 are as defined in (2).

Clearly, s̃1 and s̃2 depend on the position l of the and Q2/q2 are represented in Table 1 and Figure 1.
Clearly, V1 (·)2V0 reaches a local maximum when thetrial marker with respect to Q1/q1 and Q2/q2 loci. For

any trial marker position l the conditional max of U1 marker coincides with one of the QTL. One can easily
see from the presented illustrations that the possibility(u) is V1 (s̃1(l),s̃2(l)). We now maximize V1(s̃1(l),s2(l))

with respect to marker position l. To save space we skip of finding an indication of the existence of two QTL
by revealing two local maxima depends on linkage phasethe details and provide here only the final results. Our

task was to analyze the consequences of application of (coupling or repulsion), distance between the QTL,
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and magnitudes of the QTL effects and their ratio (see
Figure 1 and Table 1).

Two linked QTL: ELOD for testing H2 vs. H1: As before,
consider a situation when the target trait x depends on
the two linked loci Q1/q1 and Q2/q2 with normal trait
densities f11(x), f12(x), f21(x), f22(x) in the QTL groups
Q1Q1Q2Q2, Q1Q1q2q2, q1q1Q2Q2, and q1q1q2q2 of the dihaploid

(a) a1 5 (1 2 r1)(1 2 r2)(1 2 r3)/sab,

a2 5 (1 2 r1)(1 2 r2)r3/sab,

b1 5 r1r2r3/sab,

b2 5 r1r2(1 2 r3)/sab,

sab 5 r1r2 1 (1 2 r1)(1 2 r2);

t1 5 (1 2 r1)r2r3/std,

t2 5 (1 2 r1)r2(1 2 r3)/std,

d1 5 r1 (1 2 r2)(1 2 r3)/std,

d2 5 r1(1 2 r2)r3/std,

std 5 (1 2 r1)r2 1 r1(1 2 r2);

mapping population characterized by unknown means
m*11, m*12, m*21, and m*22, and (residual) standard deviations
s*11, s*12, m*21, and s*22. Employment of two markers instead
of one allows us to take into account both QTL. Several
basic situations of marker loci positioning relative to
the QTL could be considered:

(b) a1 5 (1 2 r1)(1 2 r3), a2 5 (1 2 r1)r3,

b1 5 r1r3, b2 5 r1(1 2 r3),

t1 5 (1 2 r1)r3, t2 5 (1 2 r1)(1 2 r3),

d1 5 r1(1 2 r3), d2 5 r1r3;

(c) a1 5 (1 2 r1)(1 2 r2), a2 5 r1r2,

b1 5 (1 2 r1)r2, b2 5 r1(1 2 r2),

t1 5 (1 2 r1)(1 2 r2), t2 5 r1r2,

d1 5 (1 2 r1)r2, d2 5 r1(1 2 r2);

Clearly, other possible situations are equivalent to
these four, up to a replacement of parameters. In the
foregoing single-marker sliding, we had two discrepan-
cies between the model specification and the real situa-

(d) a1 5 (1 2 r1)(1 2 r2)(1 2 r3)/sab,

a2 5 (1 2 r1)r2r3/sab,

b1 5 r1(1 2 r2)r3/sab,

b2 5 r1r2(1 2 r3)/sab,

sab 5 (1 2 r1)(1 2 r2)(1 2 r3)

1 (1 2 r1)r2r3 1 r1r2(1 2 r3)

1 r1(1 2 r2)r3,

t1 5 (1 2 r1)(1 2 r2)r3/std,

t2 5 (1 2 r1)r2(1 2 r3)/std,

d1 5 r1(1 2 r2)(1 2 r3)/std,

d2 5 r1r2r3/std,

std 5 (1 2 r1)(1 2 r2)r3

1 (1 2 r1)r2(1 2 r3) 1 r1r2r3

1 r1(1 2 r2)(1 2 r3).

tion: (i) only one QTL was assumed, and (ii) the trial
marker was treated as if its position coincides with that
of the putative QTL. Now the model is improved, because
the first assumption is removed. Therefore, we can con-
sider a process of sliding with a pair of markers along the
chromosome as a tool to locate the pair of QTL. Such a
procedure is equivalent to two-interval mapping analysis

(3)(Haley and Knott 1992; Martinez and Curnow 1992;
Jansen 1993; Korol et al. 1998) with vanishing lengths of For any pair of markers, one can assume that they coin-
the trial intervals. Because of the foregoing assumptions, cide with (or are closely linked to) the corresponding
the true expected densities of the trait distribution in four QTL. If so, the parameter values characterizing these
alternative marker groups for an arbitrary pair of trial QTL are easily derived by employing maximization of
markers can be written as regression of the log-likelihood function analogous to

the procedure described in the previous section. Conse-h11(x) 5 a1f11(x) 1 a2f12(x) 1 b2f21(x) 1 b1f22(x)
quently, one can calculate, for the current pair of mark-

5 H(a1, a2, b1, b2), ers, the expected LOD assuming two linked QTL (H2

hypothesis), which can be compared to the expectedh12(x) 5 H(t1, t2, d1, d2),
log-likelihood obtained under the assumption of one

h21(x) 5 H(s1, d2, t1, t2), QTL (H1). We found that given independent variance
effects of the linked QTL, the maximum of ELOD overh22(x) 5 H(b1, b2, a1, a2),
possible locations (l1,l2) of the trial pairs of markers is

with corresponding mixture parameters attained exactly in the case when these locations coin-
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ference (Haldane mapping function) was assumed. For
each sample, we employed two subsets of markers, using
the information on intervals 12 and 48. Table 2 shows
the behavior of the average LOD values and the discrep-
ancy between the estimated and simulated QTL posi-
tions as dependent on sample size and number of mark-
ers. The main conclusion from the simulations is that
the proposed method can indeed serve as a basis to get
an approximate prediction of the expected LOD for
interval mapping of two linked QTL (compare the aver-
age max LODs with max ELODs).

It follows from the presented results that the differ-
ence between predicted max ELOD and the averaged
over simulations max LOD in repulsion phase is smallerFigure 1.—Behavior of ELOD for a single-marker sliding
than that in coupling phase, in spite of the fact that ourin the single-QTL model when applied to situations with two

linked QTL, as a function of the QTL positions and effects. theory predicts the same value for the two phases. In
CP and RP, coupling and repulsion phases. The effects of the both cases the experimental LODs are smaller than
QTL are denoted by the following: jj, d*1 5 0.5 and the predicted ones; i.e., for the same combinations of
d*2 5 0.5; m, d*1 5 0.6 and d*2 5 0.4; d, d*1 5 0.7 and d*2 5

parameters the simulated LODs were higher in repul-0.3. The residual standard deviation was 0.8.
sion phase. A simple explanation can be proposed for
this effect. The simulated procedure includes analyses
for two hypotheses, H1 and H2. In Monte Carlo experi-

cide with those of the QTL (the proof is available from ments with two linked QTL, we can consider two options
authors upon request). The surface ELOD 5 for fitting parameters of the maximum-likelihood func-
ELOD(l1,l2) represented in Figure 2 manifests an impor- tion to the H1 hypothesis (Lander and Botstein 1989;
tant asymptotic property of interval QTL mapping with Haley and Knott 1992; Korol et al. 1998): (i) fixed
vanishing interval length and increasing sample size: a position of the putative QTL, when its position is assumed
faster-than-linear growth of the criterion when ap- to be known and coincides with either of the two simu-
proaching the true position of the QTL (the second lated positions (which would not necessarily be true
derivatives are positive). Note that the same max ELOD in the practical data analysis when these positions are
is predicted for coupling and repulsion phases. unknown); (ii) variable position of the putative QTL that

Comparison of the analytical and simulation results: The is assumed unknown, but can be found because it pro-
foregoing model allows us to deduce the expected LOD vides maximum value of the maximum-likelihood func-
values in the QTL mapping analysis in the case of two tion. Certainly, the achievable maximum is higher in
linked QTL. However, these results are essentially as- the second situation resulting in an underestimation of
ymptotic and may be biased at small samples. Therefore, the LOD value for H2 vs. H1 (not shown).
it is important to assess how the obtained estimates Applications: The proposed analytical tool allows us
converge to the expected parameter values when the to evaluate easily, without the necessity of Monte Carlo
sample sizes and marker density are increasing. To do simulations, the behavior of the ELOD values across all
that we employed Monte Carlo simulations. Chromo- possible locations of the putative QTL, for any fixed
somes with two linked QTL were modeled for two popu- sets of parameters (see Figure 2), which is important
lation sizes (n 5 500 and 2000). No crossing-over inter- for designing mapping experiments. For example, using

the obtained expression of max ELOD, we can get an
estimate of the minimum sample size needed to discrimi-
nate between H1 and H2, when H2 is true (i.e., when we
have a pair of linked QTL with some effects d1 and d2),
with a certain preset test power. This is based on the fact
that the expected LOD value is distributed as noncentral
chi-square with degrees of freedom equal to the differ-
ence in the number of parameters specifying the alter-
natives (H2 and H1) (Wald 1943). This tool enables us
to compare different practical situations with respect to
the foregoing prediction of the minimum sample size
(see Lander and Botstein 1989). The usefulness of
such an option is especially obvious for mapping ofFigure 2.—The ELOD surface for the alternative H2 (two
linked QTL, where the efficiency of the experimentallinked QTL) vs. H1 (one QTL in the chromosome). (a) Cou-

pling phase; (b) repulsion phase. design depends on many factors characterizing the un-
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known “configuration” of the problem: the distance of
the putative QTL, their relative effects on trait mean
value and variance, linkage phase (coupling vs. repul-
sion), and presence or absence of epistatic interaction,
etc. We now consider two examples to illustrate the
possibilities of the proposed analysis: the dependence
of ELOD for H2 vs. H1 on epistasis and the detectability
of epistasis provided H2 is already proved.

The effect of epistatic interaction on ELOD for QTL detec-
tion: In the example on epistatic interactions the trait
values in the four QTL classes were modeled as:

m11 5 m0 1 0.5(d1 1 d2) 1 ε, Figure 3.—The behavior of the maximum ELOD (H2 vs.
H1) as a function of the effects of the QTL (d) and the level

m21 5 m0 2 0.5(d1 2 d2) 2 ε, of epistasis (ε). Here d is the effect of the first QTL and we
assumed that the effect of the second QTL also varies, in suchm12 5 m0 1 0.5(d1 2 d2) 2 ε,
a manner that the sum of the absolute values of both effects
is equal to 1. The numerical values of the parameters werem22 5 m0 2 0.5(d1 1 d2) 1 ε,
n 5 250, r 5 25%, and s 5 0.8.

where ε is the epistatic effect. It is of high practical
importance to predict the expected power of detection
of epistatic interactions within the framework of QTL of the effects and positions of the involved QTL. Clearly,

if epistasis is present it also may affect the results ofmapping analysis (Haley and Knott 1992; Eaves 1994;
Korol et al. 1994; Fu and Ritland 1996). This problem such a fitting. Then, when fitting H2 for data with epista-

sis, one can either adopt or ignore epistasis, which mayis addressed in the next section. Here we consider first
the question of how the presence of epistasis may affect affect the final result. Figure 3 shows the behavior of

max ELOD for testing H2 vs. H1 (testing for the presencethe power of QTL detection. The fitted single-QTL
model of two-QTL data may depend on the peculiarities of two linked QTL as compared to one QTL). Two

TABLE 2

Comparison of the average LOD values (over 200 Monte Carlo runs) with the asymptotic values of
max ELOD for comparing the hypotheses H2 (two linked QTL in the chromosome) vs.

H1 (one QTL in the choromosome)

Number of intervals

12 48

12 48 Average estimated positions of the QTL

Average LOD valuen max ELOD Phase L1 L 2 L1 L 2

C 5.26 5.88 14.37 49.66 14.10 49.47
500 7.68 (1.46) (1.49) (3.36) (3.22) (2.38) (2.52)

R 6.64 7.15 14.80 49.48 14.29 49.49
(2.17) (2.25) (3.64) (3.50) (2.60) (2.66)

C 23.46 26.84 14.29 49.15 14.29 49.02
2000 30.72 (3.55) (3.61) (1.54) (1.12) (0.56) (0.62)

R 27.33 29.07 14.72 49.12 14.41 49.19
(4.64) (4.73) (1.59) (1.18) (0.70) (0.73)

Monte Carlo simulations (200 runs) were conducted for doubled haploid mapping populations with n 5
500 and 2000 genotypes. A single chromosome was modeled with two QTL (Q1/q1 and Q2/q2 of equal additive
effects (d1 5 d2 5 0.5) in coupling (C) and repulsion (R) phases; the residual standard deviations were all 0.8.
Chromosomes with 49 equidistant markers with a recombination rate of 0.02 between adjacent markers were
simulated assuming no interference (hence Haldane mapping function). The simulated positions of the QTL
coincided with markers 8 and 25. For the considered two marker densities (i.e., with 12 and 48 intervals),
correspondingly 13 and 49 markers were used in two-interval analysis. Thus, the simulated positions of the
QTL were L1 5 14.29 cM and L2 5 48.98 cM. For both LOD values and estimated positions of the QTL, we
provide the averages (first rows) and standard deviations (second rows in parentheses). The hypothesis H2

(two linked QTL) was compared to H1 (a single QTL) by fitting the H1 model with no presumed constraints
on the position of the putative single QTL; correspondingly, the two-QTL model was fitted by scanning over
all possible pairs of intervals (see Halley and Knott 1992; Korol et al. 1998).
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TABLE 3

Comparison of the average LOD values (over 100 Monte Carlo runs) with the asymptotic values of
max ELOD for comparing the hypotheses H2 (two linked QTL with epistasis), H2 (two linked

QTL with no epistasis), and H0 (no QTL in the chromosome)

H2 (e ? 0) H2 (e 5 0) H2 (e ? 0) Power (a 5 5%)
n vs. H0 vs. H0 vs. H2 (e 5 0) H2 (e ? 0) vs. H2 (e 5 0)

250 s 16.25 15.06 1.19 55%
t 14.71 13.74 0.97

s 2 t 1.54 1.32 0.22

500 s 30.48 28.45 2.02 76%
t 29.42 27.48 1.94

s 2 t 1.06 0.97 0.08

A situation with two linked epistatically interacting QTL was considered for coupling phase. The positions,
the additive effects, and the residual variances of the QTL are as described in Table 2. The epistatic effect
was e 5 0.125. Here s denotes the average LOD resulting from simulation experiments whereas t denotes the
predicted max ELOD for the compared alternatives H2 (e ? 0) vs. H2 (e 5 0) (d.f. 5 1).

conclusions can be derived from our analysis: (i) the may increase the mapping resolution in situations with
linked QTL, i.e., when H2 (two linked QTL) and H1effect of epistasis on detection power is symmetric with

respect to the sign of ε, and (ii) epistasis may have either (one QTL) are compared. The higher the residual cor-
relation the better the expected LOD. In two-trait analy-a positive or negative effect on max ELOD of the test

of H1 vs. H0 (not shown) and always a positive effect sis, the residual correlation between the traits in the
QTL groups may be caused by nongenetic mechanisms,when testing H2 vs. H1 (Figure 3; see also Eaves 1994).

The detectability of epistasis (comparison of H2 under ε ? pleiotropy, or linkage of genes from other chromo-
somes affecting either of the traits, and by pleiotropy0 vs. H2 under ε 5 0): In the foregoing section we could

see how epistasis affects the expected LOD values when and linkage of genes from the chromosome under con-
sideration.single-QTL and two-QTL models are applied to the anal-

ysis. The proposed tool allows us also to predict the As in single-trait analysis, to analyze two-QTL situa-
expected LOD for the situation when one wants to con- tions we calculate max ELOD for the alternative hypoth-
trast two versions of the hypothesis H2 (two linked QTL eses: H2 vs. H1. This means that we need to develop
in the chromosome): H2 (ε 5 0), i.e., additive effects of bivariate analogues of the foregoing single-QTL and
the QTL, and H2 (ε ? 0), i.e., assuming epistasis. Testing two-QTL models based on single- and two-marker slid-
for epistasis (coadaptation) and evaluating the magni- ing procedures. Hence, the goal of the first part of this
tude of epistasis have recently become an important section is to obtain the regression of the log-likelihood
component of QTL mapping analysis (Doebley et al. function assuming that only one QTL resides in the
1995; Li et al. 1997). This meaningful subject has a long chromosome that in fact carries two linked QTL. Let
history in both evolutionary genetics (Dobzhansky the traits x and y be dependent on two loci, Q1/q1 and
1970; Wright 1977), theories of recombination and Q2/q2, residing in the marked chromosome and let the
sex evolution (Barton 1995; Otto and Feldman bivariate trait distributions in the four QTL groups
1997), and agricultural genetics (Yu et al. 1997). How- Q1Q1Q2Q2, Q1Q1q2q2, q1q1Q2Q2, and q1q1q2q2 of dihaploid
ever, only with QTL mapping can epistatic effects be mapping population be normal densities f11(x, y), f12(x,
objectively detected and evaluated. Each of the forego- y), f21(x, y), and f22(x, y) with unknown vectors of means
ing alternative versions of H2, without and with epistasis, {m*x } 5 {m*11x, m*12x, m*21x, m*22x} and {m*y } 5 {m*11y, m*12y, m*21y,
can be compared to H0 (no QTL in the chromosome), m*22y}, residual standard deviations {s*x } 5 {s*11x, s*12x,
using the proposed approximation. The difference be- s*21x, s*22x} and {s*y } 5 {s*11y, s*12y, s*21y, s*22y}, and correla-
tween the resulting max ELODs will give us max ELOD tions {r*xy} 5 (r*11, r*12, r*21, r*22), respectively. Usually, the
for the presence of epistasis. An example presented in mapping procedure is started with the assumption of
Table 3 illustrates the closeness between the predicted one QTL in the chromosome, and then one could try to
LOD values and the average LODs obtained in direct apply some versions of single-marker or interval analysis.
Monte Carlo simulations. Reduced test power, biased parameter estimates, and

detection of ghost factors may result from this simplifi-
cation, as demonstrated by many simulation studies.

TWO-TRAIT ANALYSIS The foregoing analytical treatment of this problem de-
veloped for a single-trait analysis is expanded now toAs was shown in our previous simulation study (Korol

et al. 1998), joint analysis of correlated quantitative traits two-trait analysis.
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Consider a random sample of individuals each charac- hood function. The regression of the log-likelihood now
looks liketerized for traits x and y and a set of marker loci from

the chromosome in question. For an arbitrary marker,
U2xy({mx}, {sx}, {my}, {sy}, {rxy}) 5 U2xy(·)we take into account the same five situations (a–e) as

those considered above for the single-trait analysis.
5 E log ( p

2

j,k51
p
njk

ijk51

N(xijk, mjkx, mjky, sjkx, sjky, rjk)),
Then the true expected densities of the bivariate trait
distribution in the alternative marker groups for an

where N (·) is a bivariate normal density, {mx} 5 {m11x,arbitrary scanning marker will be
m12x, m21x, m22x), {my} 5 (m11y, m12y, m21y, m22y), {sx} 5 (s11x,

hMM(x, y) 5 h1 5 a1f11(x, y) 1 a2f12(x, y) s12x, s21x, s22x), {sy} 5 (s11y, s12y, s21y, s22y), {rxy} 5 (r11, r12,
r21, r22), and nkl are the frequencies of the four marker1 b2f21(x, y) 1 b1f22(x, y),
classes for the current pairs of markers, n11 1 n12 1 n21 1

hmm(x, y) 5 h2 5 b1f11(x, y) 1 b2f12(x, y) n22 5 n. Then,

1 a2f21(x, y) 1 a1f22(x, y), max U2xy(·) 5 U2xy({m̃x}, {s̃x}, {m̃y}, {s̃y}, {r̃xy})

where ai and bj are as defined in (1). To proceed with 5 2n(1 1 log 2p)
the analysis we need to make the following note.

1 1⁄2((1 2 r̃)log (s̃11xs̃11ys̃22xs̃22yConsider an arbitrary bivariate distribution with finite
central moments (up to the fourth). Then the maxi- 3 √(1 2 r̃2

11)(1 2 r̃2
22))

mum of log-likelihood per individual for the Gaussian
1 r̃ log(s̃12xs̃12ys̃21xs̃22y √(1 2 r̃2

12)(1 2 r̃2
21)))model will converge in probability to the maximum of

the regression of the log-likelihood function per individ- 5 V2xy(r̃, {s̃x}, {s̃y}, {rxy}) 5 V2xy(·),
ual. Assume that the trial marker is exactly at the same

where the components of vector ({m̃x},{s̃x},{m̃y},{s̃y},{r̃xy})position as our putative QTL and the trait distributions
in the alternative groups MM and mm are bivariate nor- and r̃ are calculated routinely. This presentation allows
mals. The regression of the log-likelihood will take the us to obtain the following results.
form Assume independent variance effects of the linked

QTL for each of the traits (i.e., s*11x 5 s*x , s*12x 5
U1xy(u) 5 E log(p

n1

i51

N(x1i, m1x, m1y, s1x, s1y, r1) axs*x , s*21x 5 bxs*x , s*22x 5 axbxs*x , s*11y 5 s*y , s*12y 5ay s*y ,
s*21y 5 bys*y , s*22y 5 aybys*y*) and equal residual correla-
tion between the target traits in all of the four QTL3 p

n

j5n111

N(x2j, m2x, m2y, s2x, s2y, r2)),
groups (i.e., r*ij 5 r*; i, j 5 1.2). Then, if one of the
traits, x, depends additively on both linked QTL (Q1/where u 5 (m1x, m2x, m1y, m2y, s1x, s2x, s1y, s2y, r1, r2). Then, q1 and Q2/q2), whereas the correlated trait y is indepen-
dent of the considered QTL, then the global maximumma

u
x U1xy(u) 5 2n(1 1 1⁄2log(4p2s̃1xs̃2xs̃1ys̃2y

of V2xy(·) over all possible locations of the trial pair of
3 √(1 2 r̃2

1)(1 2 r̃2
2)) markers in the chromosome is attained exactly when

these locations coincide with those of the QTL. Like-5 V1sy(s̃1x, s̃2x, s̃1y, s̃2y, r̃1, r̃2),
wise, if each of the two linked QTL (i) affects one and

where s̃iu (u 5 x or y) and r̃i (i 5 1,2) are some functions only one of the traits or (ii) has a pleiotropic effect on
of the main parameters. both traits, x and y, but in such a manner that d1x/d2x 5

Consider now a process of scanning with a pair of d1y/d2y 5 c, then the maximum of V2xy(·) over possible
markers along the chromosome. Because of the forego- locations of the trial pairs of markers in a sufficiently
ing assumptions, the true expected densities of the trait small neighborhood of the QTL is attained exactly when
distribution in four alternative marker groups for an these locations coincide with those of the QTL (the
arbitrary pair of trial markers can be written as proof is available from the authors upon request).

To illustrate how the proposed model works we nowh11(x, y) 5 a1f11(x, y) 1 a2f12(x, y) 1 b2f21(x, y)
address two questions concerning the dependence of

1 b1f22(x, y) 5 H(a1, a2, b1, b2),
the expected LOD value for discrimination between H1h12(x, y) 5 H(t1, t2, d1, d2), h21(x, y) 5 H(d1, d2, t1, t2),
and H2 on (i) the residual correlation between the traitsh22(x, y) 5 H(b1, b2, a1, a2),
and (ii) epistasis. Let us fix the effect of one of the QTL
(say Q1/q1) and consider how max ELOD depends onwhere the mixture parameters ai, bi, ti, and di (i 5 1,
the effect of the second QTL (Q2/q2) and on the residual2) are as defined in (3). For any pair of markers, one
correlation (r) between the quantitative traits. We arecan assume that they coincide with (or are closely linked
interested here in testing H2 vs. H1, assuming additiveto) the corresponding QTL. If so, the parameter values
effects of the two QTL. Two situations are considered:characterizing these QTL are easily derived by em-

ploying maximization of the regression of the log-likeli- in the first, each trait depends on only one of the linked
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Figure 5.—The behavior of the maximum ELOD (H2 vs.
Figure 4.—The behavior of the maximum ELOD (H2 vs. H1) in the two-trait model with two linked QTL as a function

H1) in the two-trait model with two linked QTL as a function of the parameters. In (a), the first QTL affects only the trait
of the residual correlation and the effect of one of the QTL x (d1x 5 0.35), whereas the second QTL affects both traits:
on one of the two traits (y). (a) A situation with the first d2x 5 0.15, and d2y varies, as shown in the figure. The residual
QTL affecting the trait x (d1x 5 0.25), whereas the second correlation was r 5 20.5; the variables ε and dy 5 d2y denote
QTL affects the trait y. (b) The first QTL affects only the trait the epistatic interaction between the QTL for the trait x and
x (d1x 5 0.35), whereas the second QTL affects both traits the effect of the second QTL on trait y, respectively. In b,
(d2x 5 0.25; d2y varies, as shown in the figure). (a and b) r 5 both QTL affect both traits (all effects were equal to 0.35).
25%, s 5 0.5, and n 5 250. The residual correlation was r 5 20.5. (a and b) r 5 25%,

s 5 0.5, and n 5 250.

QTL (Figure 4a), whereas in the second case both QTL
5b) demonstrates a situation in which the QTL interactaffect the first trait and one of the QTL affects the
epistatically for both traits. Clearly, the provided examplessecond trait (Figure 4b). One can conclude that the
are not more than illustrations of the possibilities of thedetection power increases with the residual correlation
proposed analytical tool. Each of the questions discussedbetween the analyzed traits. An additional conclusion
in these illustrations can be dealt with in necessary detail.is that the power increases with the effect of Q2/q2 up

to some “saturation” point. In the first situation the
saturation is reached when the effect of Q2/q2 becomes

CONCLUSION
equal to that of Q1/q1 (see Figure 4a). The only differ-
ence in the second situation is that the saturation point Resolution power of mapping analysis of linked QTL

remains a difficult problem, which was previously ad-depends on r: the larger abs(r) the earlier (at lower
effects of Q2/q2) the saturation (see Figure 4b). For dressed mainly in terms of Monte Carlo simulations.

This has restricted the possibilities of detailed evaluationthe second situation, let us consider the complication
caused by epistasis. Namely, we allow for epistatic inter- and comparison of different mapping situations and

experimental designs. The proposed analytical methodaction between the QTL with respect to the trait x. As
in the foregoing example on single-trait analysis, it is of evaluating the expected LOD generalizes for the case

of two linked QTL the corresponding estimates derivedinteresting here to evaluate how epistasis affects the
expected detection power. Figure 5a demonstrates that by Lander and Botstein (1989), Mackinnon and Wel-

ler (1995), and Mackinnon et al. (1996) (referred toepistasis may be helpful in discriminating between H2

(two linked QTLs) and H1 (only a single QTL in the as “deterministic sampling”). Our model allows us to
analyze situations with variance effect and epistatic inter-chromosome). This effect is manifested for both positive

and negative residual correlations, but the sign of r is action between the putative QTL. We developed here
also a two-locus analogue of our previous analytical pre-important in determining the details of the behavior of

max ELOD as a function of epistasis and the effect of Q2/ dictor (see Korol et al. 1995) of the expected LOD for
two-trait mapping analysis. And again, many compli-q2 on trait y (not shown). The second example (Figure
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