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ABSTRACT
Lander and Botstein introduced statistical methods for searching an entire genome for quantitative

trait loci (QTL) in experimental organisms, with emphasis on a backcross design and QTL having only
additive effects. We extend their results to intercross and other designs, and we compare the power of
the resulting test as a function of the magnitude of the additive and dominance effects, the sample size
and intermarker distances. We also compare three methods for constructing confidence regions for a
QTL: likelihood regions, Bayesian credible sets, and support regions. We show that with an appropriate
evaluation of the coverage probability a support region is approximately a confidence region, and we
provide a theroretical explanation of the empirical observation that the size of the support region is
proportional to the sample size, not the square root of the sample size, as one might expect from standard
statistical theory.

RECENT advances in genetics have led to the identi- maize (Stuber et al. 1992); (iii) high blood pressure in
rats (Jacob et al. 1991); and (iv) fatness and growthfication of genes responsible for certain diseases

such as cystic fibrosis, Huntington’s disease, breast can- rate in pigs (Andersson et al. 1994). In their original
article, Lander and Botstein suggested statistical tests forcer, and others. Linkage analysis, which is especially

effective when the disease or trait of interest exhibits general designs, but provided guidelines for declaring
statistical significance for the backcross design only.Mendelian inheritance, played an important role in the

identification of those genetic loci. When the disease is Paterson et al. (1991) used these guidelines for in-
tercross designs, but to avoid an increase in the false-complex in nature (incomplete penetrance, multiple

loci involved, etc.) or quantitative, finding the genetic positive error rate, they restricted themselves to a 1-d.f.
statistic that ignored dominance effects. Churchillloci involved in the etiology of the trait can be more

difficult. In particular, in human studies, it is difficult and Doerge (1994) proposed use of the permutation
distribution to define thresholds for all design types.to separate environmental and genetic effects. However,

with experimental organisms, studies can be designed This method has the advantage that it makes no assump-
tions on the distribution of the phenotype. However,to provide a similar environment for all individuals, so
the thresholds depend on the observed data, so theythat the variation in phenotypes can be attributed
need to be computed by Monte Carlo for each study;mainly to genetic factors; and breeding designs can con-
hence the method is less useful for analyzing and com-trol the nature of the differences in genotype. Studies of
paring different designs.experimental organisms can provide useful information

In this article we propose for intercross and otherfor agricultural purposes and/or contribute to our un-
designs simple approximations that can be used to com-derstanding of human disease via animal models. More-
pare different designs under various conditions or theover, it is now feasible to search the entire genome for
same design for different sample sizes or marker densi-a gene locus influencing a trait of interest. Statistical
ties. We also discuss and compare three methods formethods for mapping quantitative trait loci (QTL) from
constructing confidence intervals for a QTL. We assumeexperimental crosses using a dense set of markers were
throughout that markers are equally spaced, that thereintroduced by Lander and Botstein (1989). Applica-
are no missing data, and except where noted that recom-tions have involved (i) tomatoes (Paterson et al. 1991)
bination occurs without interference. While these areto identify loci influencing traits such as mass per fruit,
artificially simple assumptions, at the cost of some com-pH, and soluble solid concentration; (ii) grain yield in
plication they can all be weakened. Rough preliminary
calculations suggest that the resulting picture would not
change substantially unless the assumptions are radically
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RESULTS stochastic model for the y’s. One can simply regard
the y’s as fixed numbers and the regression statisticThe model and likelihood ratio statistics: The starting
essentially a weighted (by the y’s) sum of the x’s, topoint for our considerations is a cross between two
which the central limit theorem applies under an as-strains that differ substantially in the quantitative trait
sumption that the empirical behavior of the y’s is aboutof interest. The parental lines can be “pure” breeding
what it would be if they were independent and identi-lines obtained through inbreeding or simply two differ-
cally distributed observations from a fixed distribution.ent strains of the same organism with widely differing

For backcross data, because xi(q) 5 0 or 1, the additivemean phenotype. A cross is obtained from the two pa-
and dominance effects cannot be estimated separately,rental lines, creating the first generation of offspring
and the model reduces to(generation F1). The F1 generation is then allowed to

mate together to produce the second generation (F2), yi 5 m 1 a*x i(q) 1 ei , (2)
the intercross. We assume that the genotypes of the

where the parameter a* in (2) equals a 1 d from theparental lines are completely different, so that at any
model (1). This is the model developed by Landermarker locus we can label alleles from the strain with
and Botstein (1989), which we review briefly here.the larger mean phenotype as A, and alleles from the
Treatment of the full model (1) is shown later in thisother strain as B. At each locus, each individual of the
article.F2 generation will have zero, one, or two A alleles. A

If one observes the genotype of a marker at a putativebackcross is generated by mating an individual of the
trait locus d, the maximum-log-likelihood ratio at d isF1 generation to one from the parental line. If the paren-
given approximately bytal line with the smaller mean for the trait is used, the

offspring from the backcross will have zero or one A
alleles at any locus on their genome. 2 ln LR(d) ≈ 2N ln(1 2 â2

d/4ŝ2
y) ≈ Nâ2

d

4s2
e

, (3)
A standard model for quantitative traits (e.g., Kemp-

thorne 1957) in notation suitable for our purposes is where N is the number of typed individuals, âd is the
the following. Let yi be the phenotypic value of individ- maximum-likelihood estimate of the parameter a* 5
ual i, and let xij(d) be the number of A alleles at locus a 1 d, and ŝ2

y is the maximum-likelihood estimate of
d on the jth chromosome. The locus is identified by its the phenotypic variance s2

y 5 s2
e 1 a*2/4. It is impor-

genetic distance d from one end of the chromosome. tant to note that both s2
y and s2

e depend on the design
If there exists only one QTL on the jth chromosome and for a backcross differ from the corresponding quan-
that influences the traits and its location is q, the pheno- tities for an intercross, although this difference is not
type can be modeled as reflected in the notation. Note also that (3) involves

natural logarithms; the marginal asymptotic distributionyi 5 m 1 axij(q) 1 d1(x ij(q)51) 1 eij , (1)
of (3) at any unlinked locus is x2 with 1 d.f. To convert
this and subsequent expressions to the LOD scale, onewhere m, a, d are the phenotypic mean, additive effect,

and dominance effect, respectively, and 1C equals 1 or can divide by 2 ln 10 ≈ 4.6. For the first approximation
in (3) we have replaced the empirical variance of {xi(d)},0 according to whether the condition C is satisfied or

not. The eij’s are residual effects, which include both namely N21Ri[xi(d) 2 N21Rjxj(d)]2, by its asymptotic
value of 1⁄4; for the second we have approximated theenvironmental effects and the genetic effects of QTL

on other chromosomes than the jth. As we will be consid- logarithm by the first term of its Taylor expansion and
have replaced the estimate ŝy by the parameter se thatering only a single chromosome at a time, we drop the

subscript j in what follows. We assume that xi(q) and ei it estimates under the hypothesis of no linkage on the
jth chromosome. Since the trait locus q is typically un-are uncorrelated, which would be the case if there is

no epistasis and the environmental effect is uncorre- known, the log-likelihood ratio is maximized over all
marker locations d and chromosomes j. At each marker,lated with the genetic effects. We also assume that the ei

are independent normally distributed random variables assumed to be a QTL, the log-likelihood ratio is com-
puted exactly. Between markers, Lander and Botsteinwith mean 0 and variance s2

e. The residual variance s2
e

equals the sum of the environmental variance and the (1989) suggest the use of “interval mapping,” which
consists of treating the unobserved marker informationgenetic variance for those QTL not on the jth chromo-

some. Without the normality assumption the regression- as missing data and using the EM algorithm (Dempster
et al. 1977) to evaluate the log-likelihood ratio at d basedlike statistics given below are not exact maximum-log-

likelihood ratios, so it is possible that more powerful on the marker information at the flanking markers.
A noniterative, regression-based alternative to the EMtests can be found. However, by virtue of the central

limit theorem the various approximations to signifi- algorithm was proposed by Haley and Knott (1992)
and was shown to give equivalent results provided N iscance level, power, etc. will still be valid in large samples

even if the e’s are not normally distributed. In fact, for sufficiently large.
Detection of linkage in backcrosses: Because the log-the significance level, it is not necessary to assume any
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likelihood ratio is maximized over the entire genome, the QTL is located between markers, it is necessary to
analyze the (correlated) process at the two flankingit is unclear whether the conventional threshold of

LOD 5 3.0 [equivalently 2 ln LR(d) . 13.8] to declare markers. The more complex approximation, which re-
quires a one-dimensional numerical integration, can bestatistical significance is appropriate in the present con-

text. To address this issue, Lander and Botstein (1989) found in Dupuis (1994). The noncentrality parameter
at a flanking marker at distance D1 from the QTL isproposed the approximation of N 1/2ad

l/2se [cf. (3)] by
an Ornstein-Uhlenbeck process. This can be justified

j exp(2bD1), (6)
by the central limit theorem and a straightforward calcu-
lation of covariances. For the case of complete marker where b and j are as defined above.

From (6) and (4) we see the importance of the param-information (continuous markers), they gave thresholds
depending on the length of the genome and the num- eter b, which equals 0.02 for backcross designs, but can

assume a larger value for other designs (e.g., recombi-ber of chromosomes searched (cf. their Proposition 2).
For the case of a discrete set of markers evenly distrib- nant inbred designs). In (4), b multiplies the length of

the genome, so a larger value requires a larger thresholduted over the genome, they obtained thresholds from
a simulation study conducted under the assumption of to maintain a given false-positive error rate. From (6)

we see that it also governs the rate at which the non-no interference.
For the case of equispaced markers along the ge- centrality parameter decays as a function of the distance

from QTL to flanking marker. A large value of b meansnome, Feingold et al. (1993) proposed an approxima-
tion, which agrees closely with the results from Lander a rapid falling off in power to detect the QTL as a

function of that distance. On the other hand, it alsoand Botstein’s simulations. That approximation is
provides the possibility for more precise fine mapping

P {ma
k
x 2 ln LR(kD) . a}

of the QTL location, because a large b leads to a sharper
delineation of the “peak” in the process 2 ln LR(d) that≈ 1 2 exp{22C[1 2 U(b)]
identifies the location of the QTL. We return to these

2 2bLbφ(b)n(b{2bD}1/2)}, (4)
issues below.

The preceding analysis is concerned with the likeli-where a 5 b 2, L is the total length of the genome, C is
the number of chromosomes, b 5 2l, l being the rate hood ratio process observed at the discrete set of marker

loci. To mitigate the problems indicated by (6) whenof crossovers (l 5 1 if L is in Morgans and l 5 0.01 if
L is in centimorgans), D is the distance between markers the QTL is in the center of a marker interval, Lander

and Botstein (1989) suggested the technique of in-in the same units as L, and F(x) and φ(x) are the stan-
dard normal cumulative and density function, respec- terval mapping, i.e., treating the unobserved intervals

between marker loci as missing data and using thetively. The function n is a discreteness correction for
the distance D between markers. The defining expres- EM algorithm to interpolate between the observed data

points. Rebai et al. (1994, 1995) have used Rice’s for-sion can be found in Siegmund (1985), p. 82. Often it
is adequate to approximate n(x) by exp(20.583x), mula for the expected number of upcrossings of a level

by a piecewise smooth Gaussian process to give approxi-which is valid for x , z2, while for x . 2 the first four
terms of the defining infinite series provide a reasonable mations for the false-positive rates when using interval

mapping. The method is analytically tractable when oneapproximation. For the case of continuous markers D 5
0, so n 5 1, and (4) is essentially the same as the approxi- assumes complete interference, i.e., the recombination

probability and map distance in Morgans are equal.mation of Lander and Botstein (1989).
For a backcross design with a QTL located exactly at Single chromosome simulations performed by these au-

thors and our own whole genome simulations (data nota marker, Feingold et al. (1993) gave as an approxima-
tion for the power shown) indicate that the approximation is very good

when the sample size is reasonably large and markers
P {ma

k
x 2 ln LR(kD) . a}

are not too closely spaced. For dense markers (z1 cM) it
is conservative. A modification suitable for small samples≈ 1 2 F(b 2 j)
can be inferred from Johnstone and Siegmund (1989).

1 φ(b 2 j)[2n/j 2 n2/(b 1 j)2], (5)
An argument of Siegmund and Worsley (1995) can

be adapted to give a simple approximation for the powerwhere a 5 b 2, j 5 {N ln[1 1 (a 1 d)2/4s2
e]}1/2, and n 5

n(b{2bD}1/2), as defined previously. The parameter j is of an interval mapping test. See appendix a.
Intercrosses: Most previous theoretical analyses havethe noncentrality parameter of (3) expressed in terms

of the parameters of the model (2). The first term in concentrated on backcrosses and consequently have ig-
nored dominance effects. Paterson et al. (1991) used(5) is the probability the process is above the threshold

at the QTL; the second is the probability that it is below the full model (1) to locate QTL in tomatoes in an
intercross, and estimated the dominance effects. How-at the QTL but crosses the threshold at some nearby

marker. Unless the markers are closely spaced, the first ever, to detect linkage, they used a 1-d.f. statistic that
ignores the dominance effects. Here we analyze theterm by itself is a reasonably good approximation. When
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2-d.f. statistic involving both additive and dominance
effects.

Consider the likelihood ratio statistic to test the gen-
eral hypothesis that a 5 d 5 0 vs. the alternative that
a ? 0 or d ? 0. For intercross data the vectors with
coordinates xi(d) and 1(xi(d)51) (i 5 1, . . ., N) are asymp-
totically orthogonal. Therefore, the approximations
used to obtain (3) now yield for the log-likelihood ratio
at the marker d

2 ln LR(d) ≈ 2N ln51 2
ad

l 2/2 1 d̂
2
d /4

ŝ2
y

6
≈ 31N

1/2âd

21/2se
2
2

1 1N
1/2d̂d

2se
2
2

4 . (7)

Figure 1.—Thresholds for 350 simulated tomato genomes.
To define a significance level, we give an approximation
under the hypothesis of no linkage to the distribution
of the maximum of (7) over all possible values of d. cally correct form of (9) involves similar complications,

Let although extensive numerical calculations show that
there is very little difference between the mathematically
correct approximation and the more convenient oneXd 5

N 1/2âd

21/2se

and Yd 5
N 1/2d̂d

2se

. (8)
given above, which is based on replacing the two param-
eters b1 and b2 associated with the two coordinate pro-A straightforward application of the central limit theo-
cesses by their average value, (b1 1 b2)/2. In this spiritrem and calculation of covariances shows that when
one can modify the approximation of Rebai et al. (1995)a 5 d 5 0, for large N, Xd and Yd are approximately
to obtain a closed form approximation that is no moreindependent Ornstein-Uhlenbeck processes with mean
complicated than that obtained for a backcross and0 and covariance functions e22l|t| and e24l|t|, respectively.
gives essentially the same numerical results as the moreAn approximation to the tail distribution of the maxi-
complicated, mathematically correct approximation.mum of (7) is provided by

To check the accuracy of (9) and our interval map-
P {ma

d
x 2 ln LR(d) $ a} ping approximation, we simulated thresholds for the

log-likelihood ratio based on an intercross sample of
≈ 1 2 exp523C 1 nb 2 L 1b1 1 b2

2 24exp(2b 2/2)6, (9) N 5 350 organisms with 12 chromosomes of total length
1200 cM (to approximate the tomato genome). The
interval mapping step was performed using an approxi-where b1 5 2l, b 2 5 4l, a 5 b 2, and n 5 n(b{D(b1 1

b2)}1/2). As in the case of (4), this approximation does mation due to Haley and Knott (1992), which is much
less computer intensive and gives results almost identicalnot take interval mapping into account. It is obtained

by a suitable modification of Woodroofe’s (1976) argu- to the EM algorithm for large values of N. Results are
shown in Figure 1.ment. For an idealized tomato genome consisting of 12

chromosomes of length 100 cM each and a dense set Both approximations are very accurate. As predicted,
the process with the interval mapping step requires a(D 5 0) of markers, the 0.05 false-positive threshold

obtained from (9) is a 5 19.0 (LOD 5 4.13), in compari- higher threshold for a given value of the Type-I error.
For smaller N, somewhat different approximations yield-son with a 5 14.6 (LOD 5 3.17) for the backcross case.

Although smaller thresholds are required when the in- ing larger thresholds need to be used, since the given
approximations do not take into account the variabilitytermarker distance is greater, for an intercross the con-

ventional LOD 5 3 threshold would lead to a false- in the estimate of the variance, s2
y . However, when N is

large (at least 200), the approximations provide thresh-positive rate greater than 0.05 even for intermarker
distances of 25 cM. This stands in contrast to the case olds for the statistic and marker density actually used,

which are more appropriate than the conventional LODof a backcross, where the LOD 5 3 threshold is conserva-
tive for intermarker distances down to z1 cM. 5 3.0. In mapping human traits, Lander and Kruglyak

(1995) have argued that because the investigator is likelyRebai et al. (1995) have given an approximation for
the false-positive error rate when interval mapping is to type more markers around promising loci, the thresh-

old for D 5 0 should be used in all cases. If we use thisused. This approximation involves an elliptic integral,
to be evaluated numerically, and so is more complicated threshold, it is not necessary to rationalize the choice

of D, which should otherwise be an average intermarkerthan the analogous backcross approximation, which can
be written in closed form involving only the exponential distance in the neighborhood of detected linkages, or

to concern ourselves about the effect of interval map-and inverse tangent functions. In fact, the mathemati-
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Figure 2.—Power to detect
linkage for different map den-
sities, gene locations, and
thresholds. In a and b, D 5 5
cM while D 5 20 cM in c and
d. The trait locus is located at
a marker in a and c and mid-
markers in b and d. The pro-
cess without interval mapping
is represented by h; the pro-
cess with interval mapping is
represented by e (solid sym-
bols for the theoretical approx-
imation) and , (power for the
higher threshold appropriate
when D 5 0).

ping on the false-positive error rate. But insistence on ping test. We also present the power of the interval
this threshold would noticeably reduce the power of mapping test using the more stringent threshold (as-
the test, as is shown shortly. suming continuous markers) proposed by Lander and

For intercross data the noncentrality parameter for Kruglyak (1995). The power was investigated for a
a QTL located at a marker locus is j 5 {N ln[1 1 (a2/ dominant model, so d 5 a, and j 5 4.12, 4.41, 4.75,
2 1 d2/4)/s2

e]}1/2. To attribute appropriate parts of the and 5.21, which correspond roughly to powers of 60,
total noncentrality to the two processes in (10), we let 70, 80, and 90% with a continuous map of markers. For
j1 5 ja/(a2 1 d2/2)1/2, j2 5 jd/[2(a2 1 d2/2)]1/2. If the recessive (d 5 2a) models, the power would be exactly
QTL is located at a marker, the power is approximately the same. For the same noncentrality values and an

additive model (d 5 0), it would be slightly larger. PowerP {ma
k
x 2 ln LR(kD) . a}

under two map densities was estimated (D 5 20 and 5
≈ 1 2 F(b 2 j) 1 φ(b 2 j) cM) and we used N 5 350 tomato genomes. Each power

simulation is based on 1000 replicates. The gain in
3 3 1

2j
1

2b1/2n

j3/2
2

b1/2n2

j1/2(b 1 j)4 , (10) power from using interval mapping is small, on the
order of 2–4%, a result similar to that found by Darvasi
et al. (1993). The gains anticipated by Lander andwhere n 5 n(b{2bD}1/2), b 5 (b1j

2
1 1 b2j

2
2)/j2. For a QTL

Botstein (1986, 1989), who write of interval mappingbetween markers, one must as in the backcross case
as providing a “virtual marker” midway between theconsider the joint distribution at flanking markers. For
actual markers, are overly optimistic. Their analysis isa marker at distance D1 from the QTL the noncentrality

parameters are marred by their comparison of interval mapping with
the marker process at only one of the flanking loci,

j1 exp(2b1D1) and j2 exp(2b2D1). (11) where a more appropriate comparison would be with
the maximum of the process at the two flanking loci.See appendix a for an approximation for the power of
They also neglect the increase in threshold required tothe interval mapping process.
maintain a given false-positive error rate for the intervalUsing simulations and the theoretical power approxi-
mapping process. The gain in power for interval map-mations above, we compare in Figure 2 the power of

the marker process with the power of the interval map- ping is largest for the sparse map (D 5 20 cM), but the
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gain is only z3–4%. Using the threshold for a continu- show that under the null hypothesis, X(d) is approxi-
mately a Gaussian process with covariance functionous map when in fact a sparse map of markers is used
R(d) 5 1 2 8⁄3l|d| 1 o(|d|) as d → 0. Therefore, approx-greatly reduces the power (by as much as 20%).
imation (4) can be used with b 5 8⁄3l to find an appro-We have made similar computations with similar re-
priate threshold.sults for backcross designs.

Korol et al. (1995) have suggested the use of corre-When the markers only process is used, the theoreti-
lated traits as a technique to improve the power of QTLcal power approximations are very good, so only the
mapping. If the number of traits is t, this would requiresimulated values have been included in Figure 2. The
a t dimensional version of (4) or a 2t dimensional ver-approximations are also good for interval mapping ex-
sion of (9) for the backcross or intercross design, respec-cept when the intermarker distance is 5 cM and the
tively. The appropriate k dimensional approximationQTL is midway between markers. In this case the power
(k 5 t or 2t) is given byis underestimated by z5%. The reason is that the theo-

retical approximation involves only the probability that
1 2 exp{2C[1 2 Fk(b)] 2 bL2(22k)/2

the process is above the threshold somewhere in the
interval containing the QTL and neglects the probabil- 3 [G(k/2)]21b k exp(2b 2/2)}.
ity of detecting the QTL to be in a neighboring interval.

Here Fk is the x2 distribution with k degrees of freedom,This is not a problem when the intermarker interval is
G denotes the gamma function, and b would be replacedlarge.
by (b1 1 b2)/2 for an intercross design. Corrections forOther designs and a comparison of different designs:
discrete spacing of markers would be exactly as above.Many other designs can be handled by similar approxi-

We have used the theory developed above to comparemations. To evaluate an appropriate threshold, for the
the power of backcross, intercross, and recombinantmarkers only process it is only necessary to know the
inbred designs (obtained by recurrent sib mating). Letrecombination parameter b (or b1 and b2), which de-
s2

A, s2
D, s2

E denote the total additive, dominance, andpends only on the design, not the mathematical model
environmental variances, respectively. Assuming thatused for recombination. Although there is no general
environmental and genetic effects are uncorrelated andmethod to evaluate this parameter, it has been calcu-
there is no epistasis, we have the usual representationlated for many different designs. (Some values are given
of the phenotypic variance as s2

y 5 s2
A 1 s2

D 1 s2
E. Letbelow.) For interval mapping one must know the com-

H 2 5 (s2
A 1 s2

D)/s2
y denote the wide sense heritabilityplete covariance function, which depends on both the

in the intercross, and put r 5 d/21/2a. To reduce thedesign and the model for recombination.
number of different special cases we assume that r isFor instance, for recombinant inbred data, which in-
the same at all QTL; i.e., they all have the same relativevolve the 1-d.f. statistic (3), one can use approximation
amount of dominance. If we let v 2 be the heritability(4) with b 5 0.04 for recombinants produced by selfing
attributable to the locus of interest, i.e., v 2 5 (a2/2 1and b 5 0.08 for recombinants produced by recurrent
d2/4)/s2

y # H 2, then the noncentrality parameters ofsib mating (as originally suggested by Lander and
an intercross, backcross, and recombinant inbred designBotstein 1989). It is only slightly more complicated to
are, respectively, [2N ln(1 2 v2)]1/2, {2N ln[1 2 (v2(1 1incorporate interval mapping. (See Rebai et al. 1994 for
21/2r)2)/(H 2(1 1 21/2r)2 1 2(1 2 H 2)(1 1 r2))]}1/2

the case of selfing. A similar formula can be obtained
and {2N ln[1 2 2v 2/(1 1 r2 1 H 2(1 2 r2))]}1/2.for inbreds produced by recurrent sib mating.) For the

Suppose r 5 0. It is easy to see that the noncentralityadvanced intercross designs suggested by Darvasi and
parameter of the backcross is smallest and that of theSoller (1995) to provide more accurate localization of
recombinant inbred is largest. All three noncentralityQTL, for the Fi offspring one can use (9) with b1 5 il,
parameters are comparable for large H 2, but there can

b2 5 2il. For reciprocal backcross designs, where half
be sizeable differences for small H 2. Because the thresh-of the offspring are backcrossed to each parental strain,
old required for a given significance level is smallest forone can use (9) with b1 5 b2 5 0.02.
the backcross and largest for the intercross, one expectsIn Stuber et al. (1992), offspring from a cross of two
to find the backcross the most powerful design wheninbred Maize strains (F1 generation) were allowed to
H 2 is large, but not otherwise.self twice and then backcrossed to one of the parental

A numerical example is given in Table 1. We havelines. A careful examination of that design shows that
determined for continuous markers sample sizes that

the maximum LOD for testing the hypothesis of no
give 80% power for values of H 2, v 2, and r. Although

linkage is approximately [cf. (3), (6)]
the exact sample sizes depend on v 2, their relative values
are roughly constant throughout a broad range where

ma
d
x X 2(d) 5 ma

d
x

3Nâ2(d)
4s2

e

, v 2, the heritability attributable to the QTL, contributes
from roughly 1⁄8–1⁄2 H 2, so only the intermediate value

where â(d) is the maximum-likelihood estimate of the v 2 5 0.2 H 2 is included in the table. Similarly the relative
sample sizes are fairly insensitive to the exact powersum of the additive and dominance effects. One can
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TABLE 1

Theoretical sample sizes of intercross, backcross, and recombinant inbred designs
necessary to achieve 80% power with dense (D 5 0) markers

H 2 v 2 r Intercross Backcross Recombinant inbred

0.75 0.15 0.0 139 144 117
0.2 139 121 118

20.2 139 206 118
0.25 0.05 0.0 440 632 264

0.2 440 430 271
20.2 440 1194 271

required. In agreement with the qualitative analysis of falls to about 0.73 if we use the sample sizes given in
the table with an intercross or backcross design. Tothe preceding paragraph, for r 5 0 the sample size

required by a backcross design is about the same as that achieve this power with a recombinant inbred design,
one would need a sample size of z380, and in thisof the intercross for H 2 5 0.75 but is appreciably larger

for H 2 5 0.25. For r 2 5 0.04, the backcross design can case interval mapping would be mandatory. Otherwise
a sample size of z690 would be required. For a D 5require somewhat smaller or much larger sample sizes

than the intercross design depending on whether r is 5-cM map, the power of a backcross or intercross would
fall only to 0.79 for a QTL midway between markers.positive or negative, which in turn depends on the pa-

rental strain used for the backcross. Hence with a small Now for a recombinant inbred design a sample size
of about 291 would be required (300 without intervalamount of dominance, probably too small to be de-

tected in segregation analysis, a backcross design can mapping). To achieve the benefits of a recombinant
inbred design, it appears advisable to type markers atyield a very misleading picture. The sample sizes re-

quired of the recombinant inbred design are smaller no more than 5 cM distance, and closer would be better.
A similar caution is applicable to the advanced intercrossthan those of the intercross and backcross designs and

are insensitive to the values of r, at least for the relatively designs of Darvasi and Soller (1995).
Confidence regions for QTL: A confidence regionsmall values considered here.

We have performed similar calculations when the can be used to identify a chromosomal region in which
to concentrate the search for the exact location of aamount of dominance varies across QTL. The sample

sizes in the backcross column can change substantially, QTL. In this section, three methods of constructing a
confidence region around the gene locus are presentedbut the qualitative picture is the same.

This problem with a backcross design could in princi- and compared. It is perhaps worth noting from the
outset that this is not a “regular” estimation problem asple be eliminated by backcrossing to both parental

strains and using a 2-d.f. statistic (with b1 5 b2 5 0.02). the term is used by statisticians. Because the likelihood
function has cusps at marker loci, the maximum-likeli-One can easily evaluate the noncentrality parameter

and see that for small values of H 2 such a reciprocal hood estimate of a QTL may fail to be approximately
normally distributed, so one is not justified in usingbackcross is less powerful than an intercross design

based on an equal number of progeny, but is slightly the maximim-likelihood estimator plus or minus two
estimated standard errors as an approximate 95% con-more powerful than an intercross design based on an

equal number of matings (hence presumably half as fidence interval. Darvasi et al. (1993) in one of their
suggestions appear to have assumed incorrectly that themany progeny). For larger values of H 2, numerical cal-

culations as in Table 1 can help one determine the standard statistical theory is applicable. Visscher et al.
(1996) have suggested a confidence interval based onpotential usefulness of such a design.

To simplify the preceding comparison, we have as- the unconditional distribution of the maximum-likeli-
hood estimator, which they estimate by bootstrapping.sumed continuously distributed markers. This has the

effect of concealing a weakness of the recombinant in- Although their coverage probabilities are shown by a
Monte Carlo experiment to be quite close to the speci-bred design, which has a very large recombination pa-

rameter (b 5 0.08). A consequence is that if markers fied level, this method does not adapt to the rate of
decay of the likelihood function near its maximum andare not closely spaced there is a considerable loss of

power to detect a QTL located midway between markers. is known to give confidence regions that are unnecessar-
ily large in related “change-point” problems. A numeri-For an example consider the fourth row of Table 1,

where the recombinant inbred design is much more cal example given below suggests that it has the same
undesirable feature here. See Siegmund (1988) for apowerful than either of the other two. For a D 5 20-cM

map and a QTL midway between markers, the power more complete discussion.
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Support intervals: Support intervals (cf. Conneally et that these parameters are both zero. The approximation
(B1) of appendix b yields as a confidence interval foral. 1985) provide a method of estimating the location

of a trait locus. They are essentially equivalent to the the QTL those loci q such that
standard statistical technique of inverting the likelihood

P(max
d

iZdi2 . (max
d

iZdi2)obs|Zq) $ g. (14)ratio test to obtain a confidence region. Given a value
x . 0, a support region includes all the loci q such that

The likelihood method works best for very dense sets
2 ln LR(q) $ max

d
2 ln LR(d) 2 x. (12) of markers (z1 cM), as the argument given above is

technically correct only when the QTL is at a marker.
Often the 2 is omitted and common logarithms are It can be extended to provide a joint confidence region
used. Then one speaks of a LOD support region. The for the locus and the additive and dominance effects
value x in (12) provides an (x/2 ln 10)-LOD support (Dupuis 1994).
region. With data from a single marker the statistical By (7) the inequality defining Aq and the inequality
problem is regular, so a 1-LOD support interval (x 5 4.6) in (12) are asymptotically equivalent. The important
is approximately a 97% confidence interval (because 4.6 difference between the likelihood ratio and LOD sup-
is the 97th percentile of the x2 distribution with 1 d.f.; port methods is that for the former x depends on Zq
see Ott (1991, p. 67). However, this result does not and is chosen to make the conditional probability (13)
generalize to genome-wide scans involving reasonably equal to the desired confidence level. For any value x
dense markers, where the coverage probability of (12) that does not depend on the data, the probability of
depends on the density of the map of markers and on (12) depends on the values of a and d. Hence the
the strength of the signal at the trait locus. In fact, there support region is not a confidence region in the strict
is no exact confidence coefficient that can be assigned sense of the word. However, the similarity between the
to a support region. Through theoretical analysis and support regions and the likelihood ratio regions allows
a simulation study presented below, we show that a us to gain some interesting theoretical insights. For ex-
1-LOD (x 5 4.6), respectively 1.5-LOD (x 5 6.9), sup- ample, under the assumption that the QTL lies at a
port interval corresponds roughly to a 90%, respectively marker locus and that the distance D between markers
95%, confidence region in the case of a dense map of is small, we can evaluate approximately the probability
markers (z1 cM), and provides even greater probability that a support region does not contain the true QTL,
of coverage for sparser maps. by taking the expectation of (B1) in appendix b with

Likelihood methods: A second method to provide a con- respect to Zq 5 z. The result of some simple approxima-
fidence interval for a QTL relies on using likelihood tions is
methods for change points (Siegmund 1988; Feingold
et al. 1993). It is closely related to the support method P(Aq) ≈ 1 2 2n{[2b̃D(j2 1 x)]1/2}
described above and provides some analytic tools for
studying that concept. Unlike the support method, how- 3 3 j2 1 x

j2 1 xj2
2/(j2

1 1 2j2
2)
4

3/2

exp(2x/2), (15)
ever, for the special case that the trait locus is exactly
at a marker location the likelihood method in principle where j 5 (j2

1 1 j2
2)1/2, b̃ 5 (bj2

1 1 2bj2
2)/j2, b 5 0.02.

gives an exact confidence region. Numerical calculations based on this approximation
Although the actual procedure is based on twice the suggest, and simulations reported below verify, that for

log-likelihood ratio, our discussion will be simplified a given value of D the coverage probability of the support
notationally by using the asymptotically equivalent iZdi2, region is relatively insensitive to the values of j and to
where Zd 5 (Xd , Yd) is defined in (8) [cf. also (7)] and the relative sizes of the additive and dominance compo-
iZdi2 5 X 2

d 1 Y 2
d. In terms of these variables the accep- nents, at least for values of j in the range 4 # j # 10,

tance region for the likelihood ratio test of the hypothe- where detection of linkage ranges from reasonably likely
sis that a QTL is located at q has the form to virtually certain, so QTL localization is especially im-

portant. The coverage probability is an increasing func-Aq 5 {max
d

iZdi2 2 iZqi2 # x}.
tion of the intermarker distance D, so a 1.5-LOD support
region has ≈95% coverage when D ≈ 1 cM, while a 1-LODBy sufficiency, the conditional probability of Aq given Zq

support region gives similar coverage for D ≈ 20 cM.does not depend on the unknown parameters a, d.
Hence for practical purposes a support region is approx-Hence in principle we can choose x 5 x(Zq) such that
imately a confidence region, albeit with a different con-

P(Aq|Zq) 5 1 2 g. (13) fidence coefficient than that suggested by standard sta-
tistical distribution theory.The set of all values q that are not rejected by this test

For problems involving a single parameter, e.g., foris a (1 2 g)100% confidence region (Cox and Hinkley
backcrosses, recombinant inbreds, or intercrosses where1974).
we estimate only a and ignore d, the factor in squareAs the desired conditional probability does not de-

pend on a, d, it can be evaluated under the hypothesis brackets in (15) immediately preceding the exponential
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would be [(j2 1 x)/j2]1/2. It is easy to see that at least A Bayesian credible region Bg is constructed by includ-
ing all loci v whose posterior density given the datafor comparatively large values of j, the coverage proba-

bility for a given value of x is relatively insensitive to this exceeds cg, i.e.,
change of dimension.

Bg 5 {v : p(v|y,x) . cg}, (17)
An approximation for the expected size of a support

region, which is valid for dense markers (z1 cM), is where cg is chosen so that
given in appendix b. A less precise but more easily in- #

Bg
p(v|y,x)dv 5 1 2 g.terpreted approximation, valid when j @ x, is obtained

by approximating the normal density in (B2) with mean Here y 5 {y1, . . . , yN}, x 5 {x1, . . . , xN} and xi is the set
j by a point mass at j, then taking two terms of the of all marker genotypes for individual i. The posterior
Taylor series expansion of ln[j2/(j2 2 x)], which yields probability p (v|y,x) is often easy to compute and de-

pends on the prior distribution on the location q andb21[x/j2 1 0.5x 2/j4 1 2j22(1 2 2n(j(2bD)1/2)
the additive and dominance effects a and d. If one takes

1 0.5n2(j(2bD)1/2))]. (16)
uninformative priors on all parameters,

This expression is roughly proportional to j22, hence
to N21. In contrast, for regular statistical problems the p(v | y,x) > exp (21⁄4iZvi2)

#
l

0
exp (21⁄4iZsi2)ds

, (18)
size of a confidence region is inversely proportional
to the square root of the sample size. The fact that

where Zt 5 (Xt , Yt) was defined previously and can beconfidence regions for a QTL are roughly inversely pro-
obtained using least-squares estimates or the intervalportional to the sample size has been observed in the
mapping equivalent. Analogous expressions can be ob-simulations of Darvasi et al. (1993) and Visscher et
tained for other priors. We have studied properties ofal. (1996), although these authors do not provide a
three different priors on the additive and dominancetheoretical explanation. The approximation (16) also
effects, with a uniform prior for the gene location. Firstshows, as one might have anticipated, that the average
a flat prior was implemented. Second, we constructedlength of a support region is inversely proportional to
the confidence sets with uncorrelated normal priorsb, hence to the recombination rate for the design used.
with mean 0 and standard deviation of 4. The mean ofEven if we ignore the difference between noncentrality
0 is to allow the parameters to be positive or negativeparameters for recombinant inbred and backcross de-
and a standard deviation of 4 should be large enoughsigns, the recombinant inbred design, for which b 5
to allow the parameters to vary freely. Finally, since the0.08, will give regions roughly one-fourth the size of
smallest detectable genetic effect involves a noncentral-those obtained from a backcross, provided the inter-
ity of z4, a uniform mixture of four uncorrelated nor-marker distances are sufficiently small. In fact, for ad-
mal priors with noncentralities of 4 corresponding toditive traits recombinant inbreds always have a larger
dominant (d 5 a) and recessive (d 5 2a) models andnoncentrality parameter than a backcross, so they pro-
with variance of one was also applied. Results are pre-vide support regions even less than one-fourth as large.
sented in the next section.In the extreme case of small heritability and a QTL that

Comparison study: Using simulated tomato genomes,is responsible for most of the additive variance, the
we constructed the likelihood confidence region, therelative size can shrink by another factor of almost 4.
1.0- and 1.5-LOD support region and the Bayes credibleBayesian credible regions: Given a prior probability for
regions, with the three different priors mentionedthe location of the QTL and for the noncentrality pa-
above. However, only the results from Bayes crediblerameters (j1, j2), a set having a posterior probability of
sets with a mixture of normal priors are included in1 2 g is called a Bayesian credible region. Fisher
Tables 2 and 3. For each tomato, the crossover process(1934), in his classical study of ancillarity, showed in
for the chromosome containing the QTL was generatedeffect that under certain conditions Bayesian credible
using the Haldane mapping function and the pheno-sets are in fact 1 2 g confidence regions having many
type yi was assigned the valuedesirable properties. Cobb (1978) pointed out that a

special class of statistical problems having the required yi 5 axi(q) 1 d1(xi(q)51) 1 ei ,
structure are “change-point” problems, which have been

where the ei’s are normal random variables with meanstudied extensively from this point of view by Zhang
0 and variance 1.(1991). Feingold et al. (1993) and Kruglyak and

We performed the simulations for the dominanceLander (1995) have noted the similarity between esti-
model (d 5 a), with j 5 5, 7.5, and 10.0. The trait locusmating the location of a change-point and estimating
was either at a marker, midway between markers, orthe location of a trait locus from data on mapped mark-
randomly assigned. We generated 1000 sets of 350 toma-ers. A consequence of this history is the expectation
toes and calculated the average size and the probabilitythat a Bayesian credible region for a uniform prior distri-
of covering the true locus given a map with D 5 1, 5,bution on the location of the QTL will provide satisfac-

tory confidence regions. and 10 cM. Interval mapping was used throughout.
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TABLE 2

Average size in centimorgans of simulated confidence intervals

D 5 1 D 5 5 D 5 10

j Method 0 r 1⁄2 0 r 1⁄2 0 r 1⁄2

5.0 Likelihood 17.1 16.7 17.0 16.2 16.1 18.7 15.0 18.0 21.3
1.0-LOD 8.8 8.5 8.8 12.5 12.5 14.5 15.0 17.1 19.7
Bayes 14.1 13.0 14.0 15.3 14.8 16.9 16.3 18.0 20.9

7.5 Likelihood 4.6 4.7 4.9 5.1 5.7 6.3 5.3 6.4 7.4
1.0-LOD 3.8 3.9 4.0 6.1 6.7 7.5 8.3 9.5 10.9
Bayes 6.2 6.2 6.4 7.4 8.0 9.1 9.1 10.5 12.3

10.0 Likelihood 2.4 2.4 2.5 2.7 3.1 3.3 2.2 2.9 3.1
1.5-LOD 3.1 3.2 3.3 5.2 5.8 6.5 7.3 8.4 9.0
Bayes 3.6 3.8 4.0 5.0 5.7 6.5 6.8 7.9 8.6

Three locations for the QTL were simulated: 0 for the trait at a marker, 1⁄2 for the trait midmarkers, and r
for the QTL randomly located between markers.

Both the 1.5-LOD (x 5 6.9) support regions and the markers and the size of the region are roughly commen-
surate; but when j is large, the dense marker map pro-Bayesian credible regions provided at least 95% cover-

age under all simulated conditions. The support regions vides substantially smaller regions.
We performed similar simulations for a backcrossgave the smallest confidence regions for dense maps,

while the Bayesian credible regions did the same for with essentially the same results (data not shown). The
simulations were repeated with fewer tomatoes (N 5sparse maps. The coverage probability for the support

regions obtained in the simulations is close to that pre- 100) (results not shown). The size of the region was
unchanged for all methods, and all methods had thedicted by the approximation (15). The approximate

expected size provided by (B2) is close in the case of a right coverage probability when the locus was located
at a marker. The coverage probability was substantiallydense map, but not otherwise. The likelihood method

was conservative; and because it adapts to the observed reduced for the case of the likelihood method and the
Bayes method when the trait was located midmarkersvalue of the likelihood ratio statistic at the putative trait

locus it resulted in the widest confidence regions for (≈80% instead of 95%). The LOD support method had
a slight drop in confidence coverage (≈90%), but wassmall values of the noncentrality parameter but was

equivalent to the support region for the larger values more robust than the other methods.
We have also simulated support regions under thej 5 7.5 and 10. For all methods, the sizes of the intervals

were largest when the trait was midmarker. The Bayes conditions of Table 2 of Visscher et al. (1996), which
involved a backcross with no dominance variance andcredible sets were the widest and they fell short of the

desired 95% for large values of j and sparse maps, espe- marker spacings of 20 cM. At this intermarker distance
1-LOD (x 5 4.6) regions had coverage probabilitiescially when the trait was located at a marker.

The size of the confidence regions is relatively insensi- ranging from 93 to 96% and in all cases gave smaller
regions than the 95% bootstrap regions recommendedtive to the marker density when the distance between

TABLE 3

Coverage probability of simulated confidence intervals

D 5 1 D 5 5 D 5 10

j Method 0 r 1⁄2 0 r 1⁄2 0 r 1⁄2

5.0 Likelihood 94.9 94.6 94.5 92.6 94.2 91.7 91.7 88.7 87.3
1.5-LOD 95.6 96.1 95.8 96.7 97.5 96.4 98.5 98.0 97.1
Bayes 96.7 94.5 97.6 95.2 96.2 96.5 97.6 94.7 93.1

7.5 Likelihood 93.8 94.0 93.9 91.6 89.3 85.8 81.9 79.8 78.5
1.5-LOD 96.2 97.6 97.4 98.5 97.9 96.8 99.3 98.2 97.5
Bayes 97.4 96.5 99.1 98.0 97.0 98.1 99.3 97.0 93.7

10.0 Likelihood 94.9 93.1 90.2 84.4 78.6 77.8 63.7 55.3 62.0
1.5-LOD 97.6 97.1 97.2 98.8 97.8 96.4 99.0 97.8 96.7
Bayes 99.0 96.4 99.8 99.4 96.7 98.3 98.9 96.0 94.8
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by Visscher et al. (1996), while 1.5-LOD regions had correlated than would be the case if the data were not
missing, so the threshold obtained under the assump-98–99% coverage probability and about the same ex-

pected sizes as the bootstrap regions. For example, for tion of no missing data is still appropriate and, in fact,
slightly conservative.a heritability of 0.05 and a sample size of 500, which

yield a noncentrality parameter j 5 5.06, the coverage The assumption of normality is robust in the sense
that the regression statistics we use are approximatelyprobability of the 1-LOD region based on 1000 simula-

tions was 96%, and the expected size was 29 cM com- normally distributed in large samples, so our approxi-
mations for significance level and power are valid inpared with 96% and 43 cM obtained by Visscher et al.

(1996) for their bootstrap regions. large samples. However, it is possible that by using a
more appropriate model, e.g., a mixture model if theAnother method to obtain confidence intervals for

QTL location has been proposed by Mangin et al. nonnormality arises from large QTL effects, one can
obtain greater power, although large QTL effects will(1994). This method amounts to fixing a putative QTL

location and testing the hypothesis that there is no QTL be comparatively easy to detect with a suboptimal proce-
dure.between that location and either end of the chromo-

some. In the statistical literature on change-point analy- When using a backcross or intercross, intermarker
distances up to z10 cM are almost as powerful as contin-sis Worsley (1986) has discussed a similar idea and has

pointed out that if there is another change-point (here uously distributed markers. Except at intermarker dis-
tances of z20 cM or more, or when using a designQTL on the same chromosome) the method may pro-

duce an empty confidence set, since for every putative involving a large recombination rate, e.g., a recombinant
inbred design or advanced intercross design, there isQTL there is evidence of another somewhere on the

chromosome. Of course, the problem of detecting a little gain in power from interval mapping, which in any
event does not provide nearly as much power as moresecond, linked QTL given an already detected QTL is

itself interesting and important. closely spaced markers.
Although intercross designs involve a 2-d.f. statistic

and hence a higher threshold than a backcross design,
DISCUSSION

and have larger residual variance, intercross designs are
usually more powerful than backcross designs, unlessIn this article we have discussed genome scanning

methods to detect QTL in experimental genetics. Our (a) the effect of the gene is large and additive or (b)
there is dominance and the dominance deviation hasgoal has been to produce relatively simple approxima-

tions for quantities of interest, e.g., the false-positive the same sign as the additive genetic effect. A backcross
design can lose considerable power in the presence oferror rate, power to detect a QTL, and coverage proba-

bility of a support region, so that one can easily address even a small departure from additivity if the incorrect
parental strain is used for the backcross. A recombinantquestions concerning sample size, marker density, etc.,

and can compare different designs. Our approximations inbred design can be more efficient than an intercross,
except when dominance effects are large compared tofor significance level and power seem adequate in this

regard, but our approximations for the expected size additive effects. Because of the high recombination rate
associated with recombinant inbreds, especially thoseof a support region are good only for dense markers

(e.g., D ≈ 1 cM). based on recurrent sib mating, power to detect linkage
falls off rapidly with intermarker distance when a QTLAlthough in a backcross the conventional LOD 5

3 threshold produces false-positive rates ,0.05 unless is located midway between markers. To avoid this loss
of power when using an inbred design based on recur-intermarker distances are small, it is anticonservative in

an intercross even for intermarker distances as large as rent sib mating, intermarker distances should be no
more than 5 cM and preferably should be even less.25 cM without interval mapping.

Our approximations are based on the artificial as- Similar considerations apply to advanced intercross
lines (Darvasi and Soller 1995).sumption that markers are equally spaced and there are

no missing data. If markers are not equally spaced, the We have also presented three methods of con-
structing confidence regions for the location of QTL:approximations (4) and (9) can be modified by averag-

ing the function n with respect to the distribution of the likelihood method, Bayes credible sets, and support
regions. The support method and the Bayesian crediblethe distances D between markers. One can also use the

original approximations with an average intermarker sets seem roughly comparable in large samples, but the
coverage probability of the support method is moredistance. (This should be the average distance in the

neighborhood of detected QTL if one adds additional robust to changes in the sample size. Both methods are
better than the likelihood ratio method, which oftenmarkers to promising regions.) Since (4) and (9) are

insensitive to minor changes in the assumed value of has a coverage probability substantially smaller than the
nominal level, except for the case of dense markers.D, one can reasonably expect such refinements to have

little practical effect. If we use interval mapping to im- The size of a confidence region depends on the
noncentrality parameter and the density of the markerspute missing marker data, the resulting process is more
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in the neighborhood of the QTL. When the noncentral- of controlling the phenotypic variability due to multiple
QTL, but at least initially has the disadvantage that theity parameter is z5, which provides power of z0.9 for

QTL detection, little is gained by having markers more success of the control depends on fortuitously placing
the control markers close to true QTL. Straightforwardclosely spaced than z10 cM; but when the noncentrality

parameter is 7.5, intermarker distances of 1–5 cM pro- calculations show that the control markers on other
chromosomes have no effect on the asymptotic distribu-vide shorter confidence regions. A reasonable guideline

is to achieve a marker density in the neighborhood of tion of the log-likelihood ratio process along the cur-
rently searched (unlinked) chromosome, although theya putative QTL about equal to the expected half length

of a support region for a QTL of that strength. do reduce the number of degrees of freedom available
to estimate the error variance. By considering one chro-When dominance effects are relatively small and

markers sufficiently dense, support regions from recom- mosome at a time and adding the chromosome-wide
false-positive rates, one obtains an asymptotic upperbinant inbred designs are often about one-fourth as

large as from intercross designs, which in turn are sub- bound on the genome-wide false-positive rate. Because
of the independent assortment of chromosomes, thisstantially smaller than from backcross designs. Ad-

vanced intercross designs (Darvasi and Soller 1995) upper bound should not be overly conservative.
The second method discussed by Dupuis et al. (1995),are also especially powerful for fine localization of QTL.

In almost all cases, however, the size of the confidence simultaneous search, will for the reasons given there
rarely be useful in the absence of epistasis. Preliminaryregions is on the order of several centimorgans unless

the sample size is considerably larger than what is re- calculations suggest it can be very helpful when there
is substantial epistasis.quired to detect linkage, so there is a continuing need

to develop better designs for fine localization of QTL. We expect to return to the problem of detecting mul-
tiple, possibly linked, QTL in a future article.We have not explicitly addressed the complexities

associated with identifying multiple, possibly linked, This research was partially supported by the National Institutes of
possibly interacting, QTL. For mapping qualitative traits Health grant HG-00848 and the National Science Foundation grant

DMS 9704324.in humans, we have discussed these issues (Dupuis et
al. 1995), and expect to return to them for QTL map-
ping. For example, once a linked QTL is located, condi-
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APPENDIX A
[(a 1 d)/se]{RiE[E(xi(q) | Gi) 2 1⁄2]2}1/2.

Power of interval mapping: We first consider a back-
cross and suppose there is a single trait locus (on any To express this explicitly in terms of recombination

fractions, let u1 (u2) denote the recombination fractionparticular chromosome) at q. Let Zd denote the signed
square root of twice the log-likelihood ratio (incorporat- between the QTL at q and the marker flanking on the

left (right), and u the recombination fraction betweening interval mapping), which for large N behaves like
a piecewise smooth Gaussian process. We use the basic the two flanking markers. Then straightforward calcula-
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tions yield Assume t* is contained in (0,t1) and is bounded away from
the upper endpoint (t1 . 0). Then

j2
q 5 j2{(1 2 u1 2 u2)2/(1 2 u) 1 (u1 2 u2)2/u},

P { max
0#iD#l

iZiDi $ b | Z0 5 z}
where j2 5 N ln{1 1 [(a 1 d)/2se]2}. This reduces to
the noncentrality j when u1 5 0, so u2 5 u. At the
midpoint between markers, if we assume the Haldane z

b exp[21⁄2(b2 2 izi2)]
|Ṙ1(t*)R 2(t*)cos2w* 1 R1(t*)Ṙ 2(t*)sin2w*|model of no interference it simplifies to
3 n[b(2bD)1/2],

2j2{exp(2bD)/[1 1 exp(2bD)]}.
where Ṙi(t) 5 dRi(t)/dt and b 5 b1 cos2(w*) 1 b2 sin2(w*).This always exceeds the parameter (6), although a direct

For our particular application, Ri(t) 5 exp(2bi|t|).comparison is not really meaningful because the mark-
Putting b 2 5 izi2 1 x and assuming |x1/2z 2| ! |z1|, whichers only statistic involves the maximum of the process
will be the case with probability close to one unless thereat the two flanking markers.
is overdominance, we obtainWe can also give as an approximation for the power

of the interval mapping process P { max
0#iD#l

iZiDi2 . izi2 1 x | Z0 5 z}

Pfmax
d

Zd $ bg ≈ 1 2 F(b 2 jq)
≈ [2(izi2 1 x)]3/2 exp(2x/2)

(z2
1 1 [(z 2

1 1 2z 2
2)2 1 4z 2

2x]1/2)3/2

1 3 1
2jq

1 Iq
(b/jq)1/2{1 2 (b/jq)1/2}

jq 2 b 4
3 n([2D(b1z 2

1 1 b2z 2
2)(1 1 x/izi2)]1/2). (B1)

3 w(b 2 jq). (A3)
A proof of the lemma is given in Dupuis (1994). The
false-positive error rate in (9) can be obtained by inte-A more detailed calculation along the lines of that given
gration with respect to the distribution of iZ0i, althoughfor a backcross yields an expression for jq, which in
it is easier to give a direct calculation along the samegeneral is somewhat complicated. In the special case
lines as the proof of the lemma.that q is the midpoint between two markers at distance

We can also obtain a rough approximation for theD, the parameter jq is the norm of the vector with coordi-
expected size of the support region as follows. Firstnates
consider the one-dimensional case of a backcross or
recombinant inbreds and assume as before that aj15 2exp(2b1D)

[1 1 exp(2b1D)]6
1/2

,
marker is at the QTL q. Then the expected size of the
support region is

j2 exp(2b1D) 5 1
[1 1 exp(2b2D)]

DRk P {Z 2
kD $ max Z 2

jD 2 x}

1
2

[1 1 exp(2b1D)]26
1/2

, 5 DRk# w(z 2 j)

3 P z {Z 2
kD $ max Z 2

jD 2 x}dz,
where j1, j2, b1, and b2 are as defined in the paper.

where Pz denotes probability under the condition that
Zq 5 z. The outcome of substantial calculation along the

APPENDIX B lines of Siegmund’s (1988) Theorem 1 (which contains
some minor errors that must be corrected) shows thatApproximations for the conditional probability of
for large j and small D, hence in particular for dense(14) and the expected size of a LOD support region:
markers, the average size of the support region is ap-To approximate the conditional probability of (14), we
proximatelybegin with the following lemma.

Lemma. Let Zt 5 (Z1,t , Z 2,t) where Z1,t and Z 2,t are indepen-
b21#w(y 2 j) {ln[y 2/(y 2 2 x)]dent Gaussian processes with covariance functions satisfying

1 2y22[1 2 2n(y(2bD)1/2)Ri(t) 5 1 2 bi|t| 1 o(|t|) as t → 0.

1 0.5n2(y(2bD)1/2)]}dy. (B2)Assume b → ∞, D → 0, and bD1/2 is bounded away from 0
and ∞. Let 0 , izi2 , b 2 and define t*, w* to be the solution

A similar argument in two dimensions yields a similarof
expression with b replaced by b̃ and the additional
factor (y/j)1/2 multiplying w(y 2 j) to approximate a1z1

z 2
2 5 1b R1(t*)cos w*

b R 2(t*)sin w*2. noncentral x2 density.


