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ABSTRACT
Experiments to map QTL usually measure several traits, and not uncommonly genotype only those

animals that are extreme for some trait(s). Analysis of selectively genotyped, multiple-trait data presents
special problems, and most simple methods lead to biased estimates of the QTL effects. The use of logistic
regression to estimate QTL effects is described, where the genotype is treated as the dependent variable
and the phenotype as the independent variable. In this way selection on phenotype does not bias the
results. If normally distributed errors are assumed, the logistic-regression analysis is almost equivalent to
a maximum-likelihood analysis, but can be carried out with standard statistical packages. Analysis of a
simulated half-sib experiment shows that logistic regression can estimate the effect and position of a QTL
without bias and confirms the increased power achieved by multiple-trait analysis.

EXPERIMENTS to detect and locate quantitative ers (e.g., Jiang and Zeng 1995; Korol et al. 1995; Wel-
trait loci (QTL) in livestock species are becoming ler et al. 1997). There are several reasons why multiple-

more common, driven by the potential for increased trait QTL mapping is of interest. Not only will an under-
genetic gain in traits of economic importance (e.g., standing of a QTL’s part in the genetic covariance struc-
Soller 1978; Meuwissen and Goddard 1996). A vari- ture of economically important traits be important if
ety of experimental designs have been used, and various selection decisions are to be based on QTL genotype,
statistical methods have been applied to the resulting but the statistical power to detect QTL is potentially
data. With commercial livestock, designs commonly higher in multiple-trait analysis than in single-trait analy-
measure phenotype and genotype on half-sib families, sis. Both Korol et al. (1995) and Jiang and Zeng (1995)
because of the higher reproductive capacity of males. demonstrate such increased power on simulated data-
The phenotype records might be measured directly on sets while maximizing the likelihood to obtain multiple-
the half-sibs, as in a daughter design, or on the progeny trait parameter estimates.
of the half-sibs, as in a granddaughter design (Weller Another approach often applied in livestock QTL de-
et al. 1990). The data are commonly analyzed using tection experiments is selective genotyping, in which
maximum-likelihood or regression interval mapping only animals with extreme phenotypes are genotyped
(Lander and Botstein 1989; Haley and Knott 1992; (see Lebowitz et al. 1987; Lander and Botstein 1989;
Martinez and Curnow 1992). The regression methods Darvasi and Soller 1992; Muranty and Goffinet
are computationally less demanding, which may be 1997; Bovenhuis and Spelman 1998). For a given num-
relevant if techniques such as permutation testing ber of animals genotyped, the power to detect QTL is
(Churchill and Doerge 1994) are used to determine increased with this approach. However, although simple
significance thresholds. These methods were initially regression methods can be used to estimate parameters
developed for detecting QTL that affect a single trait. with selective genotyping, the estimates will be biased.
Even when phenotype measurements have been avail- To obtain unbiased estimates, maximum likelihood can
able on multiple traits, the results of single-trait analyses be applied to the full dataset, including the ungeno-
have generally been presented in the literature. typed animals (Lander and Botstein 1989), or approx-

In recent years, the possibility of multiple-trait QTL imations to the parameters can be made (Darvasi and
detection has been considered by a number of research- Soller 1992; Muranty and Goffinet 1997). Markov

chain Monte Carlo methods, which sample missing data,
are also appropriate for selectively genotyped data (see
Bink et al. 1998; Jansen et al. 1998). The estimation ofCorresponding author: John Henshall, Animal Genetics and Breeding

Unit, The University of New England, Armidale, NSW 2351, Australia. the effects of QTL in traits correlated to the trait in
E-mail: jhenshal@metz.une.edu.au which selective genotyping occurred is also problematic
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and f 1. Let Zi be a random variable that takes the value onemum-likelihood methods or the less computationally
if allele M (5 Q, because no recombination) was inherited,demanding approximation methods of Muranty and
and zero if allele m (5 q) was inherited by offspring i, and

Goffinet (1997) and Bovenhuis and Spelman (1998) let the probability that (Zi 5 1) 5 pi and the probability that
can be applied. These authors state that these approxi- (Zi 5 0) 5 (1 2 pi). Then
mations are suitable when QTL effects are small.

p 5
f 1

f 1 1 f 2
(1)Most statistical methods currently used for QTL detec-

tion, including those mentioned above, make compari-
5

exp(2((Y 2 m) 2 a)2/(2s2
e))

exp(2((Y 2 m) 2 a)2/(2s2
e)) 1 exp(2 ((Y 2 m) 1 a)2/(2s2

e))sons between the phenotypes of alternate marker geno-
types. Alternatively, the marker genotypes of differing
phenotypes can be compared (Stuber et al. 1980, 1982). 5

exp(2(Y 2 m)a/s2
e)

exp(2(Y 2 m)a/s2
e) 1 1

. (2)
Lebowitz et al. (1987) called this approach trait based,

This is the logistic model, with asymptotes zero and one.as opposed to marker based, and presented methods
We can writeto compare the marker allele frequencies in divergent

selection lines or selectively genotyped individuals.
log1 p

1 2 p2 5 2(Y 2 m)a/s2
eIn this article, a more general trait-based method is

presented. The method is suited to half-sib data and or
addresses the problems that arise with multiple-trait
QTL detection on selectively genotyped data. Results log1 p

1 2 p2 5 a 1 bY ,
comparable with those obtained with maximum likeli-
hood on the full dataset can be achieved, using software where a 5 2 2ma/s2

e and
in standard statistical packages. The method is regres-

b 5
2a

s2
e

. (3)sion based, but instead of regressing phenotype on ge-
notype, the regression is genotype on phenotype. This

We can estimate a and b with standard logistic-regression soft-replaces the assumption that the phenotypes are unse-
ware using Z as the response variable and Y as the explanatorylected with the assumption that there was no selection
variable. Here, for each animal, Zi is the number of “successes”based on genotype. This assumption is easily satisfied from one trial if success is inheriting allele M. A software

by including all genotyped animals in the analysis. With package that allows single observations and a continuous ex-
half-sib experiments, in treating genotype as the response, planatory variable should be chosen, to avoid having to group

observations into classes based on phenotype.the response variable is binary. Methods for analyzing
The total variance, s2, is composed of s2

e and the variancebinary data are well understood (e.g., Cox and Snell 1989;
due to the sire QTL allele a2. We haveDobson 1990), and suitable subroutines are included in

s2 5 s2
e 1 a2 . (4)the major statistical computing packages.

Given an estimate of b and an estimate of s2 from all of the
data, we can solve (3) and (4) for a and s2

e to obtain
STATISTICAL METHODS

a 5
21 1 √1 1 b 2s2

b
.Single trait, no recombination model: In the first case con-

sidered, it is assumed that there is no recombination between
the genotyped locus and the locus affecting the quantitative It is important that the estimate of s2 be from all of the data,
trait. This would apply when testing for an effect from a candi- not from a selected sample.
date gene. A single-sire, half-sib design will be assumed, with Figure 1 contains an example of the function p, where the
no genotypes available on the dams. Let the QTL have two sire QTL allele accounts for 20% of the total variance. The
alleles, Q and q, and the genotypic marker have two alleles, underlying normal distributions are also shown. The parame-
M and m. The model can be written as ter b is related to the “slope,” and it is our estimate of b that

allows us to estimate the magnitude of the QTL. For theyi 5 m 1 si a 1 ei , mixture distribution in Figure 1, selecting the upper and lower
5% of observations would exclude records with phenotypeswhere yi is the phenotypic value for offspring i (adjusted for

any contemporary group effects), m is a sire mean, si is an between 22 and 2. For phenotypes of 62, the ratio of allele
frequencies is around 0.1:0.9, and the shape of the curve pindicator variable taking values of minus one if QTL allele q

was inherited from the sire or the value of one if QTL allele between 22 and 2 can be interpolated reasonably well even
without observations in this region. If more extreme selectionQ was inherited from the sire, a is the allele substitution effect,

and ei is a random error term, which includes environmental were applied, or if the QTL effect were larger, then the ratio
of allele frequencies at the truncation points might approachvariance, a genetic effect due to the QTL allele inherited from

the dam, and a polygenic effect. The polygenic effect consists 0.0:1.0. Then the shape of the curve between the truncation
points could not be reliably interpolated. Selection on theof deviation from the sire mean due to Mendelian sampling

(0.25 additive genetic variance) and an effect due to the dam basis of phenotype, as in selective genotyping, will reduce
the precision with which we estimate b (and therefore a)(0.5 additive genetic variance). In this model, the indicator

variable si can be observed. compared with genotyping the whole sample, the degree by
which the precision is reduced being a function of the percent-If we assume the ei has a normal distribution with variance

s2
e , then the distribution of phenotypes is a mixture of two age of records genotyped and the size of the QTL effect.

To be useful in QTL detection, a measure of how well thenormal distributions, with means (m 2 a) and (m 1 a), and
common variance s2

e . Let these distributions be labeled f 2 model fits the data as well as estimates of the parameters is
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AA9b 1 2A 5 ob (5)

A(A9b 1 2) 5 ob

A 5 ob

A9b 1 2
; (6)

also from (5),

b9AA9b 1 2b9A 1 1 5 b9ob 1 1

(A9b 1 1)2 5 b9ob 1 1

A9b 5 √b9ob 1 1 2 1; (7)

and combining (6) and (7),

A 5 ob

1 1 √b9ob 1 1
.

So, using multivariate logistic-regression software, we can esti-
mate the vector b, and using an estimate of R from the com-
plete experimental data, we can simultaneously estimate multi-Figure 1.—An example of the function p, the probability
ple-trait QTL effects. Again, any selective genotyping carriedthat allele Q was inherited from the sire given the phenotype.
out is selection on the explanatory variable(s), and, while itHere, the sire QTL allele accounts for 20% of the total vari-
may reduce the precision of the estimates, it should not causeance. Also shown are the two components of the underlying
systematic bias.mixture distribution.

Recombination model: Both the single- and multiple-trait
methods described above assume that there is no recombina-
tion between the genotyped locus and the locus affectingrequired. Standard logistic regression software generally pro-
the quantitative trait. In QTL detection experiments usingvides a log-likelihood ratio test for whether b̂ is significantly
markers, this assumption cannot be made. The indicator vari-different from zero. As b 5 2a/s2

e , this is equivalent to testing
able si is now unobservable. If we consider a single markerthe hypothesis that a 5 0, so these tests may be used to draw
with a recombination rate r with the QTL, the multivariateconclusions about the significance of a.
logistic model becomesMultiple-trait, no recombination model: The methods de-

scribed above are easily extended to the situation where phe-
p 5 r 1

(1 2 2r) exp(Y 9b)
exp(Y 9b) 1 1

, (8)notypes are available on more than one trait. Let f1 and f2 in
Equation 1 be multivariate normal distributions. If the sire
mean is a vector m, and the vector of half the average sire where p is the probability that Z 5 1, where Z relates to the
allele effects A, then the mean of animals in distribution f1 marker allele inherited. Again this is the logistic equation,
will be m1 5 m 1 A, and the mean of animals in distribution with additional parameters r and (1 2 2r). For a single marker,
f2 will be m2 5 m 2 A. If the covariance matrix estimated from these represent the horizontal asymptotes, with r the lower
the data is R, and the covariance matrix within sire QTL asymptote and r 1 (1 2 2r) the upper asymptote. If r is
genotype is V, then R 5 V 1 AA9. As in the single-trait model, V unknown, then in theory, the estimates of the asymptotes
will contain both genetic and nongenetic components. Then, provided by standard logistic-regression software could be

used to estimate r. However, for QTL of moderate size, there
p 5

f 1

f 1 1 f 2 will be little information about the asymptotes in the data.
Therefore it is not recommended that this approach be used.

A more common use of this model is where an estimate of
5

exp(21⁄2(Y 2 m1)9V 21(Y 2 m1))
exp(21⁄2(Y 2 m1)9V 21(Y 2 m1)) 1 exp(21⁄2(Y 2 m2)9V 21(Y 2 m2)) a is required, given a map position relative to a number of

markers, as in interval mapping. A method is therefore re-
5

exp(21⁄2((Y 2 m1)9V 21(Y 2 m1) 2 (Y 2 m2)9V 21(Y 2 m2)))
exp(21⁄2((Y 2 m1)9V 21(Y 2 m1) 2 (Y 2 m2)9V 21(Y 2 m2))) 1 1

quired to summarize the information from multiple markers
into a form that can be used in Equation 8, in which we
require a vector p and an associated vector r. As for maximum-so
likelihood methods, we can calculate the probability that ani-
mal i inherited the sire allele Q, on the basis of the observedlog1 p

1 2 p2 5 2
1
2
((Y 2 m1)9V 21(Y 2 m1) 2 (Y 2 m2)9V 21(Y 2 m2))

marker transmission, the recombination rates between the
postulated locus and the markers, and the assumed mapping
function. Let this probability be qi. Although qi was estimated5 2

1
2
(m91V 21m91 2 m92V 21m92 2 2Y 9V 21(m1 2 m2)) .

from multiple markers, we can proceed as if it had been
estimated from a single marker and recover a value pi, whichMultivariate logistic regression packages estimate b, where
will be either zero or one, and a value ri, which will be ,0.5.
As

log1 p
1 2 p2 5 Y 9b ;

q 5 51 2 r if p 5 1

r if p 5 0so, ignoring the intercept in Y 9b,

b 5 V 21(m1 2 m2) and as r , 0.5, we can write

5 2V 21A
5 p 5 0, r 5 q if q , 0.5

p 5 1, r 5 1 2 q if q . 0.5 .or Vb 5 2A. Combining this with R 5 V 1 AA9 we get
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There are several numerical methods that can be used to quired to estimate a. For the ML analysis, the log-likeli-
estimate b given vectors p and r. In testing, both fitting Equa- hood was maximized numerically using NAG subroutine
tion 8 using nonlinear least squares and iteratively maximizing

E04JAF (NAG 1991). The likelihood used wasthe likelihood of Equation 8 appeared to work well with a
single trait. However, as the focus of this article is on using
standard statistical software for multiple-trait analysis, an ap- L 5 p

n

i51

1

√2ps2 1qi exp121
2s2

(yi 2 m 2 a)22
proximate method of interval mapping is described. There
are two parts to the problem, the estimation of b and the
evaluation of the log-likelihood ratio statistic. We have already 1 (1 2 qi) exp121

2s2
(yi 2 m 1 a)222 , (10)

shown how to estimate b at the markers, and provided that
the markers are not too far apart, simple interpolation will
provide sufficiently accurate estimates between the markers. where qi is either 1 or 0 if the marker is informative,
Given an estimate of b, the evaluation of the log-likelihood and 0.5 if the marker is uninformative, or if the animal
is straightforward. For the logistic model, the log-likelihood was not genotyped. The DS and MG methods require
takes the form

no special software.
Three models were used to simulate the data. In theD 5 2oo log

o
e , (9)

first model, the error term was normally distributed,
and the selective genotyping was the only selection ap-

where e is the expected frequency and o is the observed fre-
plied to the data. This would be the case if all markersquency (Dobson 1990). The estimate of b can be substituted
were fully informative. This resulted in truncation selec-into (8) along with the vector of recombination rates r to

estimate p̂. Then, (9) can be evaluated using p and p̂ as the tion, with equal proportions informative in each tail.
observed and expected frequencies. If the interpolated esti- Table 1 summarizes the results obtained. All four meth-
mate of b is to be used to estimate the QTL effect, then an ods provide similar estimates and standard errors when
adjustment for recombination between the markers and the

QTL effects are small. It is only when the QTL effect isQTL will be required.
large that differences are observed between the meth-
ods. For a QTL effect of 0.5, with selective genotyping,
methods DS and MG underestimate the QTL effect,RESULTS OF SIMULATION STUDIES
and methods LR and ML overestimate the QTL effect.

To compare the logistic-regression method to alterna- To test the performance of the methods when the
tive methods and to generally examine its performance, error is not normally distributed, errors were simulated
various simulation studies were carried out. Phenotypic from other distributions in the second model. Two dis-
values were generated by adding randomly generated tributions were used: a mixture distribution, composed
error terms to genotypic values. In all cases, a half-sib of two normal distributions, with the difference in means
design was simulated with phenotypes available on 1000 responsible for a variance of 0.5, and a x2-distribution
half-sibs. All simulations were repeated 100 times, and with 4 d.f., scaled to produce a total variance of 1.0.
mean estimates and significance levels were calculated. These are similar to the distributions used by other

Single trait, no recombination: A sire QTL effect and researchers (e.g., Muranty and Goffinet 1997). The
an error term were simulated, with the sire allele ac- mixture distribution could occur because of the effect
counting for 0, 1, 4, and 25% of the total phenotypic of other QTL segregating or because of failure to cor-
variance. As the total phenotypic variance was 1.0, the rectly account for fixed effects. The x2-error produces
magnitudes of the sire allele effects were 0.0, 0.1, 0.2, a skewed distribution of phenotypes.
and 0.5. Three levels of selective genotyping were tested, Table 2 contains the results for sire QTL allele effects
with genotypes available on all animals (i.e., no selective of 0.1 and 0.2 and one result for a sire QTL allele effect
genotyping), on 50% of animals, and on 10% of animals. of 0.5. When genotype records were available on all
Where selective genotyping was applied, genotypes for animals, the nonnormal error had little effect on the
the animals with the highest and lowest phenotypes were estimates of the QTL effect. With selective genotyping
made available. however, all methods had difficulties in estimating the

The allele effect (a) was estimated with logistic re- QTL effect. When the error was from the mixture distri-
gression (LR), with maximum likelihood (ML), and bution, method DS produced estimates of QTL effect
with the methods of Darvasi and Soller (1992; DS) closest to those simulated, with little difference between
and Muranty and Goffinet (1997; MG). Estimates of the mean estimates produced by methods MG, LG, and
b for the LR method were obtained using SAS proce- ML. When the error term was simulated from the x2-
dure LOGISTIC (SAS 1990). The response variable, or distribution, the effect of reducing the number of geno-
marker genotype, was coded 0.0 or 1.0, the independent type records available appeared to be nonlinear. Geno-
variable was the phenotype, and a dummy variable n, typing most animals, or small QTL effects, resulted in
for number of trials, was set to 1. Where markers were overestimation of the QTL effect, while genotyping less
uninformative, or the animal was not genotyped, then animals, or large QTL effects, resulted in underestima-
that record was not included. However, all of the records tion of the QTL effect. This pattern was consistent for

all of the methods, with methods DS and LR requiringwere used to estimate the variance (s2), which is re-
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TABLE 1

Estimates of QTL allele effects, normal error, truncation selection

Estimate of a

Gen (%) DS MG LR ML

Simulated value 5 0.0
100 0.001 6 0.003 0.001 6 0.003 0.001 6 0.003 0.001 6 0.003

50 0.000 6 0.003 0.000 6 0.003 0.000 6 0.003 0.000 6 0.003
10 20.005 6 0.004 20.005 6 0.004 20.005 6 0.004 20.005 6 0.004

Simulated value 5 0.1
100 0.101 6 0.003 0.101 6 0.003 0.101 6 0.003 0.101 6 0.003

50 0.100 6 0.003 0.100 6 0.003 0.100 6 0.003 0.100 6 0.003
10 0.097 6 0.004 0.096 6 0.004 0.099 6 0.005 0.097 6 0.005

Simulated value 5 0.2
100 0.201 6 0.003 0.201 6 0.003 0.201 6 0.003 0.201 6 0.003

50 0.200 6 0.003 0.200 6 0.003 0.201 6 0.003 0.201 6 0.003
10 0.197 6 0.004 0.196 6 0.004 0.206 6 0.005 0.204 6 0.005

Simulated value 5 0.5
100 0.501 6 0.002 0.501 6 0.002 0.501 6 0.002 0.501 6 0.002

50 0.489 6 0.002 0.490 6 0.002 0.502 6 0.003 0.502 6 0.003
10 0.408 6 0.002 0.420 6 0.002 0.526 6 0.006 0.511 6 0.005

Estimates are means and standard errors of 100 replicates, where Gen refers to the percentage of animals
genotyped. Estimation methods were those of Darvasi and Soller (1992; DS) and Muranty and Goffinet
(1997; MG). LR, logistic regression; ML, maximum likelihood.

TABLE 2

Estimates of QTL allele effects, nonnormal error

Estimate of a

Gen (%) DS MG LR ML

Simulated value 5 0.1, mixture error
100 0.101 6 0.003 0.101 6 0.003 0.101 6 0.003 0.101 6 0.003

50 0.106 6 0.003 0.108 6 0.003 0.108 6 0.003 0.108 6 0.003
10 0.114 6 0.004 0.128 6 0.005 0.132 6 0.005 0.131 6 0.005

Simulated value 5 0.2, mixture error
100 0.201 6 0.003 0.201 6 0.003 0.200 6 0.003 0.201 6 0.003

50 0.210 6 0.003 0.214 6 0.003 0.214 6 0.003 0.215 6 0.003
10 0.221 6 0.004 0.250 6 0.005 0.263 6 0.005 0.270 6 0.006

Simulated value 5 0.1, x2-error
100 0.100 6 0.003 0.100 6 0.003 0.101 6 0.003 0.100 6 0.003

50 0.126 6 0.003 0.120 6 0.003 0.132 6 0.003 0.121 6 0.003
10 0.210 6 0.005 0.131 6 0.005 0.228 6 0.006 0.133 6 0.005

Simulated value 5 0.2, x2-error
100 0.200 6 0.003 0.200 6 0.003 0.205 6 0.003 0.200 6 0.003

50 0.241 6 0.003 0.228 6 0.003 0.253 6 0.003 0.232 6 0.003
10 0.335 6 0.003 0.207 6 0.004 0.422 6 0.005 0.216 6 0.004

Simulated value 5 0.5, x2-error
10 0.382 6 0.002 0.327 6 0.003 0.526 6 0.006 0.359 6 0.004

Estimates are means and standard errors of 100 replicates, where Gen refers to the percentage of animals
genotyped. Estimation methods were those of Darvasi and Soller (1992; DS) and Muranty and Goffinet
(1997; MG). LR, logistic regression; ML, maximum likelihood. Error terms simulated were a mixture of normal
distributions and x2 with 4 d.f.
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TABLE 3

Estimates of QTL allele effects, nontruncation selection

Estimate of a

Gen (%) MG LR ML

Simulated value 5 0.0
100 0.001 6 0.002 0.002 6 0.007 0.002 6 0.004

50 0.000 6 0.003 20.000 6 0.007 0.000 6 0.004
10 20.006 6 0.005 20.008 6 0.014 20.006 6 0.006

Simulated value 5 0.1
100 0.080 6 0.002 0.101 6 0.007 0.146 6 0.004

50 0.099 6 0.003 0.098 6 0.007 0.108 6 0.004
10 0.095 6 0.006 0.103 6 0.018 0.098 6 0.006

Simulated value 5 0.2
100 0.160 6 0.003 0.200 6 0.006 0.279 6 0.004

50 0.199 6 0.003 0.201 6 0.007 0.215 6 0.003
10 0.197 6 0.006 0.247 6 0.019 0.206 6 0.006

Simulated value 5 0.5
100 0.398 6 0.007 0.501 6 0.004 0.585 6 0.003

50 0.489 6 0.003 0.506 6 0.005 0.512 6 0.003
10 0.421 6 0.003 0.631 6 0.019 0.516 6 0.006

Estimates are means and standard errors of 100 replicates, where Gen refers to the percentage of animals
genotyped. Estimation methods were those of Muranty and Goffinet (1997; MG). LR, logistic regression;
ML, maximum likelihood. Fifty percent of markers were informative, with the ratio of identifiable alleles being
10:90%.

greater selection, or larger QTL effects, before the un- 10% of animals are genotyped. These overestimates are
accompanied by relatively high standard errors. Methodderestimation occurred.

Another departure from the model assumed by the ML overestimated the allele effect. This was less appar-
ent when selective genotyping was applied.estimation methods is when the selection is not trunca-

tion selection with fixed proportions of animals with Multiple trait, no recombination: A bivariate analysis
was performed, where the two traits had covariance ma-genotype records in each tail. This might occur when

the marker allele inherited from the sire cannot be trix
determined for some animals, as occurs when the
marker genotype of the animal is the same as that of V 5 31.0 0.5

0.5 1.04the sire, with no genotype available for the dam. If one
of the sire’s marker alleles is at a high frequency in the
dam population, then one of the sire’s marker alleles within QTL genotype. Vectors of QTL effects A 5 [0.3,
will be identified more often in the offspring than the 0.3]9, A 5 [0.3, 0.0]9, and A 5 [0.0, 0.3]9 were simulated,
other. The effect of this was tested in the third model, with either all animals genotyped, or 10% selective geno-
with 50% of genotyped markers assumed to be uninfor- typing on the first trait. It was assumed that there was
mative, but with one sire allele informative 90% of the no recombination between the QTL and a marker, with
time and the other sire allele informative only 10% of all markers informative. Both single-trait and multiple-
the time. trait logistic-regression analyses were carried out, using

The DS method was not applied to this model because SAS procedure LOGISTIC. The multiple-trait MG meth-
it requires the assumption of known, equal, selected ods and methods of Bovenhuis and Spelman (1998;
proportions. Results from application of the MG BS) were also applied to the simulated data. The results
method to data in which all animals were genotyped, are summarized in Table 4.
are presented for the equation that assumed selection, When all animals are genotyped, there is no differ-
as it performed better than the equation that did not ence between the allele effect estimates produced using
assume selection. Table 3 contains the results obtained single- or multiple-trait analysis, and the MG and LR
for methods MG, LR, and ML. All of the methods tested multiple-trait methods produce identical results. When
have problems with this model. Method MG underesti- selective genotyping is applied, the single-trait analysis
mates the QTL effect, except when the proportion se- produces good estimates of a1, the effect on the trait

used to select animals for genotyping, but biased esti-lected is z50%. For simulated values of a of 0.2 and
0.5, method LR overestimates the QTL effect when only mates of a2, the effect on the correlated trait. The esti-
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TABLE 4

Estimates of QTL allele effects

Method (%) a1 a2 a1 a2 a1 a2

Values simulated
0.30 0.30 0.30 0.00 0.00 0.30

Single-trait analysis
LR100 0.30 (0.003) 0.30 (0.003) 0.30 (0.003) 0.00 (0.003) 0.00 (0.003) 0.30 (0.003)
LR10 0.31 (0.005) 0.43 (0.007) 0.31 (0.005) 0.28 (0.008) 0.00 (0.004) 0.17 (0.007)

Multiple-trait analysis
LR100 0.30 (0.003) 0.30 (0.003) 0.30 (0.003) 0.00 (0.003) 0.00 (0.003) 0.30 (0.003)
MG100 0.30 (0.003) 0.30 (0.003) 0.30 (0.003) 20.00 (0.003) 20.00 (0.003) 0.30 (0.003)
LR10 0.30 (0.005) 0.29 (0.009) 0.30 (0.005) 0.00 (0.009) 20.01 (0.005) 0.30 (0.008)
MG10 0.28 (0.004) 0.25 (0.007) 0.28 (0.004) 0.02 (0.007) 20.01 (0.005) 0.29 (0.008)
BS10 0.25 (0.008) 0.01 (0.008) 0.29 (0.009)

Estimates are means and standard errors of 100 replicates, where estimation is by either logistic regression
(LR), the method of Muranty and Goffinet (1997; MG), or the method of Bovenhuis and Spelman (1998;
BS), with either all animals genotyped (LR100 and MG100) or 10% of animals genotyped (LR10, MG10, and
BS10). a1 is the effect of the first trait, and a2 is the effect of the second trait. Where applied, selective
genotyping was on the phenotype of the first trait. The within-QTL genotype variance was 1.0, and the within-
QTL genotype covariance between the traits was 0.5. Correlations used in the analyses were estimated from
the complete data in each replicate.

mates of QTL effect from the multiple-trait methods are analyses, the data were analyzed using the regression
much less biased than the single-trait analysis estimates, method of Haley and Knott (1992). The resulting
with the estimates from the LR method less biased than profile (not shown) was more similar to the ML profile
the estimates from the MG and BS methods. For smaller than to the LR profile. When only 10% of animals were
QTL effects there were no differences between the re- genotyped the log-likelihood statistics were less than
sults produced by the multiple-trait methods (results when all animals were genotyped, but there was little
not shown). difference between the ML and LR profiles. Regardless

Single trait, recombination: Markers and the QTL of whether selective genotyping was applied, it appears
were simulated in the order that provided that the distance between markers is not

too great, and provided that most markers are informa-M1 2 r1 2 M2 2 r2 2 Q 2 r3 2 M3 ,

where M1, M2, and M3 are markers, and Q is the QTL.
r1, r2, and r3 are recombination rates, taking the values
0.1, 0.03, and 0.07, respectively. All markers were fully
informative. The total phenotypic variance was 1.0, and
a was 0.1, so 1% of the total variance was explained by
the sire QTL allele.

Interval mapping was carried out, using both ML and
LR. For the ML analysis, the likelihood was maximized
numerically using NAG subroutine E04JAF. The likeli-
hood used was again (10), but with qi calculated from the
observed marker transmission for the nearest flanking
markers and the locus being mapped. Haldane’s map-
ping function was assumed. SAS procedure LOGISTIC
was used to obtain the LR estimates of a and b at the
markers and the log-likelihood ratio statistic between
the markers calculated from interpolated values of a
and b.

Figure 2 contains the log-likelihood ratio profiles ob- Figure 2.—Log-likelihood ratio test profiles for logistic re-
gression with 100% (LR100) and 10% (LR10) of animals geno-tained. When 100% of animals were genotyped, at the
typed, and maximum likelihood with 100% (ML100) and 10%markers, there is almost no difference between the log-
(ML10) of animals genotyped. The marker locations are dis-

likelihood statistics produced by the two methods. Be- played as short impulses and the simulated QTL position is
tween the markers, the LR profile is slightly lower than displayed as a long impulse. The sire QTL allele accounts for

1% of the phenotypic variance.that produced by ML. In addition to the ML and LR
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DISCUSSIONtive, the profiles are for practical purposes equivalent.
Having some markers not informative is equivalent to It has been shown in this article that in half-sib fami-
increasing the distance between markers for some ani- lies, multiple-trait QTL detection is a simple matter of
mals, and the profiles produced by the two methods performing multivariate logistic regression. As no as-
may differ. However, if significance thresholds are de- sumptions are made regarding selection among pheno-
termined through permutation testing (Churchill types, the method is useful for selectively genotyped
and Doerge 1994), similar conclusions should be drawn data as well as for experiments where genotypes are
despite the differences between the profiles. known for all animals.

Multiple trait, recombination: The marker and QTL All methods for estimating QTL effects with missing
locations simulated in the single-trait analysis were used genotype information require assumptions regarding
for a bivariate analysis. The two traits had covariance the distribution of phenotypes within QTL genotype
matrix classes. The methods considered in this study all as-

sumed normal distributions for phenotypes, and when
V 5 31.0 0.5

0.5 1.04 the data were simulated according to this assumption,
with equal proportions genotyped in each phenotypic
tail, differences between the results produced by the

within QTL genotype. A vector of QTL effects A 5 [0.1, methods were minor. The exception to this was when
0.1]9 was simulated, with 10% selective genotyping on a large QTL was segregating and a small percentage of
the first trait. LR analyses were carried out, using SAS animals were genotyped. It is under these conditions
procedure LOGISTIC to estimate b at the markers, and that the assumptions regarding the distributions of phe-
with estimates between the markers interpolated. These notype within unknown genotype become most critical.
estimates were then used to calculate the log-likelihood However, although there is little power for any method
ratio statistic. Single-trait analyses on the two traits were to accurately estimate such a QTL effect, in practice
carried out for comparison. Figure 3 plots the mean this is not a major problem. A more important problem
log-likelihood ratio profiles obtained. The log-likeli- is that most QTL effects are too small to be significant.
hood ratio for the second trait is lower than for the The situation with very large QTL is that we can tell
first trait, on which the selective genotyping was based, that they are big, but we can’t tell how big.
reflecting the loss of power because of selective genotyp- The robustness of the methods to departure from
ing on a correlated trait. As in other results reported in normal error is of interest. The performance of the
the literature, the log-likelihood profile for the multiple- methods appears to depend heavily on the distribution
trait analysis is higher than for the single-trait analysis. of the error, the percentage of animals genotyped, and
It must be noted that more degrees of freedom are used the relative size of the QTL. When error was generated
in fitting the multiple-trait model. from a mixture distribution, the DS method produced

less bias due to selective genotyping, but with a x2-error
the MG method and the ML method produced less bias.
However, this was only the case for small QTL effects;
for larger QTL effects the LR method produced less
bias with high levels of selection. It appears that no
method is “best” for all circumstances, but all perform
reasonably well provided that at least 50% of animals
are genotyped. If the data suggest that the distribution
of phenotypes is not normal, then the use of data trans-
formations might be considered.

If the selection is not simple truncation selection
based on phenotype, then methods such as DS become
difficult to implement, because of their use of the ex-
pected mean of a truncated distribution. The MG
method can be applied to this type of data, but the
estimates produced appear to be biased, even when all
animals are genotyped. The LR method produces ac-
ceptable estimates of QTL effect except when QTL ef-Figure 3.—Log-likelihood ratio test profiles from logistic-

regression analysis of multiple-trait data, with single-trait analy- fects are large or selection extreme. The performance of
sis of trait 1 (L1), trait 2 (L2), and a multiple-trait analysis the ML method for this type of data was unsatisfactory.
(L12). Selective genotyping was applied to trait 1, with 10% With all animals genotyped the QTL effect was overesti-of animals genotyped. The within-QTL genotype variance was

mated even for small QTL, but with less genotypic infor-1.0, and the within-QTL genotype covariance between the
traits was 0.5. The effect of the QTL on both traits was 0.1. mation available the estimates improved. This may be
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due to the ratio of QTL genotypes among the animals animals are the F2 generation resulting from a cross
between inbred lines, ML methods estimate effects forof unknown genotype. In the likelihood function used

in the simulations (Equation 10), when genotype was the two classes of homozygous animals and a dominance
effect. As LR is a method for binary data, it is not possibleunknown, a value of 0.5 was coded for the probability

of inheriting each of the sire’s QTL alleles, implying to fit the full model for this type of data directly. How-
equal probability of either genotype. With all animals ever, it should be possible to estimate the differences
genotyped, almost all of the animals with unknown ge- between two QTL classes, for example, the difference
notype carry the same QTL allele, but, when only some between the homozygous classes or the difference be-
animals are genotyped, the distribution of QTL alleles tween heterozygous animals and one homozygous class.
in the animals of unknown genotype is more balanced. In this case weights should be used, proportional to
Probabilities for noninformative markers based on the the probability that the animal has one of the QTL
allele frequencies in the dam population could be as- genotypes under consideration.
signed to alleviate this problem; the other methods As with ML interval mapping, it is desirable to account
might also benefit from such data preparation. for both linked and unlinked QTL in estimating QTL

The DS and MG methods estimate QTL effects as effects and locations. Iterative methods, such as that of
functions of means and variances of the data. As such Zeng (1994) should be adaptable to the LR method. If
they are quickly and easily computed. However, the cost multiple-trait LR is being performed, then the method
of this computational simplicity is reduced generality. is comparable with that of Jiang and Zeng (1995). Also,
The DS method requires simple truncation selection. as for ML or regression-interval mapping, permutation
Two single-trait equations are provided to estimate QTL testing (Churchill and Doerge 1994) will provide sig-
effects by the MG method, one applicable when all nificance thresholds that should account for any peculi-
genotypes are available and one applicable when selec- arities in the data.
tion has taken place. When the selection is based on The results of the simulation studies presented here
other than phenotype, as with noninformative marker are no different from those of earlier studies. Jiang and
information, it is not obvious which equation should be Zeng (1995) and Korol et al. (1995) provide convincing
applied. arguments for multiple-trait interval mapping. Mur-

The LR method has more in common with the ML anty and Goffinet (1997) use a bivariate ML analysis
method computationally. In practice, the LR proce- as a benchmark against which to compare their approxi-
dures in statistical packages may use ML to fit the logis- mation methods for multiple-trait estimation under se-
tic curve to the data. Alternatively another iterative lective genotyping. What we have demonstrated here is
method, such as weighted least squares, may be used. that using LR, multiple-trait QTL analysis becomes a
Therefore there may not be much advantage in comput- straightforward application of standard statistical soft-
ing time to using LR. However, LR is a common statisti- ware. The method is applicable regardless of whether
cal procedure, and the algorithms for LR in the major selective genotyping was applied. The achievable results
statistical packages should be highly optimized. The ma- are comparable to those obtained from the closely re-
jor advantage of the LR method over ML is the availabil- lated ML methods, but without the complexity of multi-
ity and ease of use of appropriate software. For example, ple-trait ML.
the commands required to estimate b and the log-likeli-

J. Henshall was in receipt of a supplementary stipend from the Co-hood for a two-trait model with SAS procedure LOGIS- operative Research Centre for Cattle and Beef Industry (Meat Quality)
TIC (SAS 1990) are while undertaking this work.

proc logistic;

model Q/n 5 Y Z;
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