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ABSTRACT
Mapping quantitative trait loci (QTL) for complex binary traits is more challenging than for normally

distributed traits due to the nonlinear relationship between the observed phenotype and unobservable
genetic effects, especially when the mapping population contains multiple outbred families. Because the
number of alleles of a QTL depends on the number of founders in an outbred population, it is more
appropriate to treat the effect of each allele as a random variable so that a single variance rather than
individual allelic effects is estimated and tested. Such a method is called the random model approach.
In this study, we develop the random model approach of QTL mapping for binary traits in outbred
populations. An EM-algorithm with a Fisher-scoring algorithm embedded in each E-step is adopted here to
estimate the genetic variances. A simple Monte Carlo integration technique is used here to calculate the like-
lihood-ratio test statistic. For the first time we show that QTL of complex binary traits in an outbred popu-
lation can be scanned along a chromosome for their positions, estimated for their explained variances, and
tested for their statistical significance. Application of the method is illustrated using a set of simulated data.

METHODS of QTL mapping for normally distrib- of QTL segregation rather than the effects is estimated
and tested (Haseman and Elston 1972; Goldgar 1990;uted quantitative traits are well developed. These

methods can be classified into two categories: the fixed Schork 1993; Fulker and Cardon 1994; Xu and Atch-
model and the random model approaches. Data col- ley 1995; Grignola et al. 1996).
lected from well-designed crossing experiments, e.g., F2, Many characters of biological interest and economical
backcrossing, or four-way cross, are usually analyzed us- importance that are not inherited in a simple Mendelian
ing the fixed model approach. Usually only a single fashion vary in a dichotomous or binary form. These
family in a line cross is analyzed. With these crossing traits are called complex binary traits. A complex binary
experiments, the parental marker genotypes, the link- trait is presumably controlled by several genes with its
age phases of marker loci in the parents, and the num- expression modified by environmental effects. They
ber of alleles of putative QTL are known precisely. Un- therefore belong to the category of quantitative traits
der the fixed model, we express the effects of QTL as (Falconer and Mackay 1996; Lynch and Walsh
differences of genotypic means and then estimate and 1998). An appealing model for genetic analysis of com-
test these QTL effects (Lander and Botstein 1989; plex binary data is based on the threshold concept, first
Haley and Knott 1992; Jansen 1993; Zeng 1994). In used in a genetic context by Wright (1934). In the
many species, such as large domesticated animals, forest threshold model, it is postulated that there exists a latent
trees, and human beings, we cannot develop inbred or underlying continuous variable, called the liability,
lines and manipulate line crosses; instead, we must con- which controls the discrete phenotype. The binary phe-
duct QTL mapping using data as they exist. Therefore, notype and the continuous liability are linked through
the fixed model approach of QTL mapping is hard to a fixed but unknown threshold. When the value of the
implement in the unmanipulated outbred populations. liability is above the threshold, an individual shows one
The random model approach, which treats the allelic phenotype, e.g., affected; otherwise, it will show the
effects of QTL as random variables, requires little knowl- other phenotype, e.g., normal. The liability is considered
edge about the number of QTL alleles and marker link- as a regular quantitative trait whose variance can be
age phases. As a result, the random model approach is partitioned into genetic and environmental compo-
more plausible than the fixed model approach for QTL nents. In principle, the existing theory of quantitative
mapping in outbred populations (Xu and Atchley genetics developed for continuous traits holds similarly
1995; Xu 1996a). Under the random model, variance for the liability of a binary trait.

QTL mapping for binary traits is more challenging
than for normal traits due to the nonlinear relationship
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traits are well developed in human populations, and the underlying liability, respectively, of the jth individual
in the ith full-sib family. The threshold model assumesthe affected sib-pair method (Olson 1995) is the most

popular one of this kind. The method does not depend that there is a fixed threshold in the scale of liability, t,
which determines the binary phenotype of an individualon the threshold model. As a consequence, it can iden-

tify the existence of a QTL but does not provide an by comparing yij with t. When yij . t, sij 5 1, and otherwise,
sij 5 0. The liability yij can be treated as a continuousestimate of the size (variance) of the QTL. In addition,

the affected sib-pair method cannot be applied to plants quantitative character and is thus described by the linear
modeland animals that typically have large family sizes. Re-

cently, parametric methods of QTL mapping based on
yij 5 xT

ijb 1 fi 1 zT
ijhi 1 εij, (1)a generalized linear model (GLM) have been developed

in simple line crosses (Hackett and Weller 1995; where b is a vector of fixed effects (including the overall
Visscher et al. 1996; Xu and Atchley 1996a; Rebai mean), which relates yij via a known incidence vector
1997). Rao and Xu (1998) extended the methods to xij; fi is a family-specific effect, εij is the residual effect
four-way crosses. These methods are primarily derived (including the environmental error) distributed as
using a single family of line cross. N(0, s2

ε); hi 5 (as
i1, as

i2, ad
i1, ad

i2, di11, di12, di21, di22)T is a vec-
Combining data from multiple families is deemed to tor of the effects of the alleles and the dominance effects

be more useful in outbred populations (Muranty 1996; of a putative QTL; as
ik (k 5 1, 2) is the effect of the kth

Xie et al. 1998; Xu 1998). For example, animal and allele in the male parent; ad
il (l 5 1, 2) is the effect of

plant breeders usually combine data from many half- or the lth allele in the female parent; dikl is the effect of
full-sib families. The main advantages of QTL mapping interaction between the kth allele of the male parent
using multiple families are the increased power of QTL and the lth allele of the female parent (dominance
detection and the broader statistical inference space of deviation); and
the estimated QTL variances. In principle, the fixed

zij 5 (zs
ij1, 1 2 zs

ij1, zd
ij1, 1 2 zd

ij1, zs
ij1zd

ij1, zs
ij1(12 zd

ij1),model can also be used to analyze data from multiple
families where the effect of allelic substitution of the (1 2 zs

ij1)zd
ij1, (1 2 zs

ij1)(1 2 zd
ij1))T

QTL for each parent is estimated and tested. We have
is a vector of the indicators and defined as zs

ij1 5 1 if thedeveloped such a fixed model method and shown that
first allele of the male (female) parent is transmittedthe method is efficient when there are a small number
to the jth progeny zs

ij1 5 0 and otherwise. Indicator zd
ij1of large families (Yi and Xu 1999). In addition, the

is similarly defined.fixed model approach is computationally very efficient
We now treat gi 5 (fi, hT

i )T as random effects with abecause of the simplicity of the method. Unfortunately,
multivariate normal distribution, gi z N9 (0, Q). Underas the number of families increases, the fixed model
the assumption of unrelated parents,approach becomes inefficient and ill conditioned be-

cause of the large number of parameters to be estimated Q 5 diag(s2
f , s2

a, s2
a, s2

a, s2
a, s2

d, s2
d, s2

d, s2
d,),

and tested. The random model approach, on the other
wherehand, estimates and tests only a few parameters, i.e., a

few variance components, and thus is the choice for s2
f 5 Var(fi), s2

a 5 Var(as
i1) 5 Var(as

i2)
multiple-family QTL mapping. Such a method, how-

5 Var(ad
i1) 5 Var(ad

i2)ever, has not been available for QTL mapping in binary
traits. and

The purpose of this research is to develop such a
s2

d 5 Var(di11) 5 Var(di12) 5 Var(di21) 5 Var(di22).random model approach of QTL mapping for complex
binary traits from multiple families of outbred popula- Note that gi and εij are assumed to be mutually indepen-
tions. The method is developed on the basis of a general- dent. Under model (1), the additive and dominance
ized linear mixed model (GLMM) or a hierarchical variances of the QTL are defined as
generalized linear model (HGLM) where we treat the

Va 5 1⁄2[Var(as
i1) 1 Var(as

i2) 1 Var(ad
i1) 1 Var(ad

i2)]effects of QTL and the polygenic effect of the liability
as random effects. An EM-algorithm with the Fisher-

5 2s2
a and Vd 5 s2

s,
scoring algorithm embedded in each E-step is adopted
to estimate the genetic variances. A simple Monte Carlo respectively. The variance of the family-specific effect is

s2
f 5 1⁄2VA 1 1⁄4VD 1 VC, where VA and VD are the polygenicintegration technique is used to calculate the likelihood-

ratio test statistic. Application of the method is illus- additive and dominance variances (see Table 1), respec-
tively, and VC is the variance of the common environ-trated using a set of simulated data.
mental effect shared by family members. The residual
variance is s2

ε 5 1⁄2VA 1 3⁄4VD 1 s2
error 5 1⁄2VA 1 3⁄4VD 1 1

STATISTICAL METHODS
because the error variance is set to unity. The threshold
model is overparameterized so that further constraintsThe threshold model and liability: Let sij and yij (i 5

1, . . . , n; j 5 1, . . . , ni) be the binary phenotype and must be superimposed. As usual, the threshold model
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TABLE 1
Var(zij) 5 1 Var(za

ij )
Cov(za

ij ,zd
ij)

Cov(za
ij ,zd

ij)
Var(zd

ij)
2,

Description of symbols used in the text domin

where za
ij 5 (zs

ij1, 1 2 zs
ij1, zd

ij1, 1 2 zd
ij1)T, zd

ij 5 (zs
ij1zd

ij1, zs
ij1Symbol Description

(1 2zd
ij1), (1 2 zs

ij1)zd
ij1, (1 2 zs

ij1)(1 2 zd
ij1))T,

sij, yij Binary phenotype, liability
b Vector of fixed effects
fi Family-specific effect
hi Vector of the effects of the alleles and the

dominance effects of a putative QTL
gi Vector of the family-specific effect and the

Var(za
ij ) 5 1

ps
ij1(1 2 ps

ij1) 2ps
ij1(1 2 ps

ij1)
2ps

ij1(1 2 ps
ij1) ps

ij1(1 2 ps
ij1)

0 0
0 0
0 0
0 0

pd
ij1(1 2 pd

ij1) 2pd
ij1(1 2 pd

ij1)
2pd

ij1(1 2 pd
ij1) pd

ij1(1 2 pd
ij1)

2,

effects of the alleles and the dominance
effects of a putative QTL, gi 5 (fi, hT

i )T

Q Covariance matrix of gi

as
ik, ad

il, dikl Allelic effects of male and female parents,
dominance effect

s2
f , s2

a, s2
d Variances of fi, as

ik(ad
il), and dikl

VA, VD Polygenic additive, dominance variances
Va, Vd QTL additive, dominance variances,

Va 5 2s2
a, Vd 5 s2

d
Cov(za

ij ,zd
ij) 5 1

ps
ij1(1 2 ps

ij1)pd
ij1 ps

ij1(1 2ps
ij1)(1 2 pd

ij1)

2ps
ij1(1 2 ps

ij1)pd
ij1 2ps

ij1(1 2 ps
ij1)(1 2 pd

ij1)

pd
ij1(1 2 pd

ij1)ps
ij1 2pd

ij1(1 2 pd
ij1)ps

ij1

2pd
ij1(1 2 pd

ij1)ps
ij1 pd

ij1(1 2 pd
ij1)ps

ij1

h2
p, h2

q Polygenic heritability, QTL heritability

is further standardized by setting s2
ε 5 1 and t 5 0 (Har-

ville and Mee 1984; McCulloch 1994; Sorensen et
al. 1995). Under the “standardized threshold model,”

2ps
ij1(1 2 ps

ij1)pd
ij1 2ps

ij1(1 2ps
ij1)(1 2 pd

ij1)

ps
ij1(1 2 ps

ij1)pd
ij1 ps

ij1(1 2 ps
ij1)(1 2 pd

ij1)

pd
ij1(1 2 pd

ij1)(1 2 ps
ij1) 2pd

ij1(1 2 pd
ij1)(1 2 ps

ij1)

2pd
ij1(1 2 pd

ij1)(1 2 ps
ij1) pd

ij1(1 2 pd
ij1)(1 2 ps

ij1)
2the vectors of fixed and random effects, b and gi, corre-

spond to s21
ε b and s21

ε gi, respectively (Harville and
Mee 1984). In subsequent discussion, we use the stan-
dardized threshold model.

If the putative QTL is not at a marker locus or even
if the QTL is at the marker locus but the marker is not Var(zd

ij) 5 1
ps

ij1pd
ij1(1 2 ps

ij1pd
ij1)

2(ps
ij1)2 pd

ij1(1 2 pd
ij1)

2(pd
ij1)2 ps

ij1(1 2 ps
ij1)

2ps
ij1pd

ij1(1 2 ps
ij1)(1 2 pd

ij1)
fully informative, the genotype of the QTL is unobserv-
able so that zij are missing. We can only infer the distribu-
tion of zij from observed genotypes of linked markers.

2(ps
ij1)2 pd

ij1(1 2 pd
ij1)Define the probabilities of zs

ij1 5 1 and zd
ij1 5 1 condi-

tional on marker information by ps
ij1 5 Pr(zs

ij1 5 1|IM) ps
ij1(1 2 pd

ij1)[1 2 ps
ij1(1 2 pd

ij1)]
and pd

ij1 5 Pr(zd
ij1 5 1|IM), respectively. Let E(zij|IM) be the

2ps
ij1pd

ij1(1 2 ps
ij1)(1 2 pd

ij1)conditional expectation of zij given marker information
(IM). The linear model (1) can be approximated by the 2ps

ij1(1 2 ps
ij1)(1 2 pd

ij1)2

following heterogeneous residual variance model:

2(pd
ij1)2 ps

ij1(1 2 ps
ij1)yij 5 xT

ijb 1 fi 1 E(zij|IM)Thi 1 eij. (2)
2ps

ij1pd
ij1(1 2 ps

ij1)(1 2 pd
ij1)The residual variance is

pd
ij1(1 2 ps

ij1)[1 2 pd
ij1(1 2 ps

ij1)]
Var(eij) 5Var(yij|IM, b, fi, hi)

2pd
ij1(1 2 pd

ij1)
5 hT

i Var(zij|IM)hi 1 s2
ε 5 Vij,

where s2
ε 5 1 (as chosen in the standardized threshold

model) and hT
i Var(zij)hi is the variance not explained

2ps
ij1pd

ij1(1 2 ps
ij1)(1 2 pd

ij1)

2ps
ij1(1 2 ps

ij1)(1 2 pd
ij1)2

2pd
ij1(1 2 pd

ij1)(1 2 ps
ij1)2

(1 2 ps
ij1)(1 2 pd

ij1)[1 2 (1 2 ps
ij1)(1 2 pd

ij1)]
2.due to the uncertainty of the QTL genotype (Xu 1996b,

1998). Given conditional probabilities pS
ij1 and pd

ij1, the
expectation and variance matrices of xij are

The conditional probabilities, ps
ij1 and pd

ij1, are calcu-E(zij|IM) 5 (ps
ij1, 1 2 ps

ij1, pd
ij1, 1 2 pd

ij1,
lated using the simplified multipoint method proposed

ps
ij1pd

ij1, ps
ij1(1 2 pd

ij1), (1 2 ps
ij1)pd

ij1, in four-way crosses (Rao and Xu 1998). The method
requires known marker linkage phases in the parents.(1 2 ps

ij1) (1 2 pd
ij1))T

When the linkage phases are not known, they must be
inferred first from marker genotypes of the parents andand
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the offspring. If grandparents are also genotyped, the f(S,g|b,Q) 5 g(S|g,b)p(g|Q).
linkage phases can be accurately reconstructed; other-

The EM-algorithm starts from the joint log-likelihoodwise, a relatively large number of offspring for each
function of the complete datafamily is required (Knott et al. 1996). When family sizes

are too small to provide reasonable accuracy of linkage L 5 log f(S,g|b,Q)
phase inference, alternative models, e.g., the identical-

5 o
n

i51
o
ni

j51

[sijlog Pij 1 (1 2 sij)log(1 2 Pij)]by-descent (IBD)-based random model approach,
should be considered, which are discussed later.

Maximum-likelihood estimation of genetic variances:
1 o

n

i51

log p(gi|Q). (4)
A maximum-likelihood (ML) method is proposed for
estimation of the variance components. We first obtain

In the (m 1 1)th cycle of iteration, the E-step consiststhe sample density, g(sij|gi, b), using the probit relation-
of computingship between the binary phenotype and the model ef-

fects M(Q|Q(m)) 5 E{log(f(S,g|b,Q)|S,Q(m))},

g(sij|gi,b) 5 [Pr(yij . 0|gi,b)]Sij[1 2 Pr(yij . 0|gi,b)]12sij the conditional expectation of the log-likelihood of the
complete data given the estimated parameters Q(m) from

5 3F1 mij

√Vij
24

sij31 2 F1 mij

√Vij
24

12sij

, the previous cycle of iteration. In the M-step M(Q|Q(m))
has to be maximized with respect to Q. Differentiation
with respect to s2

f , s2
a, and s2

d, setting derivatives to zero,where F(·) is the standardized normal distribution func-
and solving for s2

f , s2
a, and s2

d yield the following up-tion and mij 5 xT
ijb 1 fi 1 E(zij|IM)Thi. For notational sim-

dates:plicity, we denote Pij 5 Pr(yij . 0|gi,b) 5 F(mij/√Vij) in
subsequent discussion. Conditional on gi 5 (fi,hT

i )T, in-
s2(m11)

f 5
1
n o

n

i51

E(f 2
i |S,Q(m))dividuals within the same family are independent.

Hence, the joint density for the ith family is

5
1
n o

n

i51

[Var(fi|S,Qm)) 1 E 2(fi|S,Q(m))],p
ni

j51

g(sij|gi,b) 5 p
ni

j51

P sij
ij (1 2 Pij)12sij.

s2(m11)
a 5

1
4n o

2

k51
o
n

i51

[E((as
ik)2|S,Q(m)) 1 E((ad

ik)2|S,Q(m))]For n independent families, the overall joint density is

g(S|g,b) 5 p
n

i51
p
ni

j51

g(sij|gi,b) 5 p
n

i51
p
ni

j51

P sij
ij (1 2 Pij)1 2 sij,

5
1

4n o
2

k51
o
n

i51

[Var(as
ik|S,Q(m)) 1 E 2(as

ik|S,Q(m))

where g 5 (gT
1 gT

2 · · · gT
n)Tand S 5 (s11 s12 · · · snnn)

T. The
1 Var(ad

ik|S,Q(m)) 1 E 2(ad
ik|S,Q(m))],likelihood function is obtained by integrating out the

random effects g and thus becomes a function of the
s2(m11)

d 5
1

4n o
2

k51
o
2

l51
o
n

i51

E((dikl)2|S,Q(m))data S and the parameters j 5 (bT s2
f s2

a s2
d)T. The log-

likelihood function has the form of

5
1

4n o
2

k51
o
2

l51
o
n

i51

[Var(dikl|S,Q(m)) 1 E 2(dikl|S,Q(m))].l(j|S) 5 log#g(S|g,b)p(g|Q)dg, (3)

where Q 5 diag(s2
f s2

a s2
a s2

a s2
a s2

d s2
d s2

d s2
d), as previ- Although the algorithm is conceptually straightfor-

ously defined, ward, it is difficult to carry out the updates exactly be-
cause the posterior means

p(g|Q) 5 p
n

i51

p(gi|Q),
{E(fi|S,Q(m)), E(as

ik|S,Q(m)), E(ad
il|S,Q(m)),

E(dikl|S,Q(m))}and

and the posterior variancesp(gi|Q) 5 (2p)22|Q|21/2exp{21/2gT
i Q21gi}.

{Var(fi|S,Q(m)), Var(as
ik|S,Q(m)),Other types of distribution, rather than normal, may be

specified for gi. The maximum-likelihood estimation Var(ad
il|S,Q(m)), Var(dikl|S,Q(m))}

(MLE) of j is obtained by maximizing the marginal log
likelihood l(j|S) (Searle et al. 1992; Fahrmeir and do not have explicit expressions. In principle, the poste-

rior means and variances can be obtained via numericalTutz 1994).
Direct maximization of (3) is cumbersome due to the integration or a Monte Carlo method (e.g., Fahrmeir

and Tutz 1994; McCulloch 1994; Chan and Kukhigh-dimensional integral structure. Instead, we may
use an EM-algorithm to maximize (3) indirectly. Define 1997). However, numerical integration and the sam-

pling-based methods can be extremely time consumingthe joint density of the complete data by
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and thus are not feasible for whole-genome scanning
for QTL. To ease the computational burden, analytic V̂d 5 1 ś2

f

1 2 ŝ2
f

1 12ŝ2
d. (5)

approximations of the posterior means and the poste-
rior variances are needed. In this study, the posterior The estimated proportions of variances explained by
means are approximated by the posterior modes f̂i, âs

ik, the polygene and the QTL are
âd

il, and d̂ikl (i 5 1, · · ·, n; k, l 5 1, 2) and the posterior
variances by the posterior curvatures V̂ f

i, V̂ s
ik, V̂ d

il, and
ĥ2

p 5
V̂A

V̂A 1 V̂a 1 Vd 1 1
and ĥ2

q 5
V̂a

V̂A 1 V̂a 1 Vd 1 1
,V̂d

ikl (i 5 1, · · ·, n; k, l 5 1, 2). Both the posterior
modes and posterior curvatures are obtained by using

respectively.a Fisher-scoring algorithm, which is described in the
Tests of hypotheses: Although the additive and domi-appendix.

nance effects can be tested individually, we investigateThe resulting EM-algorithm with the Fisher-scoring
only the overall test of the presence of QTL. The nullalgorithm embedded in each E-step jointly estimates
hypothesis is H0: s2

a 5 s2
d 5 0. The alternative hypothe-b, g, s2

f , s2
a, and s2

d as follows:
sis is H1: s2

a ? 0 or s2
d ? 0. The likelihood-ratio test sta-

1. Choose starting values s2(0)
f , s2(0)

a , and s2(0)
d . tistic is used to test the presence of QTL, which is defined

2. Compute posterior mode estimates f̂i, âs
ik, âd

il, and d̂ikl as
(i 5 1, · · ·, n; k, l 5 1, 2) and posterior curvature

L 5 22(L0 2 L1), (6)estimates V̂ f
i, V̂ s

ik, V̂ d
il and V̂d

ikl (i 5 1, · · ·, n; k, l 5 1,
2) via the Fisher-scoring algorithm with variance

where L1 is the log likelihood evaluated under the alter-components replaced by their current estimates
native hypothesis (full model) and L0 is that evaluateds2(m)

f , s2(m)
a , and s2(m)

d . The estimated fixed effect b̂, is
under the null hypothesis (reduced model).also obtained in this step.

Although the EM-algorithm with the Fisher-scoring3. EM-step: Compute s2(m11)
f , s2(m11)

a , and s2(m11)
d by

embedded in each E-step has eliminated the necessity
of numerical integration and provides a convenient way

s2(m11)
f 5

1
n o

n

i51

[V̂ f(m)
i 1 (f̂ (m)

i )2],
for estimation of variance components, it does not auto-
matically generate the numerical value of the likelihood.
To calculate the likelihood value, one still needs numeri-s2(m11)

a 5
1

4n o
2

k51
o
n

i51

[V̂ s(m)
ik 1 (âs(m)

ik )2 1 V̂ d(m)
ik

cal integration. Fortunately, it is manageable in this
stage because the parameters are replaced by their MLEs1 (âd(m)

ik )2],
without updating. The Monte Carlo numerical integra-
tion is applied here due to the high dimensionality ofs2(m11)

d 5
1

4n o
2

k51
o
2

l51
o
n

i51

[V̂d(m)
ikl 1 (d̂(m)

ikl )2].
the random effects. The log-likelihood value under the
alternative model evaluated at the MLE is

4. If convergence is reached, set ŝ2
f 5 s2(m11)

f , ŝ2
a 5

s2(m11)
a , and ŝ2

d 5 s2(m11)
d ; otherwise, increase m by 1

L1 5 o
n

i51

log#p
ni

j51

g(sij|gi, b̂)p(gi|Q̂)dgi.and return to step 1.

Note that under the standardized threshold model, The Monte Carlo approximation of #pni
j51 g(sij|gi, b̂)

s2
f , s2

a, and s2
d are actually ratios of variance components.

p(gi|Q̂)dgi is obtained by
Recall that the value of the residual variance has been
set to unity, which leads the above variances to be

#p
ni

j51

g(sij|gi, b̂)p(gi|Q̂)dgi ≈ 1
M o

M

k51
p
ni

j51

g(sij|g(k)
i , b̂),

s2
f 5 (s2

ε)21(1⁄2VA 1 1⁄4VD 1 VC),

where g(k)
i for k 5 1, · · · , M is a random sample simu-where s2

ε 5 1⁄2VA 1 3⁄4VD 1 1 as given earlier. Let us as-
lated from distribution p(gi|Q̂), and M is the length ofsume that VD 5 VC 5 0 so that we have the relationships
the Monte Carlo simulation. The Monte Carlo approxi-
mation becomes sufficiently accurate when M is very

s2
f 5

1⁄2VA
1⁄2VA 1 1

, s2
a 5

1⁄2Va
1⁄2VA 1 1

, s2
d 5

Vd
1⁄2VA 1 1

,
large. The empirical value of M 5 5000 (Xu and
Atchley 1996b) is adopted in this study.

where VA, Va, and Vd are additive variance of the polygene Under the null hypothesis, model (2) has been re-
and additive and dominance variances of the QTL, re- duced to
spectively. These genetic variances are obtained by us-
ing ŝ2

f , ŝ2
a, and ŝ2

d and solving for the above equations: yij 5 xT
ijb 1 fi 1 εij,

where fi z N(0, s2
f ) and εij z N(0, 1). The log-likelihoodV̂A 5

2ŝ2
f

1 2 ŝ2
f

, V̂ a 5 21 ŝ2
f

1 2 ŝ2
f

1 12ŝ2
a,

value under the reduced model evaluated at the MLE is
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h2
q 5 0.10 (VA 5 0.80, Va 5 0.10, Vd 5 0.10),L0 5 o

n

i51

log#p
ni

j51

g(sij|fi, b̂̂)p(fi|ŝ̂2
f )dfi,

h2
q 5 0.25 (VA 5 0.50, Va 5 0.25, Vd 5 0.25),

where b̂̂ and ŝ̂2
f are the MLE under H0. h2

q 5 0.40 (VA 5 0.20, Va 5 0.40, Vd 5 0.40);
There is a numerical problem with the Monte Carlo

approximation; that is, when the family size becomes (2) sampling strategy (number of families 3 family size):
large, pni

j51 g(sij|g(k)
i , b̂) tends to be close to zero, causing 2 3 250, 5 3 100, 10 3 50, 15 3 33, 20 3 25, and

computational underflows. This can be circumvented 50 3 10; (3) marker polymorphism: two, four, and eight
by first calculating equally frequent alleles at each marker.

Instead of performing simulations under all possible
combinations of parametric settings, we simulated a situ-C(i,k) 5 o

ni

j51

log g(sij|g(k)
i , b̂̂) 5

1
M o

M

k951
o
ni

j51

log g(sij|g(k9)
i , b̂)

ation in which the central level is chosen for each factor
considered above. We referred to this as the “standardand then taking
setting,” which is described as follows: h2

q 5 0.25, 10
families each with 50 sibs and four alleles per marker.log3 1

Mo
M

k51
p
ni

j51

g(sij|g(k)
i , b̂)4 When the influence of different levels of a factor on

the performance of the method is examined, all other
factors are set to the standard levels.5 log3 1

Mo
M

k51

eC(i,k) 1
1
Mo

M

k51
o
ni

j51

log g(sij|g(k)
i , b̂)4.

The simulations were repeated 100 times for each
parametric setting. The standard error of the parameterTherefore, the Monte Carlo-evaluated log-likelihood
estimate was calculated from the standard deviation offunction under the alternative hypothesis is
the estimates among the 100 replicates. To estimate the
statistical power, we ran 1000 additional replicates withL1 5 o

n

i51

log3 1
Mo

M

k51

eC(i,k) 1
1
Mo

M

k51
o
ni

n51

log g(sij|g(k)
i , b̂)4. no QTL segregating while the other two factors were

set at their standard levels. We augmented the polygenic
The Monte Carlo log-likelihood function under the null variance such that the total genetic variance of the liabil-
hypothesis L0 is similarly calculated. ity remained unchanged. The statistical power was deter-

mined by counting the (proportion) number of runs
(over the 100 replicates) that have test statistics greater

SIMULATION STUDIES than a chromosome-wise empirical critical value. The
empirical critical value was obtained by choosing theExperimental design: Application of the proposed
95th and 99th percentiles of the highest test statisticmethod is illustrated via Monte Carlo simulation experi-
over the 1000 runs under the null model (no QTLments. The following properties were examined: the
segregating).bias, the standard error of parameter estimation, and

Under the standard setting, results of the proposedthe statistical power of QTL detection. We simulated a
GLMM approach were then compared with those of thesingle chromosome segment of length 80 cM with nine
simple LMM analysis, where the binary data were treatedevenly spaced codominant markers. In most cases, four
as if they were continuous. We modified the randomequally frequent alleles were simulated at each marker

locus. A single QTL residing at position 25 cM and 12 model method of Xu (1998) so that it can be applied
to the populations that were used in this study.additional independent loci of equal effect (called the

polygene) were simulated for the liability. The domi- Results: The empirical critical values at type I error
rates of 0.05 and 0.01 obtained from 1000 replicatednance effect of the polygene was assumed to be absent.

Both the allelic effects and the allelic interaction effects simulations were 7.87 and 10.73, respectively. The aver-
age likelihood-ratio test statistics and the power esti-(dominance) of the QTL were assumed to be normally

distributed and so was the polygenic effect. Value of the mates over 100 replicated simulations are summarized
in Table 2. As expected, the average test statistic in-liability of each individual took the sum of an overall

mean, values of QTL additive and dominance effects, creases as the QTL heritability increases. The statistical
power also shows the same trend. The sampling strategypolygenic effect, and a residual error sampled from a

standardized normal distribution. The observable bi- also has an effect on the test statistic and the power.
When the total number of individuals is fixed, the aver-nary phenotype was set to be 1 if corresponding liability

exceeded 0, and 0 otherwise. The fixed effect contained age test statistic increases as the family size increases.
However, when the number of families is too small, e.g.,the population mean of the liability only, which led to

a proportion of the trait presence (incidence) of 40%. two, the average test statistic tends to decrease, primarily
due to sampling error of the parents. There is an optimalTo examine the effect of different factors on the per-

formance of the method, we varied each of the following sampling strategy, any deviation from which will cause
a decrease in the test statistic and the power. Markerfactors successively: (1) the proportion of variance ex-

plained by the QTL: polymorphism also plays a role in the test statistic and
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TABLE 2

Average test statistics and empirical powers of QTL detection obtained from 100 replicated simulations

Power %

Test statistic a 5 0.05 a 5 0.01

QTL heritability (h2
q)

0.10 8.63 (6.16) 55 40
0.25 25.13 (13.97) 92 86
0.40 45.77 (20.38) 100 99

Sampling strategy
2 3 250 30.14 (18.34) 91 82
5 3 100 33.52 (17.33) 96 94
10 3 50 25.13 (13.97) 92 86
15 3 33 20.42 (10.98) 92 83
20 3 25 16.43 (8.18) 85 71
50 3 10 10.13 (5.09) 74 47

Number of alleles per marker
Two 21.13 (10.09) 90 84
Four 25.13 (13.97) 92 86
Eight 26.66 (13.31) 96 92

The standard errors of test statistics are given in parentheses.

power. The average test statistic and the statistical power observed in the estimates of variance components. The
bias caused by the first approximation can be reducedincrease as marker polymorphism increases.

The properties of the method were investigated un- by increasing marker density and allelic polymorphism
because the uncertainty of the QTL genotype inferenceder three levels of proportion of variance explained by

the QTL while the other factors were set at their stan- can be reduced so that the single normal distribution
adequately approximates the mixed distribution. Thedard levels (see Table 3). As expected, the estimate of

position of the QTL is quite accurate when h2
q is not too bias caused by the second approximation can be pre-

vented by using a sampling-based Markov chain Montelow. A bias toward the center of the chromosome seg-
ment was observed when h2

q 5 0.10. The estimation er- Carlo (MCMC) algorithm, which is discussed in the next
section. Because most QTL may be in the range ofror of the QTL position was also large when h2

q is small.
Both the polygenic variance and the variances of QTL medium to small in size (variance) and the bias is slight

when the true QTL heritability is in this range, the biaseffects were underestimated by the method. The under-
estimation can be severe when the true variances are should not be of major concern for this method.

The sampling strategy was investigated with the otherhigh. There are two approximations in the derivation
of the method, one being the mixture of four normal factors set at their standards (see Table 4). The estimate

of the QTL position is unbiased when family size isdistributions of the residual of the liability approxi-
mated by a single normal distribution with heteroge- not too small, but larger estimation errors are observed

when either too few or too many families are used. Theneous variance and the other being the posterior means
and variances replaced by the posterior modes and cur- bias in the estimates of variance components also seems

to follow the same trend—the least bias at the optimalvatures. These two approximations may explain the bias

TABLE 3

Mean estimates of QTL parameters under different levels of QTL heritability

QTL heritability Position VA Va Vd h2
q

0.10 True 25 0.80 0.10 0.10 0.10
Estimate 29.80 (16.50) 0.71 (0.60) 0.13 (0.12) 0.08 (0.10) 0.10 (0.05)

0.25 True 25 0.50 0.25 0.25 0.25
Estimate 25.76 (7.38) 0.46 (0.55) 0.26 (0.10) 0.21 (0.24) 0.24 (0.08)

0.40 True 25 0.20 0.40 0.40 0.40
Estimate 24.68 (3.27) 0.29 (0.45) 0.32 (0.27) 0.32 (0.24) 0.33 (0.09)

The standard errors of estimates obtained by the standard deviation of 100 replicated simulations are given
in parentheses.
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TABLE 4

Mean estimates of QTL parameters under different sampling strategies
(number of families 3 family size)

Sampling strategy Position VA Va Vd h2
q

25.00a 0.50 0.25 0.25 0.25
2 3 250 25.75 (9.27) 0.42 (0.60) 0.21 (0.24) 0.21 (0.26) 0.23 (0.09)
5 3 100 25.23 (5.03) 0.49 (0.53) 0.25 (0.23) 0.23 (0.19) 0.25 (0.09)

10 3 50 25.76 (7.38) 0.46 (0.50) 0.26 (0.22) 0.21 (0.24) 0.24 (0.08)
15 3 33 25.62 (10.08) 0.42 (0.43) 0.21 (0.17) 0.19 (0.15) 0.22 (0.08)
20 3 25 25.02 (7.34) 0.51 (0.41) 0.23 (0.19) 0.18 (0.13) 0.21 (0.07)
50 3 10 27.14 (15.86) 0.49 (0.36) 0.19 (0.13) 0.17 (0.10) 0.20 (0.06)

The standard errors of estimates obtained by the standard deviation of 100 replicated simulations are given
in parentheses.

a Numbers in this row are the true parametric values.

sampling strategy (5 3 100). The estimation errors of for binary traits but to illustrate that the proposed
method behaves like the existing QTL mapping proce-the variance components, however, seem to decrease

monotonically as the number of families increases. dures developed for regular quantitative traits. The con-
clusion is that the method behaves as expected andIncreasing the level of marker polymorphism can im-

prove the estimate of QTL position but has limited effect works well in the situations examined.
on the estimation of the variance components (Table 5).

The empirical critical values at type I error rates of
DISCUSSION

0.05 and 0.01 obtained from 1000 replicated simulations
were 8.01 and 14.61, respectively, when treating binary Both the random model approach of QTL mapping

for normally distributed traits and the fixed model ap-data as normally distributed. In the “standard setting,”
the power estimates over 100 replicated simulations proach of QTL mapping for binary traits are well devel-

oped (Fulker and Cardon 1994; Hackett and Wellerwere 83 and 60%, respectively, lower than 92 and 86%,
which were observed under the threshold model. The 1995; Xu and Atchley 1995; Grignola et al. 1996;

Visscher et al. 1996; Xu 1996a; Xu and Atchley 1996a;estimates of the QTL position and its standard error
were 25.52 and 11.75, respectively. The heritability esti- Rebai 1997; Rao and Xu 1998). Our contribution is to

develop the random model approach of QTL mappingmate of the observed binary trait and its standard error
were 0.16 and 0.078, respectively. We converted the for binary data, which is a combination of the two exist-

ing approaches. Although neither approach is compli-heritability estimate of the observed binary trait into
that of the liability (Lynch and Walsh 1998, p. 743) cated enough by itself to prevent the use of an exact

ML method, the combination becomes cumbersomeand obtained the liability heritability estimate 0.28 and
it standard error 0.14. As expected, the proposed enough that there does not exist an exact form of ML

method due to the lack of analytically and computation-method has a higher statistical power and also produces
more accurate estimates of the QTL position and the ally tractable mixing distributions. The method pre-

sented here illustrates the use of a GLMM for QTLheritability than the method that directly analyzes the
binary trait. mapping with some approximations (see simulation

studies for the approximations). Results of MonteThe purpose of the simulation experiments is not to
exhaustively search for the best design of QTL mapping Carlo simulations show that the approximations are well

TABLE 5

Mean estimates of QTL parameters under different levels of marker polymorphism

Marker alleles Position VA Va Vd h2
q

25.00a 0.50 0.25 0.25 0.25
Two 26.57 (8.38) 0.43 (0.40) 0.23 (0.22) 0.20 (0.16) 0.23 (0.07)
Four 25.76 (7.38) 0.46 (0.55) 0.26 (0.22) 0.21 (0.24) 0.24 (0.08)
Eight 25.20 (5.54) 0.58 (0.60) 0.24 (0.20) 0.22 (0.17) 0.23 (0.08)

The standard errors of estimates obtained by the standard deviation of 100 replicated simulations are given
in parentheses.

a Numbers in this row are the true parametric values.
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justified because both the location and the effects of the the sample of offspring within the single family to ensure
that segregation of the QTL alleles in the parents issimulated QTL are well estimated by the approximate

method. These minor assumptions have yielded a com- detectable. The method is heavily dependent on the
parents sampled. If the parents do not segregate at aputationally attractive ML method. With this approxi-

mate ML, we can perform genome scanning of QTL QTL, there is no power to detect it even though the
QTL segregates in the population in which these twofor binary traits, just as we do for regular quantitative

traits. To the best of our knowledge, this is the first parents are sampled. One can combine information
from multiple families to ensure that segregating par-attempt to map QTL for binary data using an approach

that is consistent with classical quantitative genetic ents are sampled (Muranty 1996; Xie et al. 1998; Xu
1998). There are two strategies for combining data fromtheory.

Approximations occurred twice in the derivation of multiple families: the fixed model and the random
model approaches. Which model should we choose?the method, one being that the mixture of four normal

distributions of the residual in the scale of liability is One should decide whether the parents chosen to form
the mapping population are a random sample from aapproximated by a single normal distribution and the

other being that the posterior means and posterior vari- hypothetical large population (base population). If they
are, one should consider the use of the random modelances are replaced by the posterior modes and curva-

tures. The first approximation can be easily relaxed; i.e., approach, provided that one is interested in understand-
ing the genetic properties of the base population. If thewe can directly use the mixed distribution rather than

a single distribution, although the exact expression of parents of the mapping population are not randomly
sampled and one has no desire to understand the basethe Fisher-scoring algorithm is not as clean as it is now.

Analytically, the second approximation can also be re- population, but only the mapping population, then the
fixed model is more appropriate. Under the randomlaxed, but the price is an unrealistic computational time.

The posterior means and posterior variances can be model approach, we are interested in making a statistical
inference about the base population. Namely, the esti-calculated via a sampling-based approach, e.g., the Gibbs

sampler. The combination of the EM with the sampling- mated QTL variances may reflect the actual genetic
variation existing in the population where the experi-based approaches is called the Monte Carlo EM (Fahr-

meir and Tutz 1994; McCulloch 1994; Chan and Kuk mental units are sampled.
Interestingly, we can use the fixed model approach1997). The Monte Carlo EM is feasible for evaluation

of a single point of a genome but unrealistic for the to solve the random model problem. In this situation,
we have a random model in our mind; i.e., we are inter-whole genome scanning because many points need to

be evaluated. At any single point, there are many EM- ested in inferring the statistic(s) drawn from the sample
to the base population, but we may first estimate andsteps, each requiring many cycles of the Gibbs sampler

(Gibbs chain). If the Gibbs chain is long, the time re- test the first moment statistics (the effects) as if they
were fixed effects and then calculate the variance of thequired in the total genome scanning can be unrealistic.

If the chain is too short, on the other hand, the posterior effects by relaxing the fixed assumption. Statistically,
this approach is identical to Henderson’s method IIImeans and posterior variances will deviate from the

exact values. At this point, the approximate ML method for variance component estimation (Searle et al. 1992).
Because the model is a random model, but the statisticalis perhaps better suited than the Monte Carlo EM. An-

other exact method is the Bayesian approach of QTL method itself is not a real random model approach, we
call it the pseudorandom model approach. This ap-mapping. Instead of performing whole-genome scan-

ning, one can treat the positions of multiple QTL as proach has been previously examined in QTL mapping
using multiple families of line crosses (Xu 1998) andunknown variables. The number of QTL can even be

treated as an unknown variable and be searched simulta- outbred populations (Knott et al. 1996). Yi and Xu
(1999) recently developed the pseudorandom modelneously (Heath 1997; Uimari and Hoeschele 1997;

Sillanpaa and Arjas 1998). The full Bayesian treat- approach of QTL mapping for binary data using multi-
ple families. We showed that the pseudorandom modelment must also be implemented via the sampling-based

approach, which is of course time consuming. The full approach is quite efficient and computationally much
faster than the true random model approach. There is,Bayesian treatment may show some advantages over the

ML approach, but the price is the increased computa- though, a complication in the interpretation of the test
statistic in the pseudorandom model. Because the QTLtional burden and a reduced intuitiveness of the ge-

nome scanning. Although the full Bayesian approach effects are tested and the number of QTL effects in-
creases as the number of families increases, the criticalseems to be the direction of QTL mapping research in

the future (Satagopan et al. 1996; Heath 1997; Uimari value of the test statistic used to declare statistical sig-
nificance changes accordingly as the number of familiesand Hoeschele 1997; Sillanpaa and Arjas 1998), it

cannot replace the existing ML approach in practice. changes. This is undesirable because the guidelines for
significance declaration suggested by Lander andConventional QTL mapping procedures utilize a sin-

gle family of line cross. Almost all effort is allocated to Kruglyak (1995) cannot be applied. The true random
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model approach developed in this study does not have and reconstruct a full-ranked Pi with a reduced dimen-
sion. The principle of the IBD-based method is notthat drawback and is statistically more sound. It should
complicated, but implementation of the method de-complement, but not replace, the existing pseudoran-
serves further investigation.dom model approach.

In this study, we have assumed that QTL effects areThe QTL mapping procedure presented in this study
normally distributed. In reality, the number of allelesis based on known marker linkage phases in the parents.
and the allelic frequencies of a putative QTL in the baseTherefore, the inference of marker linkage phases is a
population are rarely known, nor are the distributionsprerequisite of the method. There are several ways to
of the effects of the QTL. However, drawing inferencesdeduce the parental haplotypes in outbred populations:
about the QTL variance via the normal distribution is(1) track alleles from the parental genotype through the
a natural way to characterize genetic variation in thesegregating progeny population; (2) use grandparental
base population. In addition, normal distribution of thegenotypes; or (3) genotype the parents directly using
allelic effects is usually a very robust assumption. ThisPCR-based marker technology from parental gametes
has been verified for normal traits by Xu and Atchley(Williams 1998). The accuracy of phase inference us-
(1995), who found that, for data simulated under aing method (1) largely depends on the family size. When
biallelic model, the analysis based on the normal distri-the family size is small, inference of the parental linkage
bution provided very accurate estimates of QTL vari-phases is subject to error, which will likely reduce the
ances.power of QTL detection. Therefore, the method pre-

Although we demonstrate the statistical method ofsented is practical only for species with large family sizes,
QTL mapping using full-sib families as an example, insay ni $ 20 for i 5 1, . . . , n. To apply this method to
principle, families from other types of mating designsQTL mapping in species with small family sizes, e.g.,
can be readily incorporated by modifying model (2)human and some other mammals, we must modify the
and the conditional probabilities p s

ij1 and pd
ij1. The modelmethod by incorporating the IBD approach (Fulker

considered here assumes only one QTL on the chromo-and Cardon 1994). The IBD-based approach requires
some. In reality, complex binary traits may be controlledonly the proportion of allelic sharing by two relatives
by multiple loci. With our random model approach,(e.g., sibs) and does not distinguish as to which alleles
QTL located on other chromosomes will be absorbedof the parents are being shared by the sibs. This elimi-
into the polygenic term. If there are multiple QTL innates the necessity of linkage phase information. Incor-
the same chromosome, the estimation tends to be biasedporation of the IBD-based approach into the current
because of interference caused by QTL located on themethod is straightforward; one simply replaces the ge-
same chromosome but outside the tested region. Thisnetic (random) effects of the parents by the genetic
problem can be solved by resorting to the concept ofeffects of the progenies and solves for the genetic effects
composite interval mapping (Jansen 1994; Zeng 1994).of the progenies in the Fisher-scoring step with Q re-
Our model can be readily extended to implement com-placed by
posite interval mapping by incorporating markers on
other chromosome regions as covariates. These con-
trolled marker effects can be equally treated as random

Qi 5 1s
2
f

0
0

Pi s
2
a
2 5 1

s2
f 0 ··· 0

0 p11s
2
a ··· p1ni s

2
a

A A ··· A
0 p1ni s

2
a ··· pnini s

2
a
2,

effects and their variances can absorb QTL variances
outside the tested region so that bias can be reduced
or eliminated (Xu and Atchley 1995).

where s2
f is the variance of family-specific effects as de-
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4
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ib Db(k) 1 F(k)
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i 5 S(k)
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is obtained, where each iteration step implies working
off the data twice to obtain first the corrections (Fahr-
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j51

3φ(mij/√Vij)4
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Pij(1 2 Pij)Vij

xij meir and Tutz 1994), and then
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i 2 F(k)
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4 With the above expressions, inversion of matrix F(u)

has been replaced by inversions of many matrices of
smaller sizes, i.e., Fbb and Fii for i 5 1, · · · , n.
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A nice property of the Fisher-scoring algorithm is that

the variance-covariance matrix of û can be approxi-
mated by the inverse of the Fisher information matrix,3 3E(wij|IM) 2

mijVar(wij|IM)gi

Vij
4,

i.e., Var(û) ≈ F(û)21. Because the resulting estimate û is
a MLE, it follows a multivariate normal distribution if
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T

1 Q21, the family sizes ni are sufficiently large, i.e., û j N(u,
F(û)21). As a result, the posterior mode and curvature
evaluated at the mode are good approximations of the
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]gk
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]gT

l
2 5 0 for k ? l, posterior mean and covariance matrix. The inverse ma-

trix, F(u)21, is obtained using standard formulas for
where φ (·) is the probability density of the standardized inverting partitioned matrices (Fahrmeir and Tutz
normal distribution. Vector wij is defined as wij 5 1994). The result is summarized as
(1 zT

ijH)T, which leads to
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A A
Vnb Vn1 Vn1 A Vnn

2.

Var(wij|IM) 5 10 0T

0 HTVar(zij|IM)H2,
where 0 5 (0 0 0 0)T. and

Let Fbb 5 E]L/]b, ]L/]bT Fbi 5 Fib
T 5 E(]L/]b ]L]gT,
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has the special structure

Vbi 5 VT
ib 5 2VbbFbiF21

ii ,

Vii 5 F21
ii 1 F21

ii FibVbbFbiF21
ii ,
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Vij 5 VT
ji 5 F21

ii FibVbbFbjF21
jj for i ? j.

According to our experience, the Fisher-scoring algo-
rithm behaves very well with regard to convergence to

Because the lower right part of F(u) is block diagonal, a local maximum. The algorithm is also relatively fast;
the Fisher-scoring algorithm can be reexpressed more e.g., convergence usually took ,10 iterations in most

situations examined in this study.simply as


