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ABSTRACT
A point connecting a pair of homologous regions of DNA duplexes moves along the homology in a

reaction intermediate of the homologous recombination. Formulating this movement as a random walk,
we were previously successful at explaining the dependence of the recombination frequency on the
homology length. Recently, the dependence of the recombination frequency on the DNA sequence
divergence in the homologous region was investigated experimentally; if the methyl-directed mismatch
repair (MMR) system is active, the logarithm of the recombination frequency decreases very rapidly with
an increase of the divergence in a low-divergence regime. Beyond this regime, the logarithm decreases
slowly and linearly with the divergence. This “very rapid drop-off” is not observed when the MMR system
is defective. In this article, we show that our random-walk model can explain these data in a straightforward
way. When a connecting point encounters a diverged base pair, it is assumed to be destroyed with a
probability that depends on the level of MMR activity.

MANY experimental studies have analyzed the rela- (Fujitani and Kobayashi 1995; Fujitani et al. 1995).
tionship between the frequency of homologous In our previous articles, we formulated the movement

recombination and the homology length that ranges in vivo of a point connecting a pair of homologous
from some hundreds of base pairs up to z20 kbp regions of DNA duplexes in the reaction intermediate
(Singer et al. 1982; Rubnitz and Subramani 1984; as a random walk on the basis of observations in vitro
Shen and Huang 1986; Ahn et al. 1988; Deng and of Thompson et al. (1976) and Panyutin and Hsieh
Capecchi 1992; Sugawara and Haber 1992; Jinks- (1993); we found that a shift from the third-power de-
Robertson et al. 1993). Bacterial systems were investi- pendence to the linear dependence of the recombina-
gated at first, and the data were explained in terms tion frequency on the homology length takes place as
of the MEPS (minimal efficient processing segment) the homology length increases. The former dependence
theory (Singer et al. 1982; Shen and Huang 1986). A agrees well with the data from the mammalian gene
MEPS means a segment of the threshold length below targeting system.
which the reaction becomes inefficient, probably be- The recombination frequency has been found to de-
cause a protein-DNA interaction requires a certain crease as sequence differences are introduced into the
length to occur. The frequency is assumed to be propor- homologous region; its logarithm appears to be reduced
tional to the number of ways of obtaining a MEPS (Meps linearly with an increase of the divergence (the ratio of
bp) in the homologous region (N bp; Figure 1) and is the number of diverged base pairs to the number of all
given by base pairs in a region of homology between two DNA

duplexes) for very long homologous regions (106–107
c(N 2 Meps 1 1), (1)

bp) in bacterial systems (Roberts and Cohan 1993;
where c is the constant of proportionality. The linear Zawadzki et al. 1995; Vulić et al. 1997; Majewski and
function thus obtained, however, was later found to Cohan 1998). Vulić et al. (1997) studied effects of
disagree with nonlinear dependence of the frequency the methyl-directed mismatch repair (MMR) system and
on the homology length observed in a mammalian gene the SOS system on the reduction; the absolute value of
targeting system (Deng and Capecchi 1992). the slope becomes larger as the MMR activity increases,

In contrast with the MEPS theory, our “random-walk while the intercept goes up as the SOS activity increases
model” was shown to explain the data from both systems when the MMR system is active. Datta et al. (1997)

used a short homologous region of 350 bp in a yeast
mitotic recombination system and found that the loga-

Corresponding author: Youhei Fujitani, Department of Applied Physics rithm drops rapidly in a regime of very low divergence
and Physico-Informatics, Faculty of Science and Technology, Keio and drops slowly and linearly beyond this regime inUniversity, Yokohama 223-8522, Japan.
E-mail: youhei@appi.keio.ac.jp the wild-type (Mmr1) strains. In the MMR-defective

Genetics 153: 1973–1988 ( December 1999)



1974 Y. Fujitani and I. Kobayashi

review of the original version of the random-walk model.
Symbols we use frequently are listed in Table 1.

PREVIOUS MODELS

Assuming that a base pair at a particular position in
a homologous region will be diverged with a probability
equal to the divergence (D, 0 # D # 1), one can calcu-
late the average recombination frequency to compare
it with experimental data. We express this average over
positions of diverged base pairs by putting the recom-Figure 1.—The number of ways of obtaining a MEPS. The

top long line represents a homologous region with N bp. bination frequency, denoted by P, between the angle
The subsequent shorter lines indicate some of the possible brackets, k and l, in the following equations. The re-
positions of a MEPS, of which the length is Meps bp; the upper-

combination frequency at D 5 0 need not be averaged.most shorter line indicates a case where a MEPS is located at
In the MEPS theory, initial enzymes are supposed tothe left end of the homologous region. Here, we suppose

Meps 5 6 bp although it is thought to be much longer actually. work only when they cling to a MEPS devoid of diverged
The total number of the positions is N 2 Meps 1 1, which is base pairs; the recombination frequency is proportional
the number of ways of obtaining a MEPS in the homologous to the number of ways of picking up a MEPS devoid of
region.

diverged base pairs from the homologous region (N bp
in total; Vulić et al. 1997; Majewski and Cohan 1998).
The probability with which a segment of M bp has no(Mmr2) strains, the logarithm was shown to drop with-
diverged base pairs is given by (1 2 D)M, where it doesout the “very rapid drop-off” as the divergence increases
not matter if the segment is a part of a longer diver-from zero.
gence-free region. Thus, the number of ways is (N 2As described in the next section, these effects of the
Meps 1 1)(1 2 D)Meps on average, and the averaged re-MMR system have been explained in terms of the MEPS
combination frequency is a function of D and N,theory, which has already failed to explain the nonlinear

dependence of the recombination frequency on the kP(M)(D, N)l 5 c(N 2 Meps 1 1)(1 2 D)Meps
homology length. Here we present an alternative expla-
nation in terms of the random-walk model after a brief 5 (1 2 D)Meps P(M)(D 5 0, N), (2)

TABLE 1

Glossary

Symbol Definition

N Length of the homologous region.
Meps Length of the MEPS (minimal efficient processing segment).
D Sequence divergence; 0 # D # 1.
k l Indicating the average over positions of diverged sites.
P(M) Recombination frequency calculated in the MEPS theory.
n Length of an identical (sub)region.
t Time; a connecting point is produced at t 5 0.
a Probability of production of a connecting point per site.
gj Transition probability per unit time (or transition rate) of the random walk: gj 5 g from an identical site and

gj 5 g9 from a diverged site.
hj Ratio to g of the probability of being processed: hj 5 h at an identical site and kj 5 h9 at a diverged site.
kj Conditional probability of resolution given that a connecting point is processed: kj 5 k at an identical site and

kj 5 k9 at a diverged site.
pj(t) Probability distribution of the random walker at site j at time t.
p(m;n)

j (t) pj(t) under the initial condition: pj(0) 5 1 for j 5 m and pj(0) 5 0 otherwise (1 # m # n, 1 # j # n; n; homology
length).

* An imaginary site, representing the state at which a connecting point has been resolved.
P(n) Recombination frequency calculated in the original version of the random-walk model.
Fl(m,n) Probability with which the lth site of the homologous region is the mth site of an identical subregion with n

sites.
kP1(D, N)l Averaged recombination frequency calculated in the random-walk model to explain the “very rapid drop-off.”
P(RT)(N) Recombination frequency calculated in the random-walk model with a set of the transition rates of the random-

trap type.
x2 Sum of the squared differences between data values and a theoretical curve.
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where the superscript (M) indicates a result in the agrees with their data. Datta et al. (1997) suggested
that this difference is observed probably because, evenframework of the MEPS theory, c is the constant used

in Equation 1, and P(M)(D 5 0, N) is the recombination between identical substrates, the MMR system is trig-
gered by either intrastrand secondary structure or un-frequency at D 5 0 given by Equation 1. When D ! 1,

because e2D ≈ 1 2 D, we have paired regions caused by the branch migration passing
into the flanking nonhomologous region.

lnkP(M)(D, N)l ≈ ln P(M)(D 5 0, N) 2 MepsD. (3) We feel that Datta et al. (1997) introduced many
fitting parameters without discussing the reaction mech-The reaction, thus initiated, may be aborted by the MMR
anism in enough detail although they fitted Equationsystem. The MMR system would attack a mismatch,
5 to their data well. They did not convincingly explainwhich is produced at a diverged base pair as the hetero-
why the probability of triggering the MMR system isduplex elongates.
uniformly 1 2 R0 if the heteroduplex elongates longerVulić et al. (1997) thought that a divergence-free
than a threshold length without producing mismatchessegment would be required not only for the initiation
and is otherwise uniformly unity.but also for escape from the attack of the MMR system.

Thus, Meps should be modified to include the length
required for the latter; they rewrote Equation 3 as

THE RANDOM-WALK MODEL
lnkP(M)(D, N)l ≈ ln P(M)(D 5 0, N) 2 M †

epsD, (4)
Here we review the original version of the random-

walk model (Fujitani et al. 1995; Figures 2 and 3), whichwhere the modified MEPS length, M †
eps, depends on the

is appropriate for an identical region. A connectinglevel of MMR activity. Equation 4 implies that the loga-
point is assumed to “walk randomly” over sites in therithm is a linear function of D with the slope dependent
homologous region of n bp. Assuming for simplicityon the level of MMR activity. As shown later, Vulić et
that the step size of the random walk is exactly theal. (1997) could not fit Equation 4 to their data set for
interval between neighboring base pairs along a DNAthe strains overproducing MMR proteins over the whole

divergence range examined; the absolute value of the
observed slope appears to become smaller as D in-
creases, as in the very rapid drop-off. They supposed
that this happens because the MMR machinery is satu-
rated by many mismatches; but they did not formulate
this saturation.

Datta et al. (1997) assumed that, if the heteroduplex
region has elongated less than b bp before it encounters
the first diverged base pair, the MMR system is always
triggered by the resultant mismatch; they assumed that
otherwise the MMR system is not triggered by the mis-
match with probability R0. Because the probability with
which the heteroduplex elongates longer than or equal
to b bp without producing mismatches is (1 2 D)b ≈
e2bD, the probability with which the MMR system is trig-
gered is given by 1 2 R0e2bD. They introduced a factor
f denoting the probability with which the reaction is
aborted after the MMR system is triggered and ex-
pressed the averaged recombination frequency as a
function of D, N, and f :

kP(M)(D, N, f )l 5 e2MepsDP(M)(D 5 0, N, f 5 0)

3 {1 2 f (1 2 R0e2bD)}. (5)

Figure 2.—Likely steps of homologous recombination. (A)They fitted Equation 5 to their experimental data (N 5
A region of homology between two DNA duplexes. (B) A

350) for the wild-type strains showing the very rapid recombinogenic event in one of them causes their homolo-
drop-off to obtain f 5 0.97. When f 5 0, Equation 5 is gous pairing. (C) The homologous regions are connected at

a point. A Holliday junction is one example of the connectingequivalent to Equation 3, which can explain the data
point, but the molecular details need not be specified. (D)for the Mmr2 strains showing no very rapid drop-off.
The connecting point of the reaction intermediate movesEquation 5 gives different values to the recombination
along the homology. During this movement, it may be some-

frequency between identical substrates in the wild-type how destroyed, or (E) it may be resolved to a recombinant.
strains, kP(M)(D 5 0, N 5 350, f 5 0.97)l, and to that in (F) When the connecting point encounters the nonhomology,

the intermediate is somehow destroyed.the Mmr2 strains, kP(M)(D 5 0, N 5 350, f 5 0)l, which
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Figure 3.—The random-walk model for an
identical region. (A) A connecting point “walks
randomly” over n sites with the transition proba-
bility per unit time (or transition rate) g. Sites x
and * are imaginary, representing the state at
which a connecting point has been destroyed at
one of the real sites from 1 to n and the state
at which it has been resolved to a recombinant,
respectively. Ratios h and k are defined in the text
and Table 1; ghk gives the transition probability
with which a random walker is resolved to a recom-
binant at each site per unit time, and gh(1 2 k)
gives the transition probability with which it is
destroyed, i.e., disappears without yielding a re-
combinant, at each site per unit time. Each of
sites 0 and n 1 1 is imaginary, representing the
state at which a connecting point is destroyed by
encounter with an end of the homology. (B) The
potential of the intermediate would depend on
the position of the connecting point. The poten-
tial, supposed in the original version of the ran-
dom-walk model, is schematically plotted against
the position. Each of the sites, over which the
random walk occurs, is located at the valley bot-
tom. For simplicity, “being processed” is not repre-
sented.

duplex, we have n (@ 1) sites in the region. We assume necting point at a (real) site j (1 # j # n) at time t, and
p*(t) is this probability distribution at an imaginary sitethat a connecting point is produced at the initial time

(t 5 0) with probability a per site and neglect cases * (Figure 3A). This site represents the state at which a
homologous recombinant has been formed. The param-where more than one connecting point is produced in

a relatively short identical region (na ! 1). A “randomly eter g is the transition probability per unit time (or
transition rate) of the random walk; h is the ratio of thewalking” connecting point is assumed to be processed

somewhere within the region. Here, “being processed” probability with which a random walker (a connecting
point) is processed per site per unit time to g. Theincludes “being resolved to a recombinant” and “being

destroyed” (i.e., “disappearing without yielding a recom- assumption adopted here that g, h, and k are site-inde-
pendent is appropriate when the homologous region isbinant”). We write k (0 , k # 1) for the conditional

probability of resolution given that a connecting point devoid of sequence divergence. We assume that the re-
combination frequency is measured after a long enoughis processed. A connecting point is assumed to be de-

stroyed whenever it encounters either end of the homol- time in the experiments.
Suppose first that a connecting point is produced atogy. This is the condition of a totally absorbing bound-

ary (van Kampen 1981). Hence, we have the master a real site m, and the initial condition is given by pj(0) 5
0 for j ? m and pm(0) 5 1. The solution pj(t) of Equationequation [Equations 1–4 of Fujitani et al. (1995)],
6 depends on m and the number of the sites n; we
use a superscript (m;n) to express this dependence. Asdpj

dt
5 gpj11(t) 1 gpj21(t) 2 g(2 1 h)pj(t)

derived in appendix a, the recombination frequency
after a long enough time is given byfor 2 # j # n 2 1,

p(m;n)
* (∞) 5 o

n

j51

ghk #
∞

0
dt p(m;n)

j (t) (7)dp1

dt
5 gp2(t) 2 g(2 1 h)p1(t),

5 2k
sinh φ(n 1 1 2 m)sinh φm

cosh φ(n 1 1)
, (8)dpn

dt
5 gpn21(t) 2 g(2 1 h)pn(t),

wheredp*

dt
5 ghko

n

j51

pj(t), (6)

φ ; 1
2

ln 11 1
h 1 √h2 1 4h

2 2 . (9)
where pj(t) denotes the probability distribution of a con-
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Here, sinh and cosh, as well as tanh and coth appearing the connecting point is. One may refer to the potential
energy as “free energy” following the transition statebelow, are the hyperbolic functions. Because a connect-

ing point is actually produced with probability a per theory of Eyring (Eyring and Eyring 1963). We as-
sumed that this potential energy has approximately asite, the recombination frequency is given by
periodicity such that the period is equal to the interval

P(n) 5 o
n

m51

ap(m;n)
* (∞). (10) between neighboring base pairs along a DNA duplex

(Figure 3B), and that difference between its maxima
and its minima is large enough, as described in appen-When h ! 1, we have
dix a of Fujitani et al. (1995). Diffusion in such a
periodic potential can be considered as a (symmetrical)P(n) ≈ ka




(n 1 1) 2

2

√h
tanh

(n 1 1)√h
2





(11)
random walk over sites, each of which is located at the
“valley bottom” of the potential. Thus, we formulated

≈




hkan3/12 for n ! 2/√h

ka(n 2 2/√h) for n @ 2/√h
, (12) the movement of a connecting point as a random walk.

as described in appendix a and in Fujitani et al. (1995).
THEORY FOR THE VERY RAPID DROP-OFFThus, the transition from the third-power dependence

to the linear dependence happens as the length (n) Here we explain why the very rapid drop-off was ob-
served in Datta et al.’s (1997) data for the wild-typeincreases above 2/√h. The expression in the lower line

of Equation 12 apparently coincides with the linear func- strains (Mmr1; open squares in Figure 5) in terms of
the random-walk model. Below we perform curve fitstion given by Equation 1. One can see that the parame-

ter h, named “relative probability of intermediate pro- to experimental data by using the software IGOR (Wave-
Metrics, Lake Oswego, OR) on a Macintosh computer.cessing,” is a key parameter here, instead of the MEPS

length in the MEPS theory. As shown by Fujitani et al. We use x2 ; Ri(y 2 yi)2 as a measure of the goodness of
fit, where yi is the data value (the natural logarithm of(1995), the third-power dependence agrees well with

the data from a mammalian gene targeting system, the recombination frequency) for the ith data-point and
y is the value of a theoretical curve at the point. Thewhere the dependence was originally described as expo-

nential (Deng and Capecchi 1992). results are summarized in Table 2.
As in the previous models (Datta et al. 1997; VulićExpressed in terms of physics [see, e.g., chapters VI

and X of van Kampen (1981)], the reaction intermedi- et al. 1997), we assume that the MMR system aborts
the reaction by attacking mismatches resulting fromate would have a potential energy depending on where

TABLE 2

Results of curve fits

Data source Figure Modela Fitting function: fitted valuesb x2 value

Yeast mitotic recombination (Datta et al. 1997)
Mmr2 d in Figure 4 RW Equation 18: h 5 2.2 3 1023, ka 5 8.4 3 1029, h9 5 8.1 3 1022, 1.2 3 10

k9/k 5 6.9 3 1027c

MEPS Equation 5: f 5 0, (Meps 5 23), (P(M)(f 5 D 5 0) 5 5.1 3 1026) 7.1
Wild type h in Figure 4 RW Equation 13: h 5 1.2 3 1024, ka 5 3.4 3 1029 7.3

MEPS Equation 5: f 5 0.97, Meps 5 23, b 5 610, R0 5 0.18, P(M)( f 5 1.8
D 5 0) 5 5.1 3 1026

Conjugational cross of enterobacteria (Vulić et al. 1997)
Mmr2 3 in Figure 7 RW Equation 18: h 5 3.2 3 1025, ka 5 3.1 3 1029, h9 5 1.9 3 1023, 0.60

k9/k 5 3.6 3 1027d

MEPS Equation 4: ln P(M)(0, N) 5 2 3.6, M †
eps 5 1.7 3 10 0.38

Wild type s in Figure 7 RW Equation 13: (h 5 3.2 3 1025), (ka 5 3.1 3 1029) 2.3 3 10
MEPS Equation 4: ln P(M)(0, N) 5 22.8, M †

eps 5 6.2 3 10 0.47
Mmr11 n in Figure 7 RW Equation 13: h 5 1.0 3 1026, (ka 5 3.1 3 1029) 2.5 3 10

MEPS Equation 4: ln P(M)(0, N) 5 2 2.9, M †
eps 5 2.2 3 102 3.0e

MEPS Equation 4: ln P(M) (0, N) 5 25.9, M †
eps 5 7.1 3 10 2.9 3 10f

a RW, the random-walk model; MEPS, previous theories supposing the minimal efficient processing segment.
b A parameter in parentheses is not a fitting parameter, and its value remains fixed during the curve fitting.
c The k9/k value varies from 1027 to 1024 depending on the initial condition of curve fitting.
d The k9/k value varies from 1027 to 1023 depending on the initial condition of curve fitting.
e The data point at D 5 0.17 is excluded from this line fit.
f This line fit is performed over the whole divergence range examined (0 # D # 0.17).
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verged sites (Figure 4A), lies between a diverged site
and either end of the homologous region (Figure 4B),
or coincides with the entire homologous region. In the
first case, we have Fl(m, n) 5 D 2(1 2 D)n because n bp
are identical with probability (1 2 D)n and 2 bp at both
ends are diverged with probability D 2. In the secondFigure 4.—Explanation of Fl(m, n). The symbol | indicates
case, we have Fl(m, n) 5 D(1 2 D)n because 1 bp atan identical site (a site of an identical base pair), and x indi-

cates a diverged site (a site of a diverged base pair). The an end need not be diverged. Which case we have is
homologous region (N sites) is divided into several subregions determined by the relationship among l, m, n, and N
by diverged sites. The lth site from the left end of the homolo- as shown in appendix b.gous region is a diverged site, or the mth site from the left

Noting that Equation 8 gives the probability of resolu-end of an identical subregion (A) with n sites. The probability
tion of the connecting point considered above, we canof this case is denoted by Fl(m, n), where 1 # l # N, 1 # m

# n, and 1 # n # N. This identical subregion lies between express the averaged recombination frequency in the
two diverged sites. An identical subregion (B) with n 5 2 lies homologous region by
between an end of the homologous region and a diverged
site. kP1(D, N)l 5 ao

N

l51
o
N

n51
o
n

m51

Fl(m, n)p(m;n)
* (∞)

5 ka[(1 2 D){(N 2 1)D 1 N 1 1}diverged base pairs. To formulate it simply in terms of
the random-walk model, we assume that a connecting

2 (1 2 D)N tanh φ(N 1 1)coth φ
point is always destroyed when it is produced at a di-
verged site (i.e., a site of a diverged base pair) and when 2 D coth φ o

N21

n51

(1 2 D)n

it encounters a diverged site during its random walk.
Thus, a diverged site plays the role of a totally absorbing

3 {(N 2 n 2 1)D 1 2}
boundary. The recombination frequency in an identical

3 tanh φ(n 1 1)], (13)region is proportional to the third power of its length
if the length falls in the range shown by the upper line

where we added the superscript 1 to indicate that thisof Equation 12. Suppose that one diverged base pair is
expression is valid when the MMR system is activeintroduced at the center of such an identical region to
enough. Note that φ, defined by Equation 9, dependsdivide it into equal halves. Because a connecting point
on only h. By setting D 5 0 in Equation 13, we recoveris produced in either of the two identical subregions,
Equation A12 with n replaced by N.the recombination frequency in the entire homologous

The value of kP1(D, N)l/(ka) is independent of theregion drops very rapidly to one-eighth of the frequency
ka value. Thus, when we plot lnkP1(D, N)l against D,for zero divergence. When two diverged base pairs are
we can only shift the curve upward or downward bypresent at equal intervals, the recombination frequency
increasing or decreasing the ka value, respectively, withdrops to (1⁄3)3 5 1⁄27 of the frequency for zero divergence.
the curve shape remaining the same. The parameter hBecause 1⁄27 . (1⁄8)2, the frequency-drop from no di-
also influences the overall position of the curve becauseverged base pairs to one diverged base pair is more
the intercept, i.e., the logarithm at D 5 0, is given by“rapid” than that from one diverged base pair to two
the logarithm of Equation 12 with n replaced by N. Thediverged base pairs. It is probable that the random-walk
curve shape depends not on ka but on h.model thus explains the very rapid drop-off. Actually,

We have two fitting parameters in Equation 13: h andthe recombination frequencies obtained by Datta et
the product ka. Curve fitting to Datta et al.’s (1997)al. (1997) for zero divergence are 92, 86, 110, 71, and
data for the wild-type strains (Figure 5) results in the170 3 1028, and those for one diverged base pair intro-
fitted values h 5 1.2 3 1024 and ka 5 3.4 3 1029 (x2 5duced rather close to the center are 21, 30, 23, 31, and
7.3). These values are consistent with Fujitani et al.’s29 3 1028. The drop rates are not so far from the one-
(1995) estimates for a similar yeast system (h , 1024eighth.
and ka . 10210). The fitted curve can follow the veryLet us examine this scenario. Suppose that one con-
rapid drop-off shown by the data (Figure 5). We replotnecting point is produced initially at the lth site (say,
Datta et al.’s (1997) fitted curve, Equation 5, in Figurefrom the left end) of a homologous region with N sites.
5. It has five fitting parameters: P(M)(D 5 0, N, f 5 0),This region may be divided into some identical subre-
Meps, f, R0, and b, of which the last four parameters aregions by diverged sites, each of which plays the role of
responsible for the curve shape. Their fit (x2 5 1.8) isa totally absorbing boundary. Suppose that this lth site
better than ours.is an identical site (i.e., a site of an identical base pair),

The homology length (350 bp) is found to be compa-and we define Fl(m, n) (1 # l # N, 1 # m # n, 1 # n #
N) as the probability with which the connecting point rable to 2/√h 5 1.8 3 102, around which the shift in

the dependence should occur as shown by Equation 12.is produced at the mth site of an identical subregion
with n sites. The identical subregion lies between di- Although we consider this, the calculated ratio of the
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rapid drop-off in the wild-type strains (Mmr1). The same
mechanism can explain the map expansion phenome-
non, Rac . Rab 1 Rbc, where each term implies the recom-
bination frequency between two markers indicated by
the letters of the subscript and loci of the markers a,
b, and c are arranged in this order (Holliday 1964;
Fincham and Holliday 1970; Shen and Huang 1989).
A marker is a diverged base pair or a minute block
containing diverged base pairs and plays the role of a
totally absorbing boundary in terms of the random-walk
model. For example, Rac is eight times as large as Rab 5
Rbc if the locus b is at the center of the a–c interval, which
amounts to Rac . Rab 1 Rbc. See Fujitani and Kobayashi
(1997) for the details.

THEORY FOR MMR-DEFECTIVE STRAINS
Figure 5.—The recombination frequency vs. sequence di-

Assuming that a connecting point is always destroyedvergence: data and theory (see Figure 8). The natural loga-
rithm of the recombination frequency is plotted against the at a diverged site unlike at an identical site, in the pre-
divergence (D). The inset shows a low-divergence regime (0 # ceding section we were successful at explaining the very
D # 0.06). The open squares and the solid circles represent rapid drop-off. What we assumed is a kind of site depen-Datta et al.’s (1997) experimental data for the wild-type

dence in the transition rates. Thus, we expect to explainMmr1 strains and the Mmr2 strains of yeast, respectively (mi-
totic recombination; N 5 350 bp). The bottom solid curve is the absence of the very rapid drop-off in Datta et al.’s
obtained by a curve fit of Equation 13 to the data for the wild- (1997) data for the Mmr2 strains (Dmsh2Dmsh3; solid
type strains; the fitted values are h 5 1.2 3 1024 and ka 5 circles in Figure 5) by similarly assuming site depen-3.4 3 1029 (x2 5 7.3). The crosses represent our simulation

dence in the transition rates. We assume that, when theresults by use of Equations 14 and 17 with h9 5 1.2, k9 5
MMR system is defective, a connecting point is a little0, and the other parameter values the same as above. Each

simulation result is obtained from 105 trials. The bottom more likely to be processed and destroyed at a diverged
dashed curve is Datta et al.’s (1997) fitted curve to the data site than at an identical site; the resolution step could be
for the wild-type strains, which is Equation 5 with f 5 0.97,

affected by mismatches themselves (Shen and HuangMeps 5 23, b 5 610, R0 5 0.18, P(M)(f 5 D 5 0) 5 5.1 3 1026.
1989). Here, we adopt a set of site-dependent transitionThe top solid curve is obtained by a curve fit of Equation 18

to the data for the Mmr2 strains with the k9/k value restricted rates, which is called the random-jump-rate model or
to be positive: the fitted values are h 5 2.2 3 1023, ka 5 8.4 3 the random-trap model (Denteneer and Ernst 1984;
1029, h9 5 8.1 3 1022, and k9/k 5 6.9 3 1027 (x2 5 1.2 3 Haus and Kehr 1987), in the study of diffusion in a10). The D symbols represent our simulation results by use of

random medium.Equation 14 and 17 with the same parameter values as just
above. Each simulation result is obtained from 105 trials. The As illustrated in Figure 6A, this model supposes that
top dashed curve is Datta et al.’s (1997) fitted curve to the the potential felt by a random walker has the same
data for the Mmr2 strains, which is Equation 5 with f 5 0 and “height” at the “hilltops.” We assume that there arethe same values of the other parameters as above.

two kinds of heights of the valley bottoms: one for an
identical site and the other for a diverged site (Figure
6A). The latter should be higher than the former be-frequency for one diverged base pair to that for zero
cause a connecting point is assumed to be a little moredivergence, kP1 (D 5 1/350, N 5 350)l/P1 (D 5 0,
unstable at a diverged site. A random walker can reachN 5 350) 5 0.71, appears to be large as compared with
a neighboring site after “climbing up” a lower “hill,”the one-eighth mentioned in the second paragraph of
i.e., with larger transition rate, when it starts from athis section. The reason is as follows. The one-eighth
diverged site than when it starts from an identical sitecorresponds with the case where the diverged base pair
[see, e.g., chapter X of van Kampen (1981)]. The masteris at the center of the homologous region in the third-
equation is, instead of Equation 6,power dependence range. The average kP1 (D 5 1/

350, N 5 350)l is influenced not only by this case but
also by the case where a diverged base pair is introduced dpj

dt
5 gj11pj11(t) 1 gj21pj21(t) 2 gj(2 1 hj)pj(t)

near either end of the homologous region to give almost
the same recombination frequency as P1(D 5 0, N 5 for 2 # j # N 2 1,
350).

Thus, the random-walk model can offer a very dp1

dt
5 g2p2(t) 2 g2(2 1 h2)p1(t),

straightforward explanation for the presence of the very
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Figure 6.—The random-walk model with a set
of transition rates of the random-trap type. (A)
A potential of the random-trap type; the potential
has the same height at the hill tops. Each of the
sites, over which the random walk occurs, is lo-
cated at the valley bottom, as in Figure 3B. The
potential is assumed to be higher at a diverged
site j than at identical sites j 2 2, j 2 1, j 1 1,
and j 1 2. For simplicity, being processed is not
represented. As discussed in the text, the transi-
tion rate g is replaced by g9 from a diverged site
to one of the neighboring sites. (B) Unlike in
Figure 3, sequence divergence is taken into ac-
count here. The ratios h and k are replaced by h9
and k9, respectively, at a diverged site.

of Equation 14 and is independent of a and k, P(RT) (N)
is invariant for any set of values of a, k, and k9 as long

dpN

dt
5 gN21pN21(t) 2 gN(2 1 hN)pN(t),

as ka and k9/k remain fixed. This is also the case with
its average kII(RT)(D, N)l; we can therefore regard h, ka,dp*

dt
5 o

N

j51

gjhjkjpj(t), (14) h9, and k9/k as the parameters of kP(RT) (D, N)l. The
shape of the curve of lnkP(RT)(D, N)l depends not on

where gj, hj, and kj take the values g, h, and k, respectively, ka but on h, h9, and k9/k, as the shape of the curve of
at an identical site, and take g9, h9, and k9, respectively, lnkP1(D, N)l depended not on ka but on h.
at a diverged site (Figure 6B). Without diverged sites, We simulate the dynamics described by Equation 14
Equation 14 is reduced to Equation 6 with n replaced with a computer (VT-Alpha 433S8/3N, 433 MHz cpu;
by N. Visual Technology, Tokyo). Suppose that a random

As in Equations 7 and 10, the recombination fre- walker is now at an identical site. According to Equation
quency is given by 14, the probability of its jump to either of the neigh-

boring sites in a short time Dt is given by 2gDt, and the
P(RT)(N) 5 o

N

m51

ap(m;N )
* (∞), (15) probability of its being processed in this short time is

given by ghDt. Thus, on average, some action (i.e., jump
where the superscript (RT) indicates the recombination to a next site or being processed) of the random walker
frequency for a set of transition rates of the random- at an identical site occurs in a short time Dt 5 1/{g(2 1
trap type, and p (m;N )

* (∞) is given by h)}. Similarly, a random walker at a diverged site takes
some action in a short time Dt9 5 1/{g9(2 1 h9)} on

p(m;N )
* (∞) 5 o

N

j51

gjhjkj#
∞

0
dt p(m;N )

j (t), (16) average. One time step (Monte Carlo step) in our simu-
lation is made to correspond with this time interval Dt

where p(m;N )
j (t) is the solution of Equation 14 under the or Dt9 when the random walker is at an identical site or

initial condition pj (0) 5 0 for j ? m and pm (0) 5 1. a diverged site, respectively. Thus, some action occurs
We have, from Equations 15 and 16, at each time step in our simulation. A random walker

jumps to one neighboring site with probability g/{g(2 1
P(RT)(N ) 5 ka o

N

m51
o
N

j51

gjhj
kj

k #
∞

0
dt p(m;N )

j (t). (17) h)}, jumps to the other with probability g/{g(2 1 h)},
and is processed with probability gh/{g(2 1 h)} at each
time step if it is at an identical site. If it is at a divergedAs shown later, P(RT) (N) is independent of g and g9.

Because p(m;N )
j (t) is a solution of the first three equations site, the probabilities are g9/{g9(2 1 h9)}, g9/{g9(2 1 h9)},



1981Recombination Frequency and Sequence Divergence

and g9h9/{g9(2 1 h9)}, respectively. This rule is modified from 1027 to 1024 depending on the initial condition of
curve fitting; the curve shape is insensitive to k9/k soat either end of the homology. Because these probabili-

ties are independent of g and g9, we need not specify long as it is not too large. This is expected because k9/k
appears only in the first term in the first braces of Equa-values of g and g9 to calculate the recombination fre-

quency. This point is shown analytically in appendix c. tion 18, which term is negligible as compared with the
second term when k9/k is not too large. We also obtainedWe have introduced a set of transition rates of the

random-trap type to analyze the data for the Mmr2 simulation results with the same parameter values (Fig-
ure 5); the agreement between them and the fitted curvestrains, but we should also be able to analyze data for

the Mmr1 strains with Equations 14–17. We first analyze shows the validity of our decoupling approximation.
Datta et al. (1997) explained their data by usingthe data of Datta et al. (1997) again for comparison

with the analysis in the preceding section. In Equation Equation 5 with f 5 0 and the other parameter the same
as for the wild-type strains (Figure 5; x2 5 7.1). Their6, the relative probability of intermediate processing, h,

is the ratio of the transition rate of being processed to fit is better than ours, judging from the x2 value over
the divergence range examined (0 # D # 0.26). Ourthe transition rate from a site to a neighboring site. In

Equation 14, h is the ratio at an identical site while h9 curve is convex (i.e., its second derivative is positive)
although the data appear to be concave as a whole; ouris the ratio at a diverged site. Hence, the condition that

a connecting point at a diverged site is almost always curve deviates considerably from the data point at D 5
0.26. Except for this data point, however, our curvedestroyed without moving to a neighboring site can be

expressed by h9 @ h and k9 ! k. Because we assumed can be fit to the data (x2 5 3.8) better than their line
(x2 5 7.1).that a connecting point is always destroyed at a diverged

site in the preceding section, we can expect that the
averaged recombination frequency from Equation 14

FOR LONGER SUBSTRATES
tends to Equation 13 as h9/h → ∞ and k9/k → 0. This
expectation is verified in Figure 5; the cross symbols, Vulić et al. (1997) studied conjugational crosses of

enterobacteria, which formally involves very long sub-which are obtained numerically from Equation 14 with
large h9/h and k9 5 0, agree with the bottom solid curve strates of the order of 107 bp to obtain data for the

Mmr2 strains (mutS), for the wild-type strains (Mmr1),obtained in the preceding section. This point is also
discussed in the next section. and for the strains overproducing the MMR proteins of

MutS and MutL (Mmr11). They analyzed their data byLet us now analyze Datta et al.’s (1997) data for the
Mmr2 strains. We have smaller h9/h(.1) and larger k9/ line fits with Equation 4. To analyze them in terms of

the random-walk model, we first study how our curvesk(,1) than the above because we assume that a connect-
ing point is a little more likely to be processed and change as N increases and check again the validity of

Equation 18. We plot lnkP(RT)(D, N 5 350)l, changingdestroyed at a diverged site than at an identical site. We
usually have h ! 1 as estimated in the preceding section, the h9 value or changing the k9/k value (Figure 7, A and

B). Using the same sets of parameter values, we plotand so we can expect 0 , h9 2 h ! 1. Thus, we can use
the decoupling approximation introduced in appendix the logarithm for N 5 3500 in Figure 7, C and D.

We find that the curves, which the decoupling approx-c to average Equation 15 over positions of diverged
sites, imation yields for h9 5 2.0 3 1023 and h9 5 2.0 3 1022

(i.e., the top two dashed curves in Figure 7, A and C),
agree well with the corresponding simulation results.kP(RT)(D, N)l ≈ ka




Dh9

k9

k
1 (1 2 D)h



 This is expected because we then have h9 2 h ! 1 (h 5

3.0 3 1025). We again find that the simulation results
3

1
h




N 1 1 2 tanh φ(N 1 1) coth φ




, tend to Equation 13 as h9/h → ∞ and k9/k → 0 in each

of Figure 7, A–D; the very rapid drop-off appears then.(18)
We find that the corresponding curves for N 5 350

and N 5 3500 share almost the same shape. The curvewhere h is defined by h ; (1 2 D)h 1 Dh9 and φ is φ
of Equation 9 with h replaced by h. shape is thus insensitive to N probably because the hori-

zontal axis represents the divergence. At the same diver-Datta et al.’s (1997) data for the Mmr2 strains show
no very rapid drop-off and a large intercept as compared gence, the average interval between two neighboring

diverged sites is irrespective of the homology length.with their data for the wild-type strains (Figure 5). The
latter implies that the MMR system somehow hinders This average interval would mainly determine how fre-

quently the connecting point encounters a diverged sitethe homologous recombination between identical sub-
strates. Thus, the Mmr2 strains would not have the same and thus would mainly determine how the recombina-

tion frequency is reduced from that in the case of zeroh and ka values as the wild-type strains. Curve fitting to
the data for the Mmr2 strains results in the fitted values divergence.

Curve fitting of Equation 18 to Vulić et al.’s (1997)h 5 2.2 3 1023, ka 5 8.4 3 1029, and h9 5 8.1 3 1022

with x2 5 1.2 3 10 (Figure 5). The fitted k9/k value varies data for the Mmr2 strains in Figure 8 results in the fitted
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Figure 7.—The recombination frequency vs. the sequence divergence: theory and simulation. The natural logarithm of the
recombination frequency is plotted against the divergence (D). The symbols h, 3, s, and n represent simulation results by use
of Equations 14 and 17; each simulation result is obtained from 105 trials. We use h 5 3.0 3 1025 and ka 5 3.6 3 1028 in
common. The solid curve represents Equation 13. (A) We use N 5 350 and k9/k 5 2.0 3 1024 in common, and use h9 5 2.0 3
1023 (h), 2.0 3 1022 (3), 2.0 3 1021 (s), and 2.0 (n). The first three h9 values are also used for the top, the middle, and the
bottom dashed curves representing Equation 18, respectively. (B) We use N 5 350 and h9 5 2.0 in common, and use k9/k 5
2.0 3 1021 (h), 2.0 3 1022 (3), 2.0 3 1023 (s), and 0 (n). (C) We use N 5 3500 and k9/k 5 2.0 3 1024 in common, and use
h9 5 2.0 3 1023 (h), 2.0 3 1022 (3), 2.0 3 1021 (s), and 2.0 (n). The first three h9 values are also used for the top, the middle,
and the bottom dashed curves representing Equation 18, respectively. (D) We use N 5 3500 and h9 5 2.0 in common, and use
k9/k 5 2.0 3 1021 (h), 2.0 3 1022 (3), 2.0 3 1023 (s), and 0 (n).

values of h 5 3.2 3 1025, ka 5 3.1 3 1029, and h9 5 (1997), Equation 13 is expected to be applicable to the
1.9 3 1023 (x2 5 6.0 3 1021). The fitted k9/k value varies data for the wild-type strains of Vulić et al. (1997).
from 1027 to 1023 depending on the initial condition This equation yields the very rapid drop-off as shown
of curve fitting as in the preceding section. Line fitting in Figures 5 and 7, while their data appear to show no
to the data for the Mmr2 strains gives the fitted intercept very rapid drop-off (open circles in Figure 8). Thus,
23.6 and the fitted slope 21.7 3 10 (x2 5 3.8 3 1021). giving up curve fitting of Equation 13 to the data, we
These comparable x2 values demonstrate that our fit is only plot Equation 13 with the same h and ka values as
as good as Vulić et al.’s (1997) line fit. obtained for the Mmr2 strains (Figure 8). We find that

the data point at D 5 0.17 is not so far from the curve,The fitted h value gives 2/√h 5 3.5 3 102, which is
but its overall agreement with the data is poor (x2 5much smaller than N 5 107. Unless h changes drastically
2.3 3 10). If we do a line fit as in Vulić et al. (1997),enough to make 2/√h comparable to or much larger
the fitted intercept and slope are 22.8 and 26.2 3 10,than N, the intercept is still given approximately by kaN
respectively, with x2 5 4.7 3 1021 (Figure 8). This fit isas shown by the bottom line of Equation 12 with n
much better than ours.replaced by N. The intercepts appear to be the same

Let us fit Equation 13 to the data for the Mmr11among the Mmr2 strains, the wild-type strains, and the
strains with h being the only fitting parameter. UsingMmr11 strains in Figure 8. We assume that the same
the 433 MHz machine to perform the summation overka value is shared among the three types of strains; we
N 5 107 in Equation 13, we obtain the fitted value h 5expect that their h values are not drastically different.

Judging from our analysis of the data of Datta et al. 1.0 3 1026 with x2 5 2.5 3 10 (Figure 8). The data for
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aries and average length of an identical subregion be-
comes shorter. As 2/√h is larger, even if D is small, more
identical subregions can be in the third-power depen-
dence range of Equation 12. This dependence causes
the very rapid drop-off as discussed in the second para-
graph of theory for the very rapid drop-off.

Although the substrates are very long (z107 bp), we
have used the random-walk model with a single random
walker. In other words, we still assumed Na ! 1 in this
section as in Equations 6 and 14. This is consistent with
the fitted value of ka 5 3.1 3 1029 above.

FURTHER DISCUSSION
Figure 8.—The recombination frequency vs. the sequence As mentioned in the Introduction, Vulić et al. (1997)divergence: data and theory (see Figure 5). The natural loga-

reported that, when the MMR system is active, the inter-rithm of the recombination frequency is plotted against the
divergence (D). The symbols 3, s, and n represent the data cept goes up without significant change in the slope as
for the Mmr2 strains, the wild-type strains, and the Mmr11 the SOS activity increases to induce overproduction of
strains of Vulić et al. (1997), respectively (conjugational cross RecA protein. They explained this observation by ad-
of enterobacteria). We use N 5 107 in our analysis. The top

justing the homology length N in the right-hand sidesolid curve is obtained by a curve fit of Equation 18 to the
of Equation 4 because they assumed that the total lengthdata for the Mmr2 strains; the fitted values are h 5 3.2 3 1025,

ka 5 3.1 3 1029, h9 5 1.9 3 1023, and k9/k 5 3.6 3 1027 of DNA available for recombination increases with the
(x2 5 0.60). The middle solid curve represents Equation 13 RecA concentration. In the random-walk model, the
with the same h and ka values (x2 5 2.3 3 10). The bottom homology length N is a fixed length of the region wheresolid curve is obtained by a curve fit of Equation 13 to the

the connecting point randomly walks. It would be natu-data for the Mmr11 strains with the ka value fixed to be the
ral to assume that the probability of initial productionsame as above. The fitted h value is 1.0 3 1026 (x2 5 2.5 3

10). The dashed lines are obtained by line-fits to the data as of a connecting point per site, a, increases with the
was done by Vulić et al. (1997); the top line is fitted to the RecA concentration. As discussed, our curve of either
data for the Mmr2 strains, the middle line to the data for the lnkP1(D, N)l or lnkP(RT)(D, N)l is then lifted with itswild-type strains, and the bottom line to the data up to D 5

shape remaining the same. Thus, the random-walk0.05 for the Mmr11 strains. The fitted intercepts are 23.6,
model can also explain this SOS-induced change of the22.8, and 22.9, the fitted slopes are 21.7 3 10, 26.2 3 10,

and 22.2 3 102, and the x2 values are 0.38, 0.47, and 3.0, intercept in a very straightforward way.
respectively. The dotted line is fitted to the data for the Mmr11

Table 2 summarizes the results of the curve fits. The
strains up to D 5 0.17; the fitted intercept and slope are 25.9

x2 values tell that the curves in our model cannot be fitand 27.1 3 10, respectively, with x2 5 2.9 3 10.
to the data better than those in the previous models,
except for the Mmr11 strains. However, this never
means failure of our model. First, the previous modelsthe Mmr11 strains appear to show the very rapid drop-
are based on the MEPS theory, which has failed to ex-off, which is followed by our curve. Attributing this ten-
plain the nonlinearity between the recombination fre-dency to saturation of the MMR proteins without its
quency and the homology length as discussed in theformulation, Vulić et al. (1997) did a line fit to the data
opening section. Second, the previous models cannotup to D 5 0.05 (Figure 8); the fitted intercept and slope
explain the very rapid drop-off well; Vulić et al. (1997)are 22.9 and 22.2 3 103, respectively (x2 5 3.0). In
did not include the data point at D 5 0.17 in their linepassing, if the extreme data point is included, these
fit to the data for the Mmr11 strains, and Datta etvalues are 25.9 and 27.1 3 10, respectively, with x2 5
al. (1997) introduced many fitting parameters rather2.9 3 10.
intuitively. Assuming that a connecting point is alwaysOur curves for the Mmr2 strains and for the Mmr11

destroyed at a diverged site in terms of the random-strains (the top and the bottom solid curves in Figure
walk model, we derived Equation 13 to explain the very8, respectively) appear to have the same intercept re-
rapid drop-off observed in Datta et al.’s (1997) datagardless of their different h values as expected. Compar-
for the wild-type strains (Figure 5) and Vulić et al.’sing our curve for the Mmr11 strains with that for the
(1997) data for the Mmr11 strains (Figure 8). This equa-wild-type strains (the middle curve in Figure 8), we find
tion has the parameters h and ka, which also determinethat the slope near D 5 0 is steeper, i.e., the very rapid
the dependence of the homologous recombination ondrop-off becomes more prominent, as h decreases. This
the homology length in Equation 11. We have men-can be explained qualitatively as follows. As D increases
tioned an agreement between the estimates in Equa-in Equation 13, the whole homologous region is sepa-

rated by a greater number of totally absorbing bound- tions 11 and 13 in the paragraph next but one to that
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containing Equation 13. In particular, how the loga- close to the edge of the fragment can inhibit the recom-
bination.rithm drops very rapidly from the intercept is deter-

To explain all these findings, we may also have tomined by only one parameter h. This parameter, relative
take into account possible influence of the divergenceprobability of intermediate processing, is also the key to
on the initial events in the random-walk model. Porterthe relationship between the recombination frequency
et al. (1996) suggested that the relevance of the MMRand the homology length. This very simple explanation
system to the reduction of the recombination frequencyfor the very rapid drop-off is our main result. The very
caused by sequence divergence depends on the system.rapid drop-off is not observed in Vulić et al.’s (1997)
Whether the site dependence of the transition rates inwild-type strains (Figure 8), in which a connecting point
the random walk or the influence of the divergencemay not be always destroyed at a diverged site.
on the initial events is relevant to the reduction couldWe also assumed site dependence of the transition
depend on the system.rates for the Mmr2 strains of Datta et al. (1997) and

Datta et al.’s (1997) data show the difference in theVulić et al. (1997), in which the very rapid drop-off was
intercept between the wild-type strains and the Mmr2

not observed (Figures 5 and 8). We adopted a set of
strains (Figure 5), which implies that the MMR systemthe transition rates of the random-trap type and verified
influences the recombination frequency between identi-that the averaged recombination frequency calculated
cal substrates, as they pointed out. We have explainedfrom Equation 17 tends to that from Equation 13 as a
the difference by adjusting the h and ka values. Thediverged site severely obstructs the homologous recom-
intercept of our curve for the Mmr2 strains (the upperbination (Figure 7). It is possible that Equation 13 is
solid curve in Figure 5) is larger by 1.5 than that of ourthe extreme expression approached by not only Equa-
curve for the wild-type strains (the lower solid curvetion 17 but by a corresponding equation coming from
in Figure 5). Of this difference, 0.9 is caused by the,a set of transition rates of another type because we
difference in ka and the rest is caused by the differencederived Equation 13 without using a set of transition
in h as calculated with Equation 12. On the contrary,rates of the random-trap type. This is why we explained
as discussed in the preceding section, both the h andthe very rapid drop-off before introducing a set of transi-
ka values need not remain fixed in explaining (almost)tion rates of the random-trap type although we can
the same intercepts among Vulić et al.’s (1997) dataexplain it using a set of transition rates of this type.
sets for the three types of strains (Figure 8). EquationAlthough we find that the very rapid drop-off becomes
12 tells that the intercept, i.e., the logarithm of theless prominent as a diverged site obstructs the homolo-
recombination frequency between identical substrates,gous recombination less severely (Figure 7), our curve
is insensitive to the h value in the linear-dependence

cannot be fitted to Datta et al.’s (1997) data for the
range; we have only to fix ka among the three types of

Mmr2 strains better than their fitted line (Figure 5). In strains.
particular, our curve cannot follow the apparent concav- We again emphasize that the random-walk model can
ity shown in their data set. This concavity appears to be explain, in a straightforward way, the linear dependence
absent in Vulić et al.’s (1997) data for the Mmr2 strains and the nonlinear dependence of the recombination
(Figure 8). To this data set, our curve can be fitted as frequency on the homology length, the presence or the
well as their line. absence of the very rapid drop-off and the SOS-induced

We supposed that the MMR system, if active enough, change of the intercept in the relationship between the
detects mismatches to abort the homologous recombi- recombination frequency and the sequence divergence,
nation as in Vulić et al. (1997) and Datta et al. (1997). and the map expansion. We therefore believe that the
However, Waldman and Liskay (1988), by studying random-walk model helps in understanding essential
recombination between plasmids and herpes simplex aspects of the reaction of the homologous recombina-
virus in a mammalian cell, claimed that the recombina- tion.
tion frequency is determined not by the divergence
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in the research community of path integrals [see, e.g., 2. Case of l 5 2:
Equation 3.41 of Sakita and Kikkawa (1986)], we have

When n 5 1, F 5 D 2(1 2 D).
When 2 # n # N 2 2,

[L21]jm 5






sinh 2φj sinh 2φ(n 1 1 2 m)
sinh 2φ sinh 2φ(n 1 1)

, for j # m

sinh 2φm sinh 2φ(n 1 1 2 j)
sinh 2φ sinh 2φ(n 1 1)

, for m , j. F 5






D2(1 2 D)n for m 5 1

D(1 2 D)n for m 5 2

0 for 3 # m.(A8)
Here, φ is defined by Equation 9 and satisfies

When n 5 N 2 1,
h 5 2 cosh 2φ 2 2 5 4 sinh2 φ. (A9)

F 5




D(1 2 D)N21 for m 5 1 or 2

0 for 3 # m.
One can check that substituting Equations A5 and A8
into LL21 produces the n 3 n unit matrix. [One way
to derive Equation A8 is substituting “x1” and “xN21” When n 5 N,
obtained from Equations B8 and B9 into Equations B5
and B7 of Fujitani and Kobayashi (1995) under g 5 F 5





(1 2 D)N for m 5 2

0 for m 5 1 or 3 # m.0].
Using Equation A8, we have

3. Cases of 3 # l # (N 1 1)/2:

o
n

j51

[L21]jm 5
sinh φ(n 1 1 2 m) sinh φm

2 sinh2 φ cosh φ(n 1 1)
, (A10) When n # l 2 1, F 5 D 2(1 2 D)n.

When l # n # N 2 l (this case does not exist if l 5
(N 1 1/2),where we used Equations 1.341.2, 1.314.6, 1.334.1, and

1.313.2 of Gradshteyn and Ryzhik (1980). Equations
A6 and A10 yield Equation 8 with the aid of Equation
A9.

F 5






D 2(1 2 D)n for m # l 2 1

D(1 2 D)n for m 5 l

0 for l 1 1 # m.
Equation A10 leads to

o
n

m51
o
n

j51

[L21]jm
When N 2 l 1 1 # n # N 2 2,

5 {n 1 1 2 tanh φ(n 1 1)coth φ}/(4 sinh2 φ),(A11)

where we used Equations 1.314.6, 1.341.4, and 1.313.2
of Gradshteyn and Ryzhik (1980). From Equations F 5







D 2(1 2 D)n for n 2 N 1 l 1 1 # m # l 2 1

D(1 2 D)n for m 5 l or m 5 n 2 N 1 l

0 for n 2 N 1 l 2 1 $ m

or m $ l 1 1.
A7, A9, and A11, we obtain

P(n) 5 ka{n 1 1 2 tanh φ(n 1 1)coth φ}. (A12)

When n 5 N 2 1,When φ ! 1, we have h ≈ 4φ2 from Equation A9, and
Equation A12 produces Equation 11 because coth φ ≈
1/φ. F 5





D(1 2 D)N21 for m 5 l or m 5 l 2 1

0 for l 2 2 $ m or m $ l 1 1.

APPENDIX B When n 5 N,
Suppose (N 1 1)/2 $ l. Then, the identical subregion

can reach neither end of the homologous region if F 5




(1 2 D)N for m 5 l

0 for m ? l.n # l 2 1, but it reaches only the left end if l # n #
N 2 l and m 5 l. Considering it in this way and writing We can obtain Fl(m, n) for l . (N 1 1)/2 by using
F for Fl(m, n), we have

Fl(m, n) 5 FN112l(n 1 1 2 m, n), (B1)
1. Case of l 5 1:

which comes from the symmetry of the one-dimensional
When 1 # n # N 2 1, lattice where the random walk occurs. When D 5 0, the

above Fl(m, n) is reduced to

F 5




D(1 2 D)n for m 5 1

0 for 2 # m. Fl(m, n) 5




1 for n 5 N and m 5 l

0 otherwise.
(B2)

When n 5 N,
The lth site of a homologous region is diverged with

probability D, and otherwise it is the mth site of anF 5




(1 2 D)N for m 5 1

0 for 2 # m. identical subregion with n sites with probability Fl(m, n),
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where 1 # m # n and 1 # n # N. Thus, the normalization with h̃ being an arbitrary real number.
We can expand the inverse of the matrix in Equationcondition is given by

C1 as
D 1 o

N

n51
o
n

m51

Fl(m, n) 5 1. (B3)
(M 1 V)21 5 M21 2 M21VM21

It is easy to see that this condition is satisfied when 1 M21VM21VM21 2 . . . , (C4)
D 5 0 because of Equation B2. Let us next check this

wherecondition when D ? 0 and l # (N 1 1)/2; we then have

o
N

n51
o
n

m51

Fl(m, n) 5 o
l21

n51
o
n

m51

D 2(1 2 D)n

[M21]jm 5 5
sinh 2φ̃j sinh 2φ̃(n 1 1 2 m)

gj sinh 2φ̃ sinh 2φ̃(n 1 1)
, for j # m

sinh 2φ̃m sinh 2φ̃(n 1 1 2 j)
gj sinh 2φ̃ sinh 2φ̃(n 1 1)

, for m , j.1 o
N2l

n5l
o
l21

m51

D 2(1 2 D)n

(C5)
1 o

N2l

n5l

D(1 2 D)n

This is a generalization of Equation A8, and φ̃ is defined
so as to satisfy1 o

N22

n5N2l11
o
l21

m5n2N1l11

D 2(1 2 D)n

h̃ 5 2 cosh 2φ̃ 2 2 5 4 sinh2 φ̃. (C6)
1 o

N21

n5N2l11

2D(1 2 D)n

Introducing an N 3 N matrix,
1 (1 2 D)N. (B4)

Here, the first term does not exist when l 5 1, the
second term does not exist when l 5 1 and when l 5
(N 1 1)/2, the third term does not exist when l 5 (N 1
1)/2, and the fourth term does not exist when l # 2. L̃ ;


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




2 1 h̃ 2 1 0

21 2 1 h̃ 21

. . . . . .

. . . . . .

21 2 1 h̃ 21

0 21 2 1 h̃









,
Using the sum formulas of the geometric series and
the arithmetico-geometric series [Equations 0.112 and
0.113 of Gradshteyn and Ryzhik (1980), respectively],
we can derive Equation B3 from Equation B4. Similarly,
we can derive Equation B3 when D ? 0 and l . (N 1 (C7)
1)/2.

we obtain from Equations C1 and C4
APPENDIX C

Following the derivation of Equation A7, we can ob- P(RT)(N) 5 a3 o
N

n051
o
N

n151

hn0
kn0

[L̃21]n0n1tain from Equations 14–16

P(RT )(N) 5 o
N

m51

a o
N

j51

gjhjkj[(M 1 V)21]jm , (C1) 1 o
∞

q51
o
N

n051
o
N

n151

. . . o
N

nq1151

(2 1)q

where M and V are N 3 N matrices, 3 [L̃21]n0n1
[L̃21]n1n2

. . . [L̃21]nqnq11

3 hn0
kn0

(Dh̃n1
)(Dh̃n2

) . . . (Dh̃nq
)4 , (C8)

where Dh̃nj ; hnj 2 h̃. Equation C8 tells that P(RT)(N) is
M ;


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
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
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g1(2 1 h̃) 2g2 0

2g1 g2(2 1 h̃) 2g3

. . . . . .

. . . . . .

2gN22 gN21(2 1 h̃) 2gN

0 2gN21 gN(2 1 h̃)









independent of g and g9.
Each of the products hn0

kn0
and hn0

kn0
(Dh̃n1

)(Dh̃n2
)

. . . (Dh̃nq) is put between the angle brackets, k and l,
when Equation C8 is averaged over positions of diverged
sites. Let us consider the average of the latter product.(C2)
Suppose that the subscripts n0, n1, . . . , nq contain r(: 0 #and
r # q) kinds of numbers, m0(;n0), m1, . . . , mr , and that
the subscripts n0, n1, . . ., nq are composed of N0 pieces
of m0, N1 pieces of m1, . . . , and Nr pieces of mr . Then,

V ;







g1(h1 2 h̃) 0

g2(h2 2 h̃)

. . .

0 gN(hN 2 h̃)







, the average of the product is given by

khn0
kn0

(Dh̃n1
)(Dh̃n2

) . . . (Dh̃nq)l

5 {(1 2 D)hk(h 2 h̃)N021 1 Dh9k9(h9 2 h̃)N021}(C3)
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kPRT)(D, N)l ≈ a{(1 2 D)hk 1 Dh9k9}
3 p

r

i51

{(1 2 D)(h 2 h̃)Ni 1 D(h9 2 h̃)Ni}. (C9)
3 o

N

n051
o
N

nq1151

[L̃212 {(1 2 D)(h 2 h̃)
However, because all the subscripts n0, n1, . . . , nq are

1 D(h9 2 h̃)}L̃22different from each other in the overwhelming majority
of terms appearing in the summation n0, n1, . . ., nq of

1 {(1 2 D)(h 2 h̃)
Equation C8, we can decouple the average of the prod-

1 D(h9 2 h̃)}2L̃23 2 . . .]n0nq11.uct approximately as

(C11)
khn0

kn0
(Dh̃n1

)(Dh̃n2
) . . . (Dh̃nq)l

Expanding the inverse of a matrix
≈ khn0

kn0
l kDh̃n1

l kDh̃n2
) . . . kDh̃nql {(1 2 D)(h 2 h̃) 1 D(h9 2 h̃)}E 1 L̃ (C12)

5 {(1 2 D)hk 1 Dh9k9} {(1 2 D)(h 2 h̃)
as in Equation C4, where E is the N 3 N unit matrix,

1 D(h9 2 h̃)}q, (C10) we obtain the infinite series in the brackets of Equation
C11. The matrix, Equation C12, turns out to be the
matrix L with h replaced by h and n replaced by N,
where L is defined by Equation A5 and h is defined justwhich coincides with the case of r 5 q and Ni 5 1 for

any i in Equation C9. This decoupling approximation below Equation 18. Because replacing as such in Equa-
tion A8 gives the inverse of Equation C12, replacing asis valid when both h 2 h̃ and h9 2 h̃ are set to be small

enough as compared to unity to make terms of higher such in Equation A11 gives the summation in Equation
C11. Thus, the decoupling approximation yields Equa-power with respect to them negligible in Equation C9.

Then, Equation C8 reads tion 18 irrespective of h̃.


