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ABSTRACT
Graduate school programs in genetics have become so full that courses in statistics have often been

eliminated. In addition, typical introductory statistics courses for the “statistics user” rather than the nascent
statistician are laden with methods for analysis of measured variables while genetic data are most often
discrete numbers. These courses are often seen by students and genetics professors alike as largely irrelevant
cookbook courses. The powerful methods of likelihood analysis, although commonly employed in human
genetics, are much less often used in other areas of genetics, even though current computational tools
make this approach readily accessible. This article introduces the MLIKELY.PAS computer program and
the logic of do-it-yourself maximum-likelihood statistics. The program itself, course materials, and expanded
discussions of some examples that are only summarized here are available at http://www.unisi.it/ricerca/
dip/bio_evol/sitomlikely/mlikely.html.

AS most of us still impress on our introductory genet- inferential pitfalls that the latter entails, the eyeball may
often be the better instrument.ics students, genetics started with the counting of

offspring produced by crosses. Although many of us This need not be the case, and in many areas of re-
search this is not the case. Areas as diverse as animalnow spend a large fraction of our time at a chemical
behavior, clinical trials, and signal and image processingbench, crosses, and the discrete data they generate, still
are replete with powerful examples of discrete analysis.remain a core tool in our work. Remarkably, the early
(The CCAR database, for example, contains nearly 3000synergism between genetics and statistics is now mostly
entries for “maximum-likelihood” for the 3 years 1993–absent from the pages of this journal. Virtually all of us
1995.) There are, of course, examples in genetics asare familiar with log of odds (LOD) score analysis of
well: LOD scores (see Crow 1993 and Morton 1995 forhuman genetic data, and most of us can do a x2 test
historical views of human gene mapping); sporadicallyagainst a priori expectations or a x2 contingency test.
appearing, but cumulatively numerous, applications ofNevertheless, in most articles in Genetics that contain
likelihood methods to problems in formal genetics (across data there is either no statistical analysis at all or
far from exhaustive sample includes Kastenbaum 1958;transformation of the discrete data to frequencies—
Sandler and Kastenbaum 1958; Robbins 1971, 1977,accompanied by confidence intervals and statistics, if
1999; Snow 1979; King and Mortimer 1991; Lycke-any, that were originally devised for dealing with contin-
gaard and Clark 1991; Hilliker et al. 1994; McPeeckuous variables. The questions we are actually interested
and Speed 1995; Zhao et al. 1995a,b); and widespreadin asking go well beyond the few methods of discrete-
application by the mathematical sophisticates of popula-data analysis we’ve learned, so we either rely on an eye-
tion genetics, quantitative genetics, and numerical tax-ball approach or fall back on the continuous-variable
onomy. Weir (1994, 1995) has also made a convincingmethods taught in the usual statistics courses. Given
case for the use of likelihood ratios in forensics, thethe loss of power and plethora of mathematical and
newest area of applied population genetics. Yet the gen-
eral picture in formal genetics may be seen with a simple
count of a random issue of Genetics (May 1992; vol.
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data. Of the 13, only 2 (significantly ,1⁄2; x2 5 8.07, one astray. Testing for linkage, a recombination fraction
under 50%, is not the same as testing for all possible1 d.f., P z 0.004) included any statistical analysis at all.

Obviously, statistical tests may not have been needed in distortions of genotype frequencies.
Not every problem in formal genetics can be resolvedthese articles; simple perusal of percentages can often

be convincing. Nevertheless, methods for analysis of just with clear thinking and x2 tests. The advent of power-
ful personal computers, however, makes the methodsdiscrete data are available, their use is not difficult, and

they can be revealing. They can also help us avoid de- that are needed accessible to those who, like myself, are
neither mathematicians, statisticians, nor professionalsigning complicated crosses that cannot, in the end, be

analyzed. programmers. Several of the most common questions
geneticists must contend with can be asked: What areMethods for discrete analysis have been a step-sister

in statistics, but discrete multivariate analysis, with a the best estimates of genetic parameters? Does a hypoth-
esis adequately account for the observed effects? Howthorough exegesis in Bishop et al.’s (1975a) classic book

allows the same rigorous approach to discrete data that can we test whether an experiment and control respond
differently to a variable we’re interested in, when bothconventional analysis of variance provides for measure-

ment data. Bishop et al. (1975a), however, is written for the experiment and control are also affected by some
other variable? Is there significant variation in whatstatisticians and can be intimidating. Perhaps that is why

these methods have not found their way into most areas we’re scoring? Is there a correlation between two vari-
ables? How important is the correlation? Moreover, withof genetics even though they are commonly used in

wealthier fields such as clinical trials where professional use of the computer allowing us to strip away much of
the mathematical complexity, the major task left for thestatisticians are routinely members of the team, and

analytical power must be kept high to keep the number geneticist is the clear definition of the question(s) to
be asked.of human subjects low. For analysis of crosses, however,

the full-blown artistry of discrete multivariate analysis is With the hope of creating an enhanced awareness of
these methods among the next generation of geneti-not usually needed.

The value of a multivariate mode of thinking is well cists, a set of real-world examples and a program for
numerical approximation of maximum likelihoods wereillustrated by the erroneous presentation of the a priori

x2 test in a popular introductory genetics textbook used as the core of a graduate-level course offered first
in 1996 at Michigan State University and again in 1998(Griffiths et al. 1993; awkwardly corrected in Grif-

fiths et al. 1999). In their example, data from a test at the University of Siena. The course presented a guide
to this mode of analysis by means of examples, somecross with an observed recombinant fraction under 50%

are used to test for linkage. Instead of the appropriate already published and some new. In each case, I chose
actual experiments rather than invented examples. Fortest of a 1:1 ratio of parental:nonparental, however,

Griffiths et al. (1993) tests for a 1:1:1:1 ratio among some of the examples, the genetics is nontrivial and the
explanation of the crosses is lengthy, but this allows theall four products of the test cross. Unfortunately, this

is a test for Mendelian independent assortment and not student or reader to judge the value and difficulty of
applying this method to real-world situations. The exam-a test of whether the recombinant fraction is statistically

different from 50%. This test compounds testing for ples are as follows: (1) mapping a dominant of reduced
penetrance; (2) testing for a correlation between twolinkage and testing for equal recovery of reciprocal

products; two variables that really need to be separated. chromosome-behavior phenotypes; (3) testing whether
a meiotic mutant affects chiasma interference; and (4)They assert that the sample data do not support linkage

(x2 5 5.2, 3 d.f., P 5 0.156), but done correctly there testing for the effects of a gene on viability in the pres-
ence of confounding variables. The first two examplesis, in fact, a significant indication of linkage (x2 5 5.0,

1 d.f., P 5 0.025), while there are no significant differ- are covered here, while the latter two are only briefly
described with the full discussions included at the webences (for example, there are no significant marker

viability effects) in recovery of reciprocal products (x2 5 site.
0.202, 2 d.f., P 5 0.904). In the new book, a contingency
test of statistically independent recovery of the allelic

BASIC METHODOLOGY
combinations, in place of the a priori test for Mendelian
independent assortment, yields a result (x2 5 5.02, 1 d.f., Maximum-likelihood estimates and hypothesis test-

ing: In the following sections, computer-assisted tech-P 5 0.025) very close to that of the simpler test for
deviation from a 1:1 ratio of parental:nonparental. niques for estimating parameters (such as map dis-

tances), testing for goodness-of-fit, and comparingThe foregoing example does not illustrate a need for
analysis of maximum likelihood, nor even for the contin- hypotheses are described. All of them are based on the

method of maximum likelihood (Fisher 1922; Edwardsgency test used in Griffiths et al. (1999); if the question
had been correctly posed, a simple a priori x2 test would 1992).

Suppose that the probability of getting an offspringhave been adequate. It does, however, illustrate how
failing to separate different biological processes can lead of a given class is p and that N of these offspring were
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observed in an experiment. The likelihood of getting G is distributed approximately as x2 with degrees of
freedom equal to the difference between the numbersthose N offspring is defined as: L 5 pN. Crosses yield

multiple offspring classes, each with its own probability, of parameters of the two hypotheses. The approxima-
tion to x2 is asymptotic and becomes more exact asbut, because different offspring are independently pro-

duced, the likelihood for the entire experiment is the sample size increases.
Note that in many cases a test for sufficiency, usuallyproduct of the likelihoods. For example,1 a test cross

involving two genes that are ab map units apart yields stated as a test for goodness-of-fit, can also be described
as a comparison of two hypotheses. For example, if H1CO crossover offspring and NCO noncrossover off-

spring, and the likelihood is L 5 abCO (1 2 ab)NCO. The includes m parameters (unknowns to be solved for) and
there are m independent observations (knowns), andvalue of ab that maximizes L is the estimate of ab that

we use; in this case it is CO/(NCO 1 CO). If we were the parameters can take any numerical value, the maxi-
mum-likelihood estimates of the parameters are identi-dealing with a more complex situation where there are

many parameters, we would want to find the values of cal to what would be obtained by solving m equations
in m unknowns. Because H1 merely describes all of theall of the parameters that simultaneously maximize L.

Noting that as a number increases, its logarithm in- variation, there is no test for its sufficiency (aside from
the possibility of getting utterly absurd parameter val-creases as well, we can, with the same effect and usually

more easily, find the parameter values that maximize ues) and calculating x2 will yield a value of 0. A compari-
son of another hypothesis, H2, to H1 by a G test is thenthe logarithm of L. In the following, the maximum

values of these functions are denoted L̂ and ln L̂. logically equivalent to testing H2 for goodness-of-fit.
The values of G for H2 vs. H1 and the x2 for goodness-Most of the time we are not only interested in estimat-

ing the parameters, but in testing whether a hypothesis of-fit of H2 will generally be the same, or very nearly
so. For such tests, the choice of whether it is done as aprovides a sufficient explanation for the experimental

variation or in testing whether there are significant dif- x2 or G test is largely a matter of convenience (if, for
example, the values of ln L̂H1 and ln L̂H2 have alreadyferences between two (or more) hypotheses. For exam-

ple, if we suspect a correlation between two variables, been found), esthetics, or habit.
How can we find the parameter values that maximizewe would want to test three things. First, we need to

test whether there is significant variation in these param- ln L? For pedigree data, in years past we would have
gone to Morton’s (1955) tables, but we would noweters in the first place. That is, does a hypothesis of no

variation in one or the other parameter fail a goodness- most likely use one of the readily available LOD score
computer programs (Terwilliger 1994). In someof-fit test? Second, we will want to know whether a model

that includes a correlation with slope other than zero other situations, we might also be able to turn to the
literature for an analytical solution. If the crosses dois significantly better than the hypothesis of no variation

(equivalent to a correlation with slope 5 0). That is, we not correspond to an already worked-out situation, but
we are skilled in the calculus and linear algebra, wemust compare two hypotheses. Third, we will want to

know how much of the variation is explained by the might try to find the partial derivatives of ln L with
respect to each parameter, set them equal to zero, andcorrelation, i.e., its sufficiency; another goodness-of-fit

test. solve the set of simultaneous equations. Failing that,
and even a skilled mathematician sometimes will, weIn many cases, the obvious test for goodness-of-fit

is a straightforward x2. That is, we use the maximum- can turn to a computer to approximate the maximum
by numerical methods. Indeed, if we are willing to travellikelihood estimates of the parameters to find the proba-

bilities of each class, multiply these probabilities by the this less elegant route, all we need to tell the computer
is the probability for each offspring class, and the com-appropriate total(s) to get expected numbers, and cal-

culate x 2 as a measure of the difference between observa- puter can do the rest.
The MLIKELY.PAS program: MLIKELY.PAS is a Pas-tions and expectations. The degrees of freedom are

then the number of independent observations less the cal program that, in its current version, is compiled
under TURBO PASCAL 4.0 (Borland Intl.). It is notnumber of parameters estimated from the data.

When we wish to compare two hypotheses, H1 and user friendly—it lacks a graphical user interface, does
not support a mouse, and requires that the user convertH2, however, a different measure is often more appro-

priate or more convenient. This is the G (also known a few equations into Pascal syntax and paste them into
the program, which then must be compiled and run. Itas G 2) statistic (Bishop et al. 1975b, Chapter 4):
is, however, geneticist friendly. It can work with virtually

G 5 2 3 (ln L̂H1 2 ln L̂H2).
any set of crosses, whether simple or complex. The ex-
pressions the user needs to write are most often direct
translations of a Punnett square or logic tree. And run-

1 With apologies to the mathematically oriented, who might read ning the program requires only answering a series of
NCO as N times C times O, common genetic abbreviations are used

questions and entering the data. The heuristic used isto name variables rather than following mathematical convention.
Hence, NCO is to be read as “noncrossovers.” brutally simple; the user provides first guesses of the
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parameter values or accepts the program’s defaults, and may have more than one peak. As with other iterative
peak-finding procedures, once in the neighborhood ofthe computer increases and decreases those values, mov-

ing sequentially through the list of parameters using a peak, even if it is not the highest in the entire land-
scape, the program may halt at that local maximum. Itever smaller intervals, until it finds the maximum of

ln L to whatever precision is desired. A few tricks are is even possible to have a model so badly structured that
ln L is an oscillating function, such as a sine wave, butused to speed operation:
this is unlikely in any genetics application. A program

1. The likelihood surface may be smooth in some areas
designed to find likelihoods for only one class of prob-

and rough in others. Where rough, large increments
lem can usually be rigged to avoid this. In contrast,

may miss a peak. Where smooth, however, large in-
although MLIKELY.PAS can be fooled by local maxima,

crements are more efficient. Hence, if the iteration
and is not usable for every type of application to which

process continues for several rounds at a given incre-
maximum likelihood analysis applies, it can accommo-

ment, the interval changes to a larger value.
date any model for which one can write the probabilities

2. To even out the sensitivity of parameters that are
of getting each observed class.

very small and very large, the increments are made
That multiple peaks in an iterative process can be

as fractions of the previous guess (as long as that
dangerous has certainly been seen in the study of human

prior guess was not exactly zero).
molecular evolution; the primacy of a mitochondrial

3. To ensure that a path through the likelihood space
Eve, while appealing, was supported by a maximum-

can never be retraced, the proportions by which pa-
parsimony tree that was not unique (Hedges et al. 1992;

rameters are increased and decreased are not the
Templeton 1992). In more than 20 years of using

same but are relatively prime.
MLIKELY.PAS and its ancestors, however, there has

4. The user can specify limited ranges for the parame-
never been a false-peak problem except when I made

ters (for example, it makes no sense to try crossover
a gross mistake in writing the probabilities in the first

frequencies outside the range 0 to 0.5).
place, set absurd bounds for the parameters, or, more

5. The size of the multipliers, and the number of cycles
often, made a typographic error in putting them into

at an increment before reverting to a larger one,
the program.

were optimized for a problem somewhat more com-
The generally good behavior of the iteration algo-

plex than any reported here.
rithm used in MLIKELY.PAS could be a result of mere
luck, but has probably occurred because formal geneticsAlthough incorporated piecemeal in MLIKELY.PAS

either intuitively or empirically, these procedures are problems, as opposed to problems in taxonomy, are
often well structured even when they involve many pa-not uncommon in optimization algorithms, and con-

straining parameter ranges is similar to the use of “hints” rameters. For example, in describing recombination in
several regions, there will be several single-crossoverin speeding artificial intelligence schemes. MLIKELY.

PAS provides output in a variety of formats: screen- frequencies to be estimated, but all of them behave in
an algebraically similar fashion.readable, printable, and word-processor and spread-

sheet importable, and saves the data in a reusable file The behavior of MLIKELY.PAS during the iteration
process as well as its output can provide useful indica-so that they need be entered only once.

There are algorithms that can find a maximum more tions of potential problems. For example, in the second
example of this report, which considers testing for corre-quickly. For example, the “optimizer” found in the

QUATTRO PRO (Corel) spreadsheet package can esti- lation using discrete data, an example of the effect of
improperly bounding a parameter’s search space is con-mate the derivatives first to speed the search for a maxi-

mum. MLIKELY.PAS is not, in any case, unreasonably sidered. It is nevertheless good practice to start with
several widely different sets of parameter guesses toslow. Iteration times are indicated in the examples that

follow, in each case for runs on a 80486/33 computer check that you always end up at the same peak.
MLIKELY.PAS also calculates x2 for a goodness-of-with each parameter estimated to a precision of better

than 1 part in 108. Even with a less-than-state-of-the-art fit test of the hypothesis. The user must supply Pascal
statements defining the sum(s) by which to multiply thePC, the running time is most often far less than the

thinking time needed to define the problem in the first probabilities to get expected numbers. For data from a
single cross, this is simply the sum of all observationsplace.

The simple heuristic used in MLIKELY.PAS can cause and that variable is already calculated by the program,
but for a series of crosses the sum for each cross musttwo problems that the user should be aware of. First,

because the parameters are handled sequentially, if two be specified. Because the x2 calculation is included in
MLIKELY, it is often more convenient to use this testor more of the starting guesses are impossible, i.e., if

they give negative expected frequencies, the program of goodness-of-fit rather than an equivalent G test when
only a single hypothesis is being tested; only a single setwill not find the maximum, but will issue a warning

message. Starting with more reasonable guesses is the of equations need be written. In contrast, the likelihood-
ratio approach of a contrast between the hypothesis ofcure for this problem. Second, a likelihood function
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Figure 1.—Mapping a dominant of reduced
penetrance. (Top) Three genes are followed in
a test cross. A and C are RFLP markers, while B
(Spd; Asher et al. 1996) is a dominant mutation
of reduced penetrance. (Bottom) Conventional
genetic notation describing this cross and a Pascal
translation. There are four parameters: two dis-
tances (expressed as recombination fractions
rather than centimorgans for calculation pur-
poses), one coefficient of coincidence, and one
penetrance. Because of reduced penetrance, indi-
viduals of different genotypes can have the same
phenotype. For example, the a 1 c phenotypic
class includes both a/a 1/1 c/c genotype individ-
uals, 5 1/2NCO, and individuals who are geno-
typically a/a B/1 c/c but are nonpenetrant for
B, 5 1/2DCO(1 2 P). The Pascal version is in-
serted in MLIKELY.PAS, which is then compiled
and run.

interest and a foil that explains all of the variation re- tion arose in work following from Asher et al. (1996).
Unfortunately, Dr. Asher died before the work couldquires writing (or editing) two versions of the equations,

compiling and running the program twice, and then be completed.] In this cross, he wished to map mutation
B, a dominant of reduced penetrance, with respect tocalculating G.

Inclusion of these calculations in MLIKELY serves two RFLP (and, therefore, codominant) markers. Meio-
sis produces noncrossovers, single crossovers, and dou-another purpose as well; seeing that the sum of the

expected numbers equals the sum of the observed num- ble crossovers, but because B is not fully penetrant,
some B-bearing progeny will be B1 in phenotype. Forbers. Moreover, examination of the listing of the x2

values of the individual cells gives a good check that the example, some of the A B C noncrossovers may be recov-
probabilities have been sensibly defined and accurately ered as A 1 C phenotype progeny equivalent to one of
entered. the double crossover classes. As shown in the bottom

This article includes only enough information about panel of Figure 1, writing equations for the probabilities
the structure and running of the program to permit of DCO, SCO, and NCO, adding the effect of reduced
understanding how it serves the geneticist. MLIKELY penetrance to get the probabilities of each of the prog-
(including all source code), sample sets of equations eny types, and translation of the algebraic description
and data, as well as documentation files are available at of this situation into Pascal syntax are straightforward.
the web site. Downloading carries two conditions: (1) The Pascal version includes a preamble declaring the
neither the program, nor any substantial part of the names of the variables that will be used, and defining
program, may be used for commercial purposes nor mnemonic designators for distances (expressed as cross-
incorporated into another program without my written over frequencies), the coefficient of coincidence and
permission; and (2) any improvements made, or ver- penetrance in terms of the array of parameters provided
sions modified for other Pascal compilers, will be shared in the program. It also includes a statement that finds
with me so that they can be incorporated in future the expected numbers for each class by multiplying the
releases. probabilities by the sum of the observations. The Pascal

translation of the genetics is inserted into the MLIKELY.
PAS program, which is then compiled and run. The

EXAMPLES input needed consists of the eight observations, which
can be entered in response to questions posed by theParameter estimation—mapping a mutant of reduced
program at run time, or can be taken from a data filepenetrance: The top of Figure 1 illustrates a mouse

genetics problem recently faced by J. Asher. [This ques- written (in ASCII text format) in advance.
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Starting with some wild guesses (d1 5 0.1, d2 5 0.1,
C 5 0.1, and P 5 0.99), in less than a second, the
program finds the values of the two distances, the coef-
ficient of coincidence, and the penetrance that max-
imize the ln likelihood of getting the observed results
(d̂1 5 0.00634, d̂2 5 0.0525, Ĉ 5 0.0, and P̂ 5 0.6605)
and indicates, by the nonsignificant value of x2 5 3.547
(3 d.f., P 5 0.315), that this model provides a sufficient
description of the data.

We can also take this a step further and examine the
precision of these estimates. For example, we may be
most interested in distance d1, the short A to B interval.
What is the largest, or smallest, estimate of this distance
that is still consistent with the data? To do this2, we (1)
set a series of fixed values for d1; (2) allow the program
to find the values of the other parameters that maximize
the likelihood; and then (3) compare the results with
those for the maximum-likelihood estimate of d1, i.e.,
when d1 5 0.00634.

We can use MLIKELY.PAS for the first two steps by
changing just four lines of code, so that d1 is treated as
a constant,

d1 :5 Con[1];

d2 :5 Par[1];

C :5 Par[2];

P :5 Par[3];

and repeating the iteration several times for different
values of Con[1]. The data can be reentered, or the
original data file may be modified in any text editor to
change the number of parameters from 4 to 3 and the
number of constants from 0 to 1.

We then need a statistic that allows us to compare the
results. Two related comparisons are shown in Figure 2,
one using the G statistic (Figure 2A) and the other using
LOD scores (Figure 2B). MLIKELY.PAS does not itself
calculate either G or LOD scores, but both of those
statistics are easy to calculate and graph using a spread-
sheet, and MLIKELY.PAS does provide a spreadsheet-
importable (comma and space delimited) output file.Figure 2.—Maximum-likelihood-derived confidence inter-

The values of the maximum ln L’s were obtained withvals for the distance between genes A and B. (A) G -test compar-
isons; (B) LOD score comparisons. The equations describing MLIKELY.PAS, and a spreadsheet program (QUATTRO
the cross shown in Figure 1 were changed so that distance d1 PRO; Corel) was used to find G 5 2 3 [ln L̂(d1 fixed) 2
was treated as a constant. Maximum likelihoods were obtained

ln L̂(d1 variable)] for each fixed value of d1. These results arefor a series of values of d1 and ln L̂ for each of these fixed-d1

shown in Figure 2A. There are four parameters whenhypotheses was compared to ln L̂ for the variable-d1 hypothesis.
The peak of the curve occurs at the estimate of d1 obtained d1 is allowed to vary, and three when it is fixed, giving
under the variable-d1 hypothesis and the smallest and largest 1 d.f., corresponding to P 5 0.05 for G 5 3.841 and
A-B map distances, in centimorgans, consistent with the data P 5 0.01 for G 5 6.635. Thus, the 95% upper boundare those at which the curves cross the selected probability or
LOD-score criterion (dotted lines). MLIKELY.PAS was used
to find the ln L̂ values and the spreadsheet-compatible output
file was imported into Quattro Pro, which was then used to 2 The procedure outlined here is decidedly inelegant and providescalculate values of the G statistic and LOD scores. Graphs were what is more properly termed a support interval rather than a conven-
prepared using Corel Draw; calculated points are shown by tional confidence interval, but it requires understanding only the basic
tick marks while the curves are Bezier interpolations. concepts of statistical inference and does not require understanding

variance and covariance nor knowledge of linear algebra. It is also
practical.
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TABLE 1

Progeny recovered from
Df(1)rJ1, Rex

crossover
3

attached-XY
O

crosses

rDNA crossover Nondisjunctional
Crossover Regular female Regular male (%) (%)

y cv 193 179 8 (7.66) 14 (4.71)
y v f car 992 848 9 (1.78) 9 (0.66)
y cv v 339 234 10 (5.57) 5 (1.19)
y f car 983 672 13 (2.58) 16 (1.34)
y cv v f 69 83 6 (14.81) 5 (3.90)
y car 164 131 6 (6.83) 0 (0.00)
y v 91 90 1 (2.15) 2 (1.44)
y cv f car 148 142 3 (3.90) 3 (1.35)
y cv car 70 49 2 (5.41) 1 (1.16)
y f 22 17 1 (8.33) 1 (3.33)

A series of identical crosses were done of groups of females heterozygous for Rex and various marked X
chromosomes that had different frequencies of an autosomal Su(Rex) in each group (L. G. Robbins, unpublished
data). The crosses allowed detecting meiotic nondisjunction in the females and mitotic exchange between two
rDNA arrays in their offspring.

for d1 is less than 3 map units, and the 99% upper bound in a recent article (Robbins 1999) that deals with sex-
chromosome disjunction and meiotic drive producedis less than 4 map units. The probabilities provided by

the G test correspond to those conventionally used in by ribosomal-RNA gene deficiencies.
Rex is a repeated, heterochromatically located ele-most hypothesis testing; they are the probabilities of

getting a difference at least that large by chance alone. ment of Drosophila melanogaster. Acting maternally, it
promotes recombination between ribosomal-RNA geneA different comparison, shown in Figure 2B, is often

used in human genetics. LOD (log of odds) scores are arrays (rDNA) during early embryonic mitoses (Rob-
bins 1981; Rasooly and Robbins 1991). We had repeat-the log10 of the ratio of the likelihoods under two hypoth-

eses, or, equivalently, the difference between the log10 edly noted that crosses of Rex females also seem to pro-
duce more than the usual amount of sex-chromosomeL’s. The ln L output of MLIKELY.PAS can be converted

to base 10 by multiplying by ln10 ≈ 2.30258, and the nondisjunction, amounting to z1% exceptions, and
had wondered whether this is also an effect of Rex, orLOD scores are found by subtraction. Note that the

conventions used in pedigree analysis, a LOD of 13 to if it is an extraneous phenomenon unrelated to the
presence of Rex. The frequency of nondisjunction,demonstrate linkage and 22 to exclude linkage, are

substantially more stringent than the usual critical val- though elevated, is low enough that mapping it to Rex
would be an uninviting task. If not Rex-related, this slightues. This stringency is reasonable when dealing with the

tests of multiple hypotheses implicit in using a progres- meiotic perturbation would also not be of much interest
to us. Examination of data collected for other purposes,sive accumulation of families to decide whether there

is linkage, but is overkill for most cross data. It is certainly however, indicates that the frequencies of nondisjunc-
tion and rDNA recombination are correlated, sug-overly stringent here, where we are already certain that

the genes are linked. gesting that the two are functionally, even if not neces-
sarily causally, related.Variation and correlation—the relationship between

experimental variables: There are probably innumera- Those data came from crosses done along the way to
mapping a suppressor of Rex, a Su(Rex). At one pointble circumstances in which one observes two or more

variable phenotypes and wants to know whether they in this process, a series of chromosomes that carried
different segments of the X chromosome were testedare correlated. Where the phenotypes are metric, such

as bristle lengths in Drosophila, conventional regression for suppression of Rex activity. As this particular Su(Rex)
turned out to be autosomal, each genotype tested actu-analysis can be appropriate, but regression analysis is

also often used for counted variables, such as crossovers ally consisted of several flies bearing the same X seg-
ment, but a random sampling of Su(Rex) and non-and disjunctional events, where a maximum-likelihood

approach is more powerful and more revealing. To illus- Su(Rex) autosomes. The results of these crosses are
shown in Table 1. Not only does the frequency of rDNAtrate this, some unpublished data from my laboratory

on the behavior of Rex are analyzed. The results of recombination appear to be (and is) heterogeneous
because of the different frequencies of the Su(Rex) insimilar analyses may also be found in Palumbo et al.

(1994), and some extensions to this approach are used the 10 samples, but the frequency of nondisjunction
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Figure 3.—Meiotic nondisjunction in Rex/1
females and mitotic exchange between two rDNA
arrays in their offspring. Normal disjunction (1 2
n) yields both X/attached-XY and X/O zygotes, but
half of the latter die because they carry the lethal
rJ1 deficiency. A fraction (r) of the X/attached-XY
zygotes are transformed to X/Y males or gynan-
dromorphs by recombination between the two
rDNA arrays of the attached-XY, but half of these
also die because this exposes Df(1)wrJ1. One-half
of the products of nondisjunction also die because
they are either nullo-X or metafemales.

varies as well. Are the two varying in a correlated fashion? Unfortunately, as illustrated in Figure 3, there are some
complications caused by the actual cross used:We can find out by comparing the values of ln L̂ under

three hypotheses:
1. One of the X chromosomes of the Rex females also

H1: The frequencies of both nondisjunction and Rex- carried a deficiency that is recessive lethal. Thus,
induced exchange are different in each cross. some offspring genotypes die because of the pres-

H2: The frequency of Rex-induced exchange differs ence of the lethal.
among crosses, but the frequency of nondisjunction 2. The fathers carried an attached-XY (XY) and therefore
is the same in all 10 crosses. produce XY and 0 sperm, but the ratio of XY:0 sperm

H3: The frequencies of nondisjunction and Rex-in- is not 1:1—XY/0 males produce an excess of 0 sperm.
duced exchange are related as nondisjunction 5 m 3 3 Recoverable Rex-induced mitotic exchanges occur only
(rDNA exchange) 1 b. (Note that a linear correlation in the XY embryos resulting from normal disjunction.
is considered here, but a correlation of any other The exchange product is an X/Y male (or gynandro-
form could be just as easily evaluated.) morph), but if the X carries the lethal, it too dies. Thus,

to completely describe each cross, we need parametersThere are three G-test comparisons to be made:
that describe (i) the frequency of nondisjunction(n);

1. H1 “explains” all of the variation in the frequency (ii) the frequency of Rex-induced exchange (r); and
of nondisjunction. H2 explains none of the variation (iii) the proportion of sperm that carry the attached-
in nondisjunction. Hence, the comparison of H1 vs. XY (XY), and we must stay attentive to the classes
H2 tests whether there is statistically significant varia- that die.
tion in the frequency of nondisjunction—it is equiva-

The probabilities of the surviving genotypes amonglent to a goodness-of-fit test of H2.
all zygotes are then2. H3 explains that part of the variation of nondisjunc-

tion that is linearly related to the frequency of Rex-
Regular males 5 1⁄2(1 2 XY )(1 2 n)

induced exchange. H2 explains none of that varia-
tion. Hence, the comparison H3 vs. H2 is a measure Regular females 5 (XY )(1 2 n)(1 2 r)
of the variation explained by the correlation—it tests

Rex-induced mitotic exchanges 5 1⁄2(XY )(1 2 n)(r)
the significance of the correlation.

3. Last, H1 vs. H3 measures how much variation of and
nondisjunction is left unexplained after the relation-

Nondisjunctional males 1 females 5 1⁄2n.ship with Rex-induced exchange is accounted for. It
tests the sufficiency of the correlation—it is equiva- These are not, however, the probabilities of actually observ-
lent to a goodness-of-fit test of H3.

ing these offspring because we do not observe the lethals,
which are 1⁄2(1 2 XY)(1 2 n) 1 1⁄2(XY)(r)(1 2 n) 1 1⁄2n.The first step needed for making these comparisons

is writing the probabilities of each of the progeny classes. To get the probabilities among survivors, we must divide
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Figure 4.—Correlation of two phenotypes asso-
ciated with the Rex element of Drosophila melano-
gaster. (Top) The parameters used to describe this
cross and the probabilities of the offspring types.
Note that these are the probabilities among all
zygotes, including those that are lethal, and do
not sum to one. (Bottom) Pascal coding used to
test for a correlation between the two phenotypes.
Parameters are assigned in accord with three
hypotheses: H1, that all parameters vary from
cross to cross; H2, that the nondisjunction rate is
the same in all crosses; and H3, that the nondis-
junction rate is correlated with the rDNA ex-
change rate. Probabilities of each class among
total zygotes are first calculated and then con-
verted to expected fractions of each class among
survivors by dividing by total surviving. Expected
numbers are the expected fractions times the ob-
served total for each cross. Iteration times for
MLIKELY.PAS containing these equations are
shown here, and the results are shown graphically
in Figure 5.

the probability of each surviving genotype by the total n 5 (2 3 nondisjunctional offspring)/(regular females
probability of survival, 1 2 1⁄2(1 2 XY)(1 2 n) 2

1 2 3 regular males 1 2 3 rDNA crossovers1⁄2(XY)(r) (1 2 n) 2 1⁄2n.
The equations needed to find the maximum-likelihood 1 2 3 nondisjunctional offspring).

estimates of the parameters under the three models and
If each of the three parameters is a probability withthe iteration times to find ln L̂ are shown in their Pascal

values between 0 and 1, MLIKELY.PAS must reach theincarnation in Figure 4. Because only the parameter values
same solutions, and the goodness-of-fit x2 at the end ofchange from cross to cross, a single set of equations is
the iteration process must be 0. Thus, even if the alge-contained within a loop. Only four lines must be
braic solutions for XY, r, or n were not reasonably obvi-changed to accommodate each of the hypotheses.
ous, MLIKELY.PAS would provide the solutions. InEach cross yields four offspring classes, three of which
other words, whenever the number of parameters equalsare independent. Under H1, each cross is described by
the number of independent observations, MLIKELY.three separate parameters so there is a unique solution
PAS serves as a reasonably efficient equation solver.for each. They are

The algebraic solutions could turn out to be ,0 or
XY 5 (regular females .1 either because of sampling variation or because the

three-probability model is truly nonsensical. Were that
1 2 3 rDNA crossovers)/(regular females

the case, as long as the parameters are constrained to the
1 2 3 regular males 1 2 3 rDNA crossovers), default 0–1 range, MLIKELY.PAS would yield parameter

estimates that do not match the calculated values and
r 5 (2 3 rDNA crossovers)/(regular females we would get a positive x2 value. Either discrepancy,

algebraic solutions that are ,0 or .1, or a mismatch
1 2 3 rDNA crossovers),

between the algebraic and numerical solutions, should
certainly clue the investigator to question the adequacyand
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each cross separately. Under H2, we obtain the maxi-
mum-likelihood estimate of a single nondisjunction rate
for all of the crosses. Under H3, we obtain the maxi-
mum-likelihood estimates of the slope and intercept for
correlated behavior of nondisjunction rate and rDNA
exchange rate. In addition, Figure 5 shows the results
that are obtained from conventional regression analysis
that uses the frequencies of rDNA crossovers and non-
disjunctional offspring rather than the actual progeny
counts.

Likelihood and regression analyses give slightly differ-
ent estimates of the slope and intercept. Indeed, with
regression analysis there are two equally sensible lines of
least-squares fit, with the best estimate of the underlying
parameters somewhere in between. Regression analysis
assumes that the values of one variable, the independent
variable, are chosen by the experimenter and are not
subject to sampling error. That is not in fact true in this
kind of experiment, where both variables are actually
determined by the data. Unless we have reason to be-
lieve that one parameter is known with greater precision
than the other, either can be used as the independent
variable. Maximum likelihood, in contrast, gives a single
solution that takes account of the effects of sampling
variation on both variables.

In neither analysis was the intercept constrained to
Figure 5.—Results of maximum-likelihood and regression pass through the origin, but the maximum-likelihood

analyses of the correlation of nondisjunction and rDNA ex- estimate of the intercept is 0 and the intercepts of bothchange. G-test comparisons of the results of the MLIKELY.PAS
regression lines are not significantly different from 0.runs described in Figure 4 indicate that there is highly signifi-
The statistics, however, are quite different. First, thecant variation in nondisjunction among the crosses (H2 vs.

H1), provide a single, highly significant estimate of the correla- maximum-likelihood method allows us to isolate a single
tion of the two phenotypes (H2 vs. H3), and indicate that the variable and test whether it shows significant experimen-
correlation accounts for all but a nonsignificant fraction of the tal variation in the first place; this cannot be parsed outvariation in nondisjunction (H3 vs. H1). Regression analysis,

with regression analysis. Second, the method of maxi-arbitrarily treating either phenotype as the independent vari-
mum likelihood provides a far more powerful test ofable, provides two different estimates of the correlation, either

of which is significant but not highly so, and leaves a substantial whether the correlation is significant. In this instance,
fraction of the variation of nondisjunction unexplained. the regression analysis points to a significant correla-

tion, but only at the 0.025 level; the G test indicates that
it is actually very highly significant indeed. In other

of the model. For the data in Table 1, the algebraic words, regression analysis, by using frequencies rather
solutions for XY, r, and n are all in the 0–1 range, than the observed numbers, has thrown away a lot of
running MLIKELY.PAS for H1 yields the same values, information. Third, the likelihood analysis provides a
and the x2 for H1 is 0. Note, however, that the pro- direct test of whether the correlation adequately ex-
portion of XY bearing sperm is not actually involved in plains the experimental variation. Here, the unex-
the hypotheses to be compared, and it would have been plained variation is not only small, it is statistically insig-
legitimate to assume that the value of the parameter XY nificant. Regression analysis also provides a measure, if
was the same for all 10 crosses instead of separately not a direct test, of sufficiency. As long as the intercept
evaluating it for each cross. An appendix that considers is calculated rather than forced through the origin, R 2

the pros and cons of different ways of formulating H1 is the fraction of the variance that is explained by the
is included at the web site. correlation. Here, with less than half of the variance

Under both H2 and H3, there are fewer parameters explained by the (albeit significant) correlation, regres-
than independent observations. Thus, there is more sion analysis suggests that a substantial fraction of the
than one set of possible solutions, and the maximum- experimental variation has not been accounted for,
likelihood estimates are the minimum-variance, unbi- while the likelihood analysis tells us that only an insig-
ased set. The estimates under the three hypotheses, and nificant fraction of the variation remains unexplained.
the G-test comparisons, are shown graphically in Figure In large measure this vagueness indicated by the regres-

sion analysis results from the lack of fit between the5. Under H1, we estimate the nondisjunction rates for
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experimental design that has two variables subject to could be based on whether a mutant reduces map
distances without affecting the coefficient of coinci-sampling errors and the assumption of regression analy-

sis that one variable is error free. dence, or whether it affects both recombination and
interference. In this example (abbreviated fromA note is in order at this point about the need for

care in defining the space within which MLIKELY.PAS Robbins 1977), mutant and control recombination
in four marked regions are compared. A simple con-searches for the maximum-likelihood solutions. In gen-

eral, a slope and intercept can take on any positive or tingency test shows that the mutant suppresses re-
combination, but parsing crossover frequencies andnegative values, but allowing unconstrained iteration of

the slope and intercept can lead to finding local and/ coefficients of coincidence using maximum-likeli-
hood methods is necessary to test whether the mutantor nonsensical bumps in the likelihood function. It is

important to provide hints to the program in the form affects interference per se.
2. In the first example described in this article, it wasof constraints on the parameter ranges. Inspection of

possible to eliminate the effects of a nuisance variablethe data before running the program will generally suf-
(penetrance) using a single set of data. Frequently,fice, and even if one fails to do that in advance, the
however, the effect of a confounding variable has toabsurdity of the result at a false maximum is quite evi-
be evaluated in a separate cross and, when an effectdent. For these data, it is clear from inspection that the
is found in the control, it must be taken into accountslope of the correlation must be positive. Given that, it
in assessing the experiment. Hearn et al. (1991)is also evident that the intercept must be less than the
wanted to determine whether chromosomal re-maximum-likelihood estimate of the average rate of
arrangements that variegate for the heterochromaticnondisjunction (H2). As long as either of these hints is
visible lt also variegate for nearby lethals by testingprovided to the program by setting the lower bound of
whether viability of the rearrangement is sensitive tothe slope to zero or the upper bound of the intercept
modifiers of variegation. A simple contingency testto the value previously found for the average, iteration
would have sufficed were it not for the possibilityproceeds quickly to the true maximum. If, however, a
that the modifier might have an effect on viabilitynegative slope is allowed and an intercept greater than
separate from its effect on variegation of the lethalthe average is allowed and the initial guess of the inter-
locus. Recognizing this, they did control crosses thatcept is greater than that average, iteration to a local
lacked the variegating rearrangement to expose themaximum is possible. The conjunction of these errors
effects of the modifier alone.will be obvious, however. If a negative slope is allowed

and the initial guess of the intercept is set greater than Differences in the control crosses must be removed
the average nondisjunction rate but less than the highest before deciding whether there is an effect in the experi-
observed rate, the false solution under H3 (correlation) mental crosses. A simple, but flawed, approach would
will be identical to the solution under H2 (invariant be adjusting the numbers in the experiment based on
nondisjunction rate). If a negative slope is allowed and the ratios observed in the control. However, sampling
the initial guess of the intercept is set greater than the errors are inherent in the control as well as the experi-
highest observed nondisjunction rate, the false solution ment, but “adjusting” the experimental data based on
for H3 will be even worse—if plotted, the line will not the controls assumes that the controls are error-free.
even remotely approach the data points. Even if inap- The preferable approach, used by Hearn et al. and de-
propriate bounds are set, however, MLIKELY.PAS finds tailed in the example, is to construct a model for these
the correct solution as long as the initial guess of the viabilities and interactions and apply it simultaneously
intercept is less than the average nondisjunction rate. to all of the data.

Further examples of the range of problems amenable
to this approach: The foregoing examples, estimating
a parameter in the presence of nuisance variables and DISCUSSION
analysis of correlation, illustrate just two of the many

Maximum-likelihood analysis of data from crosses:problems in formal genetics that can be tackled using
There are two themes running through the examplesthis approach. The web site, in addition to simpler,
used to illustrate this approach. The first is the wideintroductory examples, contains additional real-world
applicability of a simple numerical approximation ap-examples that illustrate two hypothesis-testing problems
proach to finding maximum-likelihood solutions. Thethat arise with regularity: (1) testing whether only a
second is the insight to be gained from partitioningsubset of parameters differ between a control and an
of variation by even a primitive application of discreteexperiment; and (2) taking account of sampling varia-
multivariate analysis. In the teaching context, the firsttion in control crosses done to evaluate confounding
allows students to focus on the ideas without gettingvariables. In outline, those examples are as follows:
terribly involved in the mechanics, and the second

1. Sandler et al. (1968) suggested that a useful classifi- forces a clear definition of the experimental design and
the questions to be asked.cation of recombination-defective meiotic mutants
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In many instances these ideas parallel each other, but gives cleaner yes/no judgments of significance than
does a chart of error bars.that is certainly not always the case. For some problems,

such as in the example of testing whether a meiotic Regardless of the particular questions being investi-
gated, there are several reasons why this approach tomutant affects interference, only a test of a single hy-

pothesis is needed, but finding the maximum-likelihood teaching statistics is attractive, at least when a program
like MLIKELY.PAS can be used to preempt the needestimates of the multiple exchange and interference

parameters is made easier by use of the computer. There for great mathematical competence:
are surely few geneticists who would be comfortable

1. There is no need to adapt methods designed for
trying to solve a set of 14 simultaneous equations for

other purposes or for continuous data. There are
the partial derivatives of L with respect to eight map

always assumptions in doing that, which may not be
distances and six coefficients of coincidence. Numerical

obvious to the casual user of a statistics cookbook
analysis makes this kind of problem tractable.

and may not hold. In writing the probabilities of each
There are also problems for which multiple hypothe-

observed class, any assumptions are at least made
ses must be compared, but for which the maximum

evident. It forces us to understand our own experi-
likelihood is readily found. For example, R. Morell re-

ment, and when an assumption is faulty it often be-
cently posed the following. He was studying a human

comes glaringly obvious by outcomes such as a value
dominant of reduced penetrance for which genotypes

of 1 for the best estimate of a parameter that is a
could nevertheless be determined unambiguously by

probability.
molecular means, even in many instances to the point

2. In this approach, there is no need to learn a myriad
of knowing whether the particular allele segregating

of different procedures nor to understand the fine
was, for example, a frame-shift or a base substitution.

points of when they should or should not be used.
Eyeball perusal of several pedigrees suggested that pene-

Here, laziness, rather than necessity, is the mother
trance was not constant. There are several things worth

of invention.
examining in this situation. First, of course, is the ques-

3. If maximum-likelihood solutions exist, the parame-
tion of whether these are significant differences in pene-

ter estimates are the minimum-variance unbiased es-
trance or merely stochastic variation. If there are sig-

timates. There are some circumstances for which bi-
nificant differences, one might want to know, for

ased estimators exist that are nevertheless always
example, whether penetrance is higher for clearly null

closer to the population parameter (e.g., pseudo-
alleles than for missense alleles or whether other loci

Bayesian estimators). Except for those cases, how-
affect expression of this trait. In other words, we need

ever, the maximum-likelihood estimates will provide
to ask, as we would in an analysis of variance were we

the most powerful tests of significance possible. The
following a measured variable rather than numbers of

maximum-likelihood approach may reveal signifi-
affected and unaffected individuals, whether there are

cant differences in a given-sized sample when a
significant differences in variation between and within

method transplanted from continuous-variable statis-
groups. Testing a series of hypotheses was needed here,

tics would not.
but, at the same time, there was no need to turn to

4. This approach gives a more comprehensive picture
numerical approximation to find the several ln L̂ values.

of what is going on than any single test of signifi-
Only one variable was involved, penetrance, and the

cance. Much as in conventional analysis of variance
analytic solutions were easily found (Morell et al.

with continuous data, we can assess not only the
1997).

significance of a suspected agent, but the strength
There are also situations outside of formal genetics

of its effect and its sufficiency as an explanation of
in which this approach may be of value. For example,

the observations. A correlation, for example, can be
we have recently used this kind of analysis in measure-

both statistically significant and, at the same time,
ment of ribosomal RNA gene copy number (P. Craw-

unimportant. Is the phenomenon real? Is it strong
ley, unpublished results). Because copy numbers of a

enough that a biologist should care about it at all? Is
large number of genotypes were needed, dot-blot hy-

it of primary or secondary importance? A correlation
bridizations, with a single-copy reprobe used to control

that explains only 1% of the experimental variation
for loading, were counted using a storage-phosphor

is probably not of much biological importance even
screen device. The data were therefore in the form of

if it is significant at a 0.0001 level.
discrete numbers (photons detected in each of many
dots) and maximum-likelihood methods are appro- Of course, this approach, particularly the use of nu-

merical methods for solving a nearly unrestricted opti-priate for testing for differences among the genotypes.
MLIKELY.PAS is not designed for the rather awkward mization problem, has its limitations as well. The

MLIKELY.PAS algorithm in which parameters are variedbookkeeping involved in the complex data structure of
multiple dots of multiple genotypes on multiple blots in a fixed order sometimes requires that the user have

an idea of reasonable guesses to enter as starting points;with probes that may differ in concentration and specific
activity from run to run. Nevertheless, we used it to test it may not recover from entirely unreasonable ones.

The possibility of finding local maxima, and of missingthe utility of this approach. It does work, and it certainly
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