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ABSTRACT

From a library of nucleic acid molecules, which are
randomized in parts of their sequence, unique se-
quence variants can be selected for specific prop-
erties. The planning of such an in vitro  selection
experiment requires some consideration regarding
how much DNA template or RNA transcript should be
used initially. The amount applied depends on the
number of randomized nucleotides and on the ex-
pectations of how often each conceivable and unique
sequence combination should be represented in the
experimental pool. We display graphs describing the
probability for the representation of unique nucleic
acid molecules in a randomized pool as a function of
the mean representation k, defined by the ratio of
sampled nucleic acid molecules to conceivable se-
quence combinations and we summarize the amounts
required to represent unique sequences with 99%
likelihood. The probability of representation, P = 1 – e–k,
can be applied also to ‘sub- saturated’ pools ( k < 1) of
nucleic acids with long randomized domains, where it
is impossible to provide sufficient material for full
sequence representation.

An RNA molecule provides sequence information but it may also
have functional properties, for example the capability of self-
cleavage or being a ligand. These RNAs can be identified by in
vitro selection procedures (reviewed in 1–3). The RNA of interest
is selected from a pool (library) of RNA molecules that differ in
sequence. For selection, a DNA molecule is synthesized contain-
ing, at defined positions, a completely random mixture of all four
bases, A, C, G, T. Fixed sequences at the termini allow in vitro
transcription, reverse transcription and PCR amplification. The
pool of RNA transcripts is subjected to selection: for example
binding to an immobilized ligand (SELEX) (4) or for different
catalytic properties (5–7). Selected RNAs are reverse transcribed,
the resulting cDNAs are PCR-amplified and used as template for
RNA synthesis in a new round of selection.

The length of the randomized sequence determines the
conceivable number of unique sequence variants in a pool of
nucleic acids. However, for practical reasons, the amount of RNA
(or DNA) that can be actually synthesized and subjected to a

selection experiment is limited. In view of the enrichment during
the selection procedure, it does not matter—at least in theory—
whether the pool contains this unique sequence several-fold or
just once. It is therefore of interest to determine the likelihood that
a particular sequence is not represented in a library of nucleic
acids. This probability, P0,n, approximates e–k, where the
representation factor k, given as k = n/4L is the ratio of molecules,
n, in a pool to the conceivable sequence combinations depending
on the number of randomized nucleotides, L.

In a pool with k = 1, which contains as many molecules as there
are unique sequence combinations possible, a unique sequence is
not represented with a 36.8% chance, but 63.2% of all sequence
combinations are represented at least once. Each further increase
of the pool size by a factor of 2.3 (∼ln 10) will reduce the number
of unrepresented sequences by a factor of 10. Figure 1A
demonstrates the relationship between the representation factor
and the probability that an RNA sequence is not included in an
experimental pool.

The probability of representation is only a function of k and is
independent of the number of randomized nucleotides, L, as long
as the number of molecules sampled in a pool increases with the
number of conceivable sequence combinations. For example,
each extension of the randomized sequence by one nucleotide
(increase of L by 1), requires the 4-fold increase of nucleic acid
molecules in the library to maintain the same likelihood of
sequence representation. These pools are characterized by the
same k factor. The amounts of nucleic acids required to achieve
99% sequence representation depending on the number of
randomized nucleotides is summarized in Table 1.

P0,n can be calculated also for ‘sub-saturated’ pools (k < 1; Fig.
1B), for example if the randomized sequence is large (L > 25),
where it is impossible to provide sufficient material for full
sequence representation. Here, k also represents the upper limit of
the possible conceivable sequence combinations.

Some researchers prefer pool sizes with simultaneous represen-
tation of almost all conceivable sequences to ensure that all
sequence variants are subjected to the selection process (8). A
formula to calculate the required pool sizes is provided in
http://www.imbb.forth.gr/jol/sel.html . However, the probability
of identifying the best performing sequence is solely described by
P = 1 – e–k and is independent of whether the residual sequences
are present or not. Therefore, simultaneous representation of all
sequences is not relevant.
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Figure 1. Relationship between the representation factor k and probability P0,n,
which indicates the likelihood that a nucleic acid is not represented in a
sequence-randomized library. (A) The relationship for ‘saturated’ libraries, in
which the number of sampled molecules is greater than the number of
conceivable sequence combinations (k � 1). (B) The relationship for
‘sub-saturated’ libraries, in which the number of sampled molecules is smaller
than the number of conceivable sequence combinations (k � 1).

Table 1. Nucleic acids required for 99% likelihood of sequence
representation (P0,n = 0.01)

Randomized nucleotidesSequence combinations Size of librarya

(L) (4L) (M)

6 4.10 × 103 3.13 × 10–20

7 1.64 × 104 1.25 × 10–19

8 6.55 × 104 5.01 × 10–19

9 2.62 × 105 2.00 × 10–18

10 1.05 × 106 8.02 × 10–18

11 4.19 × 106 3.21 × 10–17

12 1.68 × 107 1.28 × 10–16

13 6.71 × 107 5.13 × 10–16

14 2.68 × 108 2.05 × 10–15

15 1.07 × 109 8.21 × 10–15

16 4.29 × 109 3.28 × 10–14

17 1.72 × 1010 1.31 × 10–13

18 6.87 × 1010 5.25 × 10–13

19 2.75 × 1011 2.10 × 10–12

20 1.10 × 1012 8.41 × 10–12

21 4.40 × 1012 3.36 × 10–11

22 1.76 × 1013 1.35 × 10–10

23 7.04 × 1013 5.38 × 10–10

24 2.81 × 1014 2.15 × 10–9

25 1.13 × 1015 8.61 × 10–9

26 4.50 × 1015 3.44 × 10–8

aFor a pool size of ln100 × k; for each 2-fold increase, the sequences that are not
represented are reduced by a factor of 100.
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APPENDIX

Regardless of the theoretical mean representation in the experi-
mental pool given by k, each defined unique sequence variant is
represented with a distinct appearance, m, which is either 0, 1, 2 or
higher. In an experimental pool consisting of n molecules, in which
each conceivable sequence combination has the probability P =
1/4L of occurrence for each of the n molecules, the probability for
m-fold occurrence of the particular sequence combination within
the entire pool of n molecules can be described by the general
formula of the binominal distribution (9):

Pn,m� �nm� � Pm� (1–P)n – m

Considering the definitions above, P0,n is described as:

P0,n � �k� 4L

0 � � ( 1
4L)

0 � (1– 1
4L)

k�4L – 0 1

Since �k� 4L

0 � � 1 and (1
4L)

0 � 1

equation 1 can be simplified to equation 2:

P0,n � (1– 1
4L)

k�4L 2

This can be transformed:

P0,n � �(1– 1
4L)

4L�
k

3

For equation 3, one can use the relationship:

(1–1
x)x � 1

e for large values of x (9)

to convert equation 3 into equation 4:

P0,n � (1e)k 4

which is equivalent to the general formula:

P0,n � e–k


