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ABSTRACT
Some general likelihood and Bayesian methods for analyzing single nucleotide polymorphisms (SNPs)

are presented. First, an efficient method for estimating demographic parameters from SNPs in linkage
equilibrium is derived. The method is applied in the estimation of growth rates of a human population
based on 37 SNP loci. It is demonstrated how ascertainment biases, due to biased sampling of loci, can
be avoided, at least in some cases, by appropriate conditioning when calculating the likelihood function.
Second, a Markov chain Monte Carlo (MCMC) method for analyzing linked SNPs is developed. This
method can be used for Bayesian and likelihood inference on linked SNPs. The utility of the method is
illustrated by estimating recombination rates in a human data set containing 17 SNPs and 60 individuals.
Both methods are based on assumptions of low mutation rates.

SINGLE nucleotide polymorphisms (SNPs) are single cases the SNPs have originally been identified by se-
quencing. In such cases it may be advantageous to in-base changes in a DNA sequence. In the human

genome, such polymorphisms are thought to exist in clude information regarding the invariable sites in any
statistical analysis. However, in other cases, informationz1 out of every 300–500 base positions. Much interest

has centered on such genetic markers because of their regarding invariable sites may not be available or was
never obtained. This may occur, for example, if thepotential use in gene mapping and in elucidating ances-

tral human demographic patterns. The recent advent SNPs were obtained by screening databases for ex-
pressed sequence tags (ESTs). In these cases, standardof chip technology gives strength to the idea that human

SNP data may soon become abundant. For example, methods for analyzing DNA sequences are not appro-
priate in the analysis of SNPs. Instead, these types ofWang et al. (1998) constructed a human genetic map

consisting of 2227 SNPs. They also reported the develop- data must be analyzed by conditioning on each locus
being variable.ment of genotyping chips that allow simultaneous geno-

typing of 500 SNPs. However, the great promise of these Two general methods for analyzing SNPs that take
these properties into account are developed in this arti-new markers has not been followed by the development

of statistical and population genetical methods for ana- cle. The common feature of these approaches is that
the sampling probability is calculated conditional onlyzing such data. This article attempts to correct this

problem by suggesting new statistical methods for data variability in each locus. Because only variable loci are
included in the analysis, the mutation rate may in itselfanalysis that take the special properties of SNPs into

account. be of little interest. The mutation rate is therefore
treated as a nuisance parameter and is eliminated byAn important characteristic of SNPs is that they are

thought to have very low mutation rates, z1028–1029 in considering the limit of m → 0.
First, a likelihood approach based on markers in link-humans. The population genetical parameter Nem (m 5

mutation rate per generation, Ne 5 effective population age equilibrium for use in population genetical and
demographic studies is presented. In addition, a likeli-size) was estimated as 1024 by Wang et al. (1998). This

implies that the probability of two mutations occurring hood/Bayesian approach to linked SNP markers based
on a Markov chain Monte Carlo (MCMC) method isin the same locus is very low and consequently, the data

are essentially diallelic. Another important property of presented. Both approaches are illustrated by applica-
tions to real data sets.SNPs is that, per definition, only variable markers are

included in a data set. Often little or no information is
available regarding the identity of base positions located

SNPs IN LINKAGE EQUILIBRIUMbetween the SNPs in a particular population. In some

Considered first are SNPs in linkage equilibrium (i.e.,
it is assumed that the recombination rate between the
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are obtained at random positions in the genome. The graphic parameters) and u. Conditioning on the under-
lying gene genealogy (G), the sampling probability candata (X) for k loci can then be represented as a collec-

tion of k diallelic data patterns, e.g., X 5 {X1, X2, . . . , be rewritten as
Xk} 5 {(x11, x12), (x21, x22), . . . ,(xk1, xk2)}, where the xi1’s
and xi2’s are unordered. The fact that all data patterns Pr(Xi|Q, Si . 0) 5

1
Pr(Si . 0|Q) #Pr(Xi|u,G)dF(G|V).

are diallelic is a consequence of the method used for
scoring the data and of the low mutation rates. The (3)
likelihood function for a vector of parameters Q is then

A genealogy consists of 2n 2 1 edges, where n is thegiven by
sample size. Let the jth edge in the ith genealogy be

L(Q|X) 5 p
k

i51

L(Q|Xi) (1) denoted by bij and let the length of such an edge be
denoted by Tij (Figure 1). The total tree length in the

under the assumption of linkage equilibrium. gene genealogy associated with the ith locus (Ti) is given
We first consider the case in which the isolation of by Ti 5 RjTij 5 R n

j52 jtji, where tji is the time in the
variable loci and the estimation of population parame- genealogy associated with the ith locus in which there
ters are performed using the same population sample. exist j genes ancestral to the sample. Let Bi be the set
However, it should be noted that most schemes for of edges in the genealogy in which a single mutation
obtaining SNPs are more complicated than this and that could have caused data pattern i, if that was the only
the definition of the likelihood function depends on mutation occurring in the genealogy. For example, for
the ascertainment scheme. Assuming this simple ascer- the genealogy depicted in Figure 1, Bi 5 {bi3, bi5}. If a
tainment scheme, we can calculate the contribution to mutation happened on edge bi3 and no other mutations
the likelihood function from each locus as occurred in the genealogy, there would be three gene

copies with the mutant type and two gene copies withL(Q|Xi) 5 Pr(Xi|Q, Si . 0), (2)
the ancestral type. Likewise, if a mutation happened
on edge bi5 and no other mutations occurred in thewhere Si is the number of mutations in the ith locus.

This conditioning is necessary to take account of the genealogy, there would be two gene copies with the
mutant type and three gene copies with the ancestralfact that only variable loci are included in the analysis.

It is assumed that mutations occur according to a type. In both cases we would observe the data pattern
Xi 5 {3, 2}. Let ti be the sum of the length of all edgesPoisson process on the edges of an ancestral genealogy

with rate u/2 and that Q, therefore, can be divided into in the ancestral gene genealogy in which a mutation
could have caused the observed configuration (Xi), i.e.,parameters (V) that are independent of the mutation

process conditional on the genealogy (such as demo- ti 5 Rj TijI(bijPBi). For example, in the genealogy depicted

Figure 1.—An example of a co-
alescence genealogy. The edges of
the genealogy, in which a single
mutation would have caused the
observed data pattern (Xi), are
shown in bold.
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in Figure 1, the edges in bold are the ones in which a E(ti|V) 5 o
n

k52
1E(tik|V)o

k

j51

Pr(bijk P Bi)2
mutation would have caused the observed configuration
{3, 2} and ti 5 Ti3 1 Ti5 5 ti4 1 ti3. Assuming that muta-
tions occur according to a Poisson process along the

5 o
n

k521E(tik|V)k
1xi1 2 1

k 2 2 2 1 (1 2 dxi1,xi2)1xi2 2 1
k 2 2 2

1xi1 1 xi2 2 1
k 2 1 2 2,edges of the genealogy and assuming that the mutation

rates are so low that we can ignore the possibility of
back mutation, we realize that Pr(Xi|u, G) 5 Rj :bijPBi (1 2

e2uTij/2)e2u(Ti2Tij)/2, the sum over all edges in which a single (6)
mutation could cause the observed site pattern, of the

where dij is the Kronecker delta function. The latterprobability that at least one mutation happens in that
expression follows from the fact that all configurationsedge multiplied by the probability that no other muta-
are equally likely when the genes are exchangeabletions happen in any of the other edges of the genealogy.
(Kingman 1982). Because E(Ti|V) 5 Rn

j52jE(tij|V), theTherefore, the sampling probability may be written as
likelihood function can be expressed simply in terms
of expected coalescence times for any model of ex-
changeable alleles. These expectations can usually be

Pr(Xi|Q, Si . 0) 5
# oj :bijPBi (1 2 e2uTij/2)e2u(Ti2Tij)/2dF(G|V)

#(1 2 e2uTi/2)dF(G|V)
.

obtained quite easily analytically or by simulation. For
a given data set, the expectations can be evaluated just

(4) once, and the sampling probability can thereafter be
evaluated for many loci. For the standard neutral coales-

We now use the assumption that the mutation rate is cence models of a single population of constant size,
low (u → 0) to eliminate the nuisance parameter u. the expression (Equation 5) reduces to the well-known

form of the conditional Ewens sampling formula
(Ewens 1972). This is no surprise because the number

L(V|Xi) 5 lim
u→0

Pr(Xi |V,u,Si . 0) of alleles is a sufficient statistic for u in this model.
Estimating growth rates: In the following, the utility

of this approach is illustrated by estimating the growth
5 lim

u→0

#(u/2)21oj :bijPBi(1 2 e2uTij/2)e2u(Ti2Tij)/2 dF(G|V)

#(u/2)21(1 2 e2uTi/2)dF(G|V) rate of the American Caucasian population for a data
set published by Picoult-Newberg et al. (1999). They
presented a new method for extracting SNPs from pub-

5
#tidF(G|V)

#TidF(G|V)
5

E(ti | V)
E(Ti |V)

. (5)
licly available EST databases. They further confirmed
the existence of some of these by a method coined

The interchange of limit and integral in both denomina- genetic bit analysis (GBA) and estimated gene frequen-
tor and numerator is justified by the assumption that cies in the Caucasian-, African-, and Hispanic-American
E[Ti] , ∞, an assumption that will be valid for the populations. A subset of the data containing 37 poly-
relevant biological models. A similar result was pre- morphic loci, with an average of 16 haplotypes, from
viously obtained by Griffiths and Tavaré (1998), us- the American Caucasian population was provided by
ing arguments based on the infinite-sites model. L. Picoult-Newberg and is used here for illustrating the

utility of the new method (Equation 6).Note that the only other assumptions made when
The model chosen here to describe populationderiving Equation 5 are the existence of a well-behaved

growth is a model of constant exponential growth ofancestral genealogy, that the mutational process is a
a single panmictic population. In this model, r is thePoisson process along the ancestral genealogy, and the
exponential growth rate defined by N(t) 5 N0e2rt, wheremutation rate is low (u → 0). The above result is there-
N(t) is the population size t generations in the past andfore quite general and should be applicable to a wide
N0 is the present population size. Using Equations 5variety of models. Using Equations 5 and 1 directly, the
and 6, we can estimate the growth rate if the expectedlikelihood function can be evaluated efficiently using
coalescence times can be evaluated. There exists noanalytical methods or simulations for a wide variety of
simple analytical method for calculating the expectedmodels.
coalescence times in this model, but Slatkin and Hud-If it is assumed that all gene copies in the population
son (1991) provided a simple method for simulatingare exchangeable (e.g., a random population sample of
coalescence times under such a model. Letting t beneutral genes from a randomly mating population),
scaled by 1/r, the time in which there are i lineages cansome further progress can be made. Divide the graph
be generated byrepresenting the genealogy for the ith locus into n(n 1

1)/2 2 1 edges, by inserting a node in all edges at the
ti 5 ln31 1 ae2t 22

i(i 2 1)
ln(U)4, (7)time of a coalescence event. Let the jth edge occurring

in the kth coalescence interval be bijk. Then, because the
tree topology is independent of the coalescence times, where a 5 N0r, U is a random deviate drawn from a
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with rare alleles. If loci with rare alleles tend to not
be included in the sample, much of the evidence for
population growth may be lost. This might occur if loci
originally were chosen because variability was detected
between only two or a few copies. For example, the
loci extracted by Picoult-Newberg et al. (1999) were
identified initially by the screening of published ESTs.
This implies that variability was first detected by compar-
ing only a few gene copies. A simple way of taking this
screening procedure into account is by conditioning on
variability in the first analyzed ESTs (a subset of the
sample). The protocols used for isolating SNPs may vary
and most protocols may be more complex than this;
however, conditioning on variability in the first analyzed
ESTs provides for a mathematically tractable way of cor-
recting for the biases arising from preferential selection
of loci with alleles of intermediate frequency. Consider-
ing the extreme case of only two ESTs, we can calculate
the likelihood function as Pr(X| variability in the first
two copies sampled) 5 Pr(variability in the first two
copies sampled |X) Pr(X)/Pr(variability in the first twoFigure 2.—The log-likelihood function for a conditioned
copies sampled). Noting that Pr(variability in the firston (a) variability in the sample and (b) variability in the first

two sampled gene copies. The data analyzed consist of 37 two copies sampled |X) 5 2(xi1xi2)/(n(n 2 1)) and using
variable SNP loci published by Picoult-Newberg et al. the same arguments as in the derivation of Equations
(1999). 3–5, we find that this likelihood function can be ex-

pressed as

uniform (0, 1) density, and t is the time where i 1 1 L2(V|Xi) :5
xi1xi2E(tiG|V)

n(n 2 1)E(t2|V)
, (8)

genes coalesced into i genes [this corrects a trivial typo
in Slatkin and Hudson (1991)]. E[ti|a] can then be

where E(t2) is the expected coalescence time in a sampleestimated by repeated simulations and the likelihood
size of two.function for a can be evaluated using Equations 5 and 6.

The likelihood function for a was recalculated usingThe estimate of the likelihood function on a grid of
Equation 8. Note that again, a strictly decreasing likeli-20 values of a was obtained by using 100,000 simulations
hood surface is obtained, although the likelihood sur-to evaluate E[ti|a] for each gridpoint. This took ,1 min
face is not quite as steep as before (Figure 2b). Thison a 450-MHz Pentium II machine; the computational
suggests that the apparent pattern of no populationtime would not increase significantly as more loci are
growth is not an artifact but may reflect a real biologicalincluded in the analyses. The computer program is avail-
property of the data. Presumably there are some biologi-able from the author upon request.
cal factors that the model does not take into accountThe results of the analysis are depicted in Figure 2a.
such as population subdivision or selection.Note that the likelihood function is a strictly decreasing

Because the likelihood function can be written as afunction of a, and a maximum-likelihood estimate of
product of the likelihood in independent loci (Equationa 5 0 is obtained. There is no evidence in the data for
1), the usual large sample approximations from statisti-population growth based on SNP loci. This observation
cal theory should be applicable as the number of locicontrasts with the pattern found in mitochondrial DNA
becomes large. For example, by inspection of the likeli-in which there are strong deviations from the equilib-
hood function depicted in Figure 2, we can obtain anrium model in the direction expected under population
z95% upper bound for a of z{a : a , 1.0} usinggrowth (e.g., Excoffier 1990). A similar discrepancy
L2(a|Xi).between nuclear and mitochondrial data was first de-

scribed by Hey (1997). It was suggested that the differ-
ence could be due to natural selection at the molecular

SNPs IN LINKAGE DISEQUILIBRIUMlevel and/or demographic factors that have not been
taken into account, such as population subdivision. The analysis of SNPs in linkage disequilibrium is in

Taking account of ascertainment biases: A possibility many ways much more complicated because the sam-
that may also be considered for the SNP data is that pling probability cannot be expressed as a simple prod-
loci with high frequency alleles have preferentially been uct of the marginal sampling probability of each locus.

However, linked loci are in many ways more interestingchosen. Population growth will lead to an excess of loci
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data than independent loci. They may contain more ancestral genetic material of sites (0, 1, 2, 3, 4, 6, 7).
The stochastic process describing the number of edgesinformation about the parameters of interest and they

may be used for linkage disequilibrium mapping. Re- in the ancestral graph is therefore given by a birth-and-
death process in which deaths occur at rate j( j 2 1)/2cently, several new methods have emerged for analyzing

population samples of linked loci. The approach by and births occur at rate rRj
i51Di. The process stops when

a common ancestor is reached, i.e., when only one edgeGriffiths and Marjoram (1996), based on the infinite-
sites model, is a derivative of the general Monte Carlo containing ancestral genetic material is left.

Data from linked SNP loci can be represented as arecursion methods of Griffiths and Tavaré (1994a,b).
The method of Kuhner (1999) is based on MCMC. In set of ordered site patterns X and the associated vector

of distances between sites d. For example, a data setthe following, we present a method applicable to SNPs
similar to the Kuhner (1999) method. The two methods consisting of three SNPs from four individuals could be

represented asare similar in that they are both based on Metropolis-
Hastings (Metropolis et al. 1953; Hastings 1970)
MCMC, but they differ on several important points. For
example, our method uses a Bayesian approach to the X 5 30 0 0

1 1 0
1 0 1
1 1 1

4,problem of parameter estimation, whereas the method
of Kuhner uses importance sampling to estimate the
likelihood surface for the relevant parameters(s). Also, where the two allelic types in an SNP are represented
calculations of sampling probabilities conditional on an as 1’s and 0’s, respectively. This representation of the
ancestral graph are greatly simplified under the model data is similar to the representation used for sequences
of SNP evolution considered here. The present method under the infinite-sites model. However, the models
should therefore be much faster than the method of differ because in the infinite-sites model, the number
Kuhner (1999). of variable loci is considered a random variable. Here

The ancestral recombination graph: To describe the we condition on the number of variable loci and con-
genealogical process governing the evolution of the sider the limit of m → 0. The likelihood function can
SNPs, we use the familiar coalescence process with re- then easily be derived using a multilocus extension of
combination (e.g., Hudson 1983; Griffiths and Mar- Equation 5. Using the exact same arguments as in the
joram 1996). We make the standard assumptions associ- derivation of Equation 5, we obtain
ated with the coalescence process of a single panmictic

L(V|X) 5 lim
ui→0

Pr(X|V,d,ui,Si . 0, i 5 1 . . . k)population of constant size. The entire ancestral process
is described by an ancestral graph (A) and a set of
marginal genealogies. A contains information regarding

5
EsPk

i51ti|Vd
EsPk

i51Ti|Vd, (9)
the ancestral linkage of the different genes so the mar-
ginal genealogies can be deduced from A, whereas A

where now Ti refers to the total tree length of the ithcannot be deduced from the marginal genealogies. A
marginal genealogy and ti is the sum of the length ofis generated by the following stochastic process: at time
edges in the ith marginal genealogy in which one muta-zero, there exist n edges in the ancestral graph. Each
tion could have caused the ordered site pattern i. Again,edge contains genetic material from the k loci. Let the
in the derivation we must assume E(Pk

i51Ti|V), ∞ todistances between the k loci, in number of base pairs,
justify the interchange of limit and integral. Althoughbe described by a vector d 5 (d1, d2, . . . ,dk21) and the
this condition may be difficult to prove, we conjectureper base pair rate of recombination be R 5 r/(2N).
that it is true in the case of the standard neutral coales-Then, looking back in time, each edge initially recom-
cence process with recombination, becausebines at rate rRk21

i51di when time is scaled in units of
1/(2Ne). If an edge recombines, a breakpoint d is chosen

E 1p
k

i51

Ti|r 5 02 5 k! o
n

i52

(n 2 1)!(2/(i 2 1))k11

2Pi21
j52( j 2 i) Pn

j5i11( j 2 i)uniformly in the interval (0, Rk21
i51di) and two new edges

are formed, containing the ancestral genetic material
from the original edge in the interval (0, d) and (d, (appendix) for this model and E(Pk

i51Ti|r) appears to
be a strictly decreasing function of r.Rk21

i51di), respectively. In general, if the distance between
the two most distant ancestral sites in edge j is denoted The above representation assumes that the map dis-

tances of the markers (d) are known. This will usuallyby Dj, edge j will recombine at rate rDj.
Each pair of edges also coalesce with each other at be the case for SNPs because of genomic sequencing.

If the genealogy is not consistent with the observedrate 1 so the total rate of coalescence events is j( j 2
1)/2 when there are j active edges in the ancestral graph. site pattern, ti 5 0. For most data sets, under any reason-

able genealogical model, the vast majority of all possibleWhen two edges coalesce, the new edge contains the
genetic material from both daughter edges. For exam- ancestral graphs will contain at least one marginal site

genealogy that is not consistent with the observed siteple, if two edges containing sites (0, 1, 2, 3, 4) and (2,
6, 7) coalesced, the resulting edge would contain the pattern. E(Pk

i51ti|V), therefore, cannot be efficiently
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evaluated by simple simulations of the prior distribution possible states (Ripley 1987). An implementation of
as was the case for SNPs in linkage equilibrium. In con- this method is described in the appendix.
trast, E(Pk

i51Ti|V), does not depend on the data and it Evaluation of the method: Using the Markov chain
can be evaluated relatively easily by simulation. In the described in the appendix, the posterior distribution
following, a MCMC method to estimate L(V|X) in this of parameters of interest can be evaluated. In the follow-
model is devised. This method allows Bayesian or likeli- ing, the method is evaluated in terms of its properties
hood estimation of the relevant parameters regarding as a Bayesian estimator of r, but many other applications
both the genealogical and the mutational process. We of the method are possible. For example, it is obvious
illustrate the method in terms of Bayesian estimation, to use the method for linkage disequilibrium mapping,
but the method could be used as well in a likelihood although this application is not pursued in this article.
framework. Our main motivation for choosing a Bayes- We assume a uniform prior distribution of r. The
ian approach is that the large sample approximations posterior distribution is therefore proportional to the
usually applied in likelihood analysis may not be justified likelihood function and the results can be directly inter-
for linked loci. Adopting a Bayesian view may therefore preted in a likelihood framework in addition to a Bayes-
simplify the interpretation of the results. ian framework.

A MCMC method: In the following, a MCMC method To evaluate the MCMC method, multiple indepen-
based on Metropolis-Hastings sampling (Metropolis et dent runs of the Markov chain were performed for the
al. 1953; Hastings 1970) for approximating f(V|X) is simulated data set discussed in the appendix, con-
described. Previous application of Metropolis-Hastings taining 50 chromosomes and nine SNPs. In these runs,
sampling in population genetics that the reader may initial ancestral graphs were generated by simulating
be familiar with include the methods by Kuhner et al. marginal genealogies for each site separately, condi-
(1995), Wilson and Balding (1998), and Beerli and tional on the genealogies to the 59 end of the site. The
Felsenstein (1999). simulation algorithm would start with the site closest to

First, note that the posterior density, being propor- the 59 end and stop when the 39 end was reached. If
tional to the product of the prior times the likelihood the genealogy generated for a particular site is not con-
function, can be written as sistent with the site pattern in that site, the genealogy

is abandoned and a new genealogy is simulated. This
algorithm thereby runs along the sequence, generatingf(V|X) 5

cf(V)
E(Pk

i51Ti|V)d#p
k

i51

tidF(A|V), (10)
a random ancestral graph consistent with the data. In
some cases, the algorithm may take a very long time to

where c is an unknown constant. This representation find a marginal genealogy consistent with the data. In
suggests the following method for estimating f(V|X). such cases, recombination and coalescence events are
The first step is to evaluate E(Pk

i51Ti|V), which does not forced on the genealogy, guaranteeing that an appro-
depend on the data, directly by simulation (see below). priate genealogy will be found. This approach for ob-
We then run a Markov chain on (A, V) and use the taining an initial ancestral graph was chosen to mini-
Metropolis-Hastings method to ensure that the chain mize correlation between independent runs.
has stationary distribution proportional to E(Pk

i51Ti|r) was estimated independently in each run
on a grid containing only two points, each based on

h(V, A) 5
f(A|V)f(V) Pk

i51ti

E(Pk
i51Ti|V)

. 100,000 simulations. Each run of the Markov chain con-
sisted of 45% proposed changes of type 1, 5% of type
2, 45% of type 3, and 5% of type 4 (see the appendix).By sampling values of V from this chain at equilibrium,
This mixture appeared to provide a reasonable rate ofwe can approximate f(V|X). If the current state of the
convergence upon inspection of individual chains. Eachchain is (V0, A0) an update to another state (V1, A1) is
run consisted of 1,000,000 steps in the chain and aproposed according to the proposal density q[(V0, A0),
burn-intime of 200,000 steps was chosen. The entire(V1, A1)]. As is usual in Metropolis-Hastings sampling,
estimation procedure took ,10 min on a 450 MHza proposed update to the current state is accepted with
Pentium II machine.probability

The first property of the method examined here is
a[(V0, A0), (V1, A1)] 5 min{w01, 1}, the degree of autocorrelation in the likelihood along

the chain. The likelihood averaged over 1000 steps for
w015

h(V1, A1)q[(V1, A1),(V0, A0)]
h(V0, A0)q[(V0, A0),(V1, A1)]

. four different runs is plotted in Figure 3. Note that
there appears to be little long-range autocorrelation in
the likelihood along the Markov chain. This is a goodUnder general conditions, such as the existence of a
sign and may indicate that the Markov chain convergesunique stationary distribution, this chain will converge
relatively fast. However, there appear to be some trendsif the proposal density is constructed such that all states

of the chain eventually can be reached from all other in the likelihood over tens of thousands of replicates.
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Figure 3.—The log-likelihood as a function of the number of steps in the Markov chain for four independent runs of the
chain, based on simulated data containing 50 chromosomes and nine SNPs. The points are averages over 1000 steps in the
chain.

This suggests that millions and not thousands of steps tained maximum-likelihood estimates of approximately
r 5 0.0015 and r 5 0.002 in two different runs forin the Markov chain are required for convergence.

The posterior distributions for r, obtained from the this simulated data set. It appears that there is good
agreement between the estimates obtained using thesame four independent runs, are depicted in Figure 4.

The posterior distributions obtained in these four runs present method and the estimates obtained using the
method of Griffiths and Marjoram (1996), despiteare almost identical, suggesting that the chain does in

fact converge in 1,000,000 steps. Gelman and Rubin’s the differences in the models used to analyze the data.
Griffiths and Marjoram (1996) assume that the num-(1992) convergence statistic was calculated for r using

CODA (Best et al. 1995). The 50 and 97.5% quantile ber of variable loci is a random variable and they esti-
mate Nem simultaneously with r.of the sampling distribution of the shrink factor were

1.01 and 1.03, respectively, suggesting that convergence Data analysis: To illustrate the utility of the method,
we analyze a data set published by Fullerton et al.may have been achieved (see Gelman and Rubin 1992).

Some runs involving 100,000 steps in the chain were (1994) of 60 human DNA sequences of length 3007 bp
containing 17 SNPs. The SNPs are spaced at distancesalso performed (not shown). The posterior distribution

could vary significantly among such runs, again sug- of {157, 10, 15, 59, 129, 24, 374, 452, 58, 7, 585, 546,
80, 2, 156, 153} bp. This data set was previously analyzedgesting that a large number of steps in the chain (i.e.,

millions, not thousands) are necessary. as part of an illustration of the method of Hey and
Wakeley (1997) for estimating recombination ratesCombining the distributions from the four runs gives

an estimate of r 5 0.0019, using the mode of the poste- from DNA sequence data. The aligned sequences were
provided by J. Wakeley. To analyze the data, two inde-rior distribution as an estimator, corresponding to the

maximum-likelihood estimator. Alternatively, the mean pendent runs were performed. In each run, 500,000
simulations were performed for each of two gridpointsof the posterior distribution could be used as a point

estimator of r. Griffiths and Marjoram (1996) ob- in the estimation of E(Pk
i51Ti|r). A burn-in time of
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Figure 4.—The discrete approximation to the posterior distribution of r obtained in the four independent runs of the Markov
chain shown in Figure 3.

500,000 steps of the chain was chosen and 10,000,000 the currently available SNP loci are not initially discov-
ered by analyzing large random samples should notsteps were thereafter performed to evaluate the poste-
discourage population geneticists from using such locirior distribution of r. The remaining parameters are
in the analysis of demographic or evolutionary models.the same as in the example described above. The entire
In this article, some likelihood methods for analyzingestimation procedure took z2 hr.
SNP loci in linkage equilibrium were developed thatThe posterior distribution of r for these data is de-
take account of the special methods used in the initialpicted in Figure 5. An estimate of r 5 0.0009 was ob-
identification of SNP loci. These methods allow fast andtained using the mode of the posterior distribution as

the estimator, corresponding to the maximum-likeli-
hood estimate. An z95% Bayesian credibility interval
is obtained as Cr(r) 5 {r : 0.0004 , r , 0.0023}. Hey
and Wakeley (1997) obtained an estimate of r 5
0.00085 using an estimator based on multiple subsets
consisting of four sequences. The high correspondence
between the maximum-likelihood estimate and the esti-
mate obtained by Hey and Wakeley (1997) may indi-
cate that the latter successfully approximates the maxi-
mum-likelihood method.

DISCUSSION
Figure 5.—The discrete approximation to the posterior

SNP loci in linkage equilibrium can be analyzed un- distribution of r for a data set containing 60 DNA sequences
der reasonable assumptions regarding the sampling pro- and 17 polymorphic sites published by Fullerton et al.

(1994).cess used when typing such loci. The fact that most of



939Single Nucleotide Polymorphism Analysis

efficient analyses of even very large data sets. Given The method can be improved in several ways from
its current form. For example, the entire ancestral graphthat several thousand humans SNPs have already been

identified, methods such as the one described here is represented in the computer memory in the current
should be useful for elucidating the evolution and diver- implementation. Computational time could be saved by
sification of human populations. storing only the part of the ancestral graph required

However, the assumptions regarding the ascertain- for calculation of the likelihood. Also, considerable
ment schemes were somewhat simplified in this study. computational time is spent estimating the function
In many cases, some initial sorting of the SNP loci is E(Pk

i51Ti|r) by simulation. Analytical results facilitating
done. In other cases, the SNP loci are initially identified a numerical evaluation of this function could therefore
in one population, and subsequently, population sam- greatly reduce the computational time.
ples are obtained from another population. In such However, even in its current implementation, the
cases, correct statistical inference would require the method allows relatively fast likelihood and Bayesian
modeling of this complex isolation protocol if the loci inference on linked SNPs. A Bayesian approach to the
are to be used in the estimation of population parame- problem of estimation was chosen here. One of the
ters. This in return requires that the exact protocols reasons for this choice is that the large sample approxi-
used when isolating SNPs are made publicly available. mations usually applied in the likelihood framework
If such information is not available, or if the resulting may not be applicable in the case of a single population
models are mathematically intractable, it may be neces- sample. However, more theoretical work is needed to
sary to settle for simpler models such as those discussed examine this problem in the context of moderate re-
in this article. combination.

In this analysis it was found that there was no evidence The posterior density was approximated by sampling
for population growth in a data set containing 37 human values of r from a Markov chain at stationarity. An alter-
SNPs. This result is in accordance with previous observa- native method is used by Kuhner et al. (1995). They
tions based on nuclear sequence data (Hey 1997) but is use importance sampling to evaluate the likelihood
obviously in stark contrast to the large amounts of direct function for multiple values of the relevant parameter
demographic data showing strong population growth on a grid (see Kuhner et al. 1995 for details). A Markov
in human populations the last 10,000–100,000 years. chain is run similarly to the present case, using a single
Several explanations for this discrepancy can be given. fixed value of the parameter, say Q0. The likelihood
Balancing selection is an obvious explanation, although function for the parameter (Q) is then evaluated for
this explanation would require that most randomly se- multiple values of Q, using importance sampling.
lected loci are under strong selection, an assumption A similar approach was also implemented for the cur-
that most population geneticists would be unwilling to rent method. The Markov chain was run using a single
accept. The explanation for the apparent lack of evi- value of r (r0) and the likelihood was evaluated using
dence for population growth is most likely that the as- importance sampling for multiple values of r. However,
sumed demographic model does not take population it was found that the Monte Carlo variance was very
subdivision into account. One could imagine several large for values of r just slightly larger or smaller than
demographic scenarios in which any evidence for popu- r0. Some reasons why a large Monte Carlo variance may
lation growth would be offset by the effects of popula- be expected are provided by Stephens (1999). This
tion subdivision (Wakeley 1999). Other factors that method was therefore abandoned. The method used by
may be of importance in explaining the discrepancy Kuhner et al. (1995) involves running multiple chains to
between nuclear and mitochondrial DNA are the differ- find the mode of the likelihood function, which may
ence in effective population size between the two types alleviate some of the problems encountered in the cur-
of markers, selection in the mtDNA, and the fact that rent case, at least in the context of point estimation.
analyses based on mtDNA are based on a single random
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Griffiths, R. C., and S. Tavaré, 1998 The age of a mutation in a
general coalescent tree. Stoch. Mod. 14: 271–295.

Hastings, W. K., 1970 Monte Carlo sampling methods using Markov
chains and their applications. Biometrika 57: 97–109.

Hey, J., 1997 Mitochondrial and nuclear genes present conflicting
portraits of human origins. Mol. Biol. Evol. 14: 166–172.

Figure A1.—An illustration of the method used to proposeHey, J., and J. Wakeley, 1997 A coalescent estimator of the popula-
tion recombination rate. Genetics 145: 833–846. changes of coalescence events in the ancestral graph. The

Hudson, R. R., 1983 Properties of the neutral allele model with part of the genealogy in bold is the part to which the end of
intergenic recombination. Theor. Popul. Biol. 23: 183–201. the edge can move in a single update.

Kingman, J. F. C., 1982 The coalescent. Stoch. Proc. Appl. 13: 235–
248.

Kuhner, M., 1999 Recombine. Computer program available from
edge if it “ends” in a coalescence event or down to twohttp://evolution.genetics.washington.edu/lamarc/recombine.
parental edges if it ends in a recombination event.html.

Kuhner, M. K., J. Yamato and J. Felsenstein, 1995 Estimating It is assumed that the only parameter of interest in V
effective population size and mutation rate from sequence data is r and that the prior distribution of this parameter isusing Metropolis-Hastings sampling. Genetics 140: 1421–1430.

uniformly distributed. The neutral equilibrium modelMetropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller and E. Teller, 1953 Equations of state calculations by is adopted as the prior distribution of A, facilitating fast
fast computing machines. J. Chem. Phys. 21: 1087–1091. computation of f(A|r). Four different types of updatesPicoult-Newberg, L., T. E. Ideker, M. G. Pohl, S. L. Taylor, M. A.

to A and r are proposed: (1) moving a coalescenceDonaldson et al., 1999 Mining SNPs from EST databases. Ge-
nome Res. 9: 167–174. event, (2) moving a recombination event, (3) adding

Ripley, B., 1987 Stochastic simulation. Wiley, New York. or removing a recombination event, and (4) updatingSlatkin, M., and R. R. Hudson, 1991 Pairwise comparisons of mito-
r. The proposal distribution of the Markov chain con-chondrial DNA sequences in stable and exponentially growing

populations. Genetics 129: 555–562. sists of a mixture of these four types of changes.
Stephens, M., 1999 Problems with computational methods in popu- Moving a coalescence event: The first type of updatelation genetics. Contribution to the 52nd session of the Interna-

to A proposed is the moving of a coalescent according totional Statistical Institute, August 1999. Available from http://
www.stats.ox.ac.uk/zstephens/group/publications.html. the following scheme: an edge ending in a coalescence

Wakeley, J., 1999 Non-equilibrium migration in human evolution. event is chosen uniformly among all edges in the ances-
Genetics 153: 1863–1871.

tral graph ending in a coalescence event. The end ofWang, D. G., J. B. Fan, C. J. Siao, A. Berno, P. Young et al., 1998
Large-scale identification, mapping, and genotyping of single- the edge is moved randomly to a new time tnew while
nucleotide polymorphisms in the human genome. Science 280: the origination of the edge does not move. Denoting
1077–1082.

the time of the original end of the edge by told, we letWilson, I. J., and D. J. Balding, 1998 Genealogical inference from
microsatellite data. Genetics 150: 499–510. the time Dt 5 told 2 tnew be normally distributed with

mean 0 and variance s2 (Figure A1). In the cases de-Communicating editor: S. Tavaré
scribed in this article, a value of s2 5 0.5 was chosen.
If tnew is less than the time of the origination of the edge
(torig), we set tnew 5 2torig 2 (Dt 1 told), thereby reflectingAPPENDIX
tnew around torig. This ensures reversibility of the chain.

This appendix describes the details of the MCMC The edge is moved by sliding it up or down in the
method used to evaluate f(r|X). In this discussion, “up” ancestral graph (Figure A1). If tnew , told, the end of the
in the ancestral graph implies closer to the present edge is moved upward in the graph. When a coalescence
and “down” means further back in the past. An edge is event is encountered, the edge will follow each of the
connected up to one “daughter” edge if it “originated” two daughter edges with probability 0.5. Likewise, if
in a recombination event or it is connected up to two tnew . told, the end of the edge is moved downward in
daughter edges if it originated in a coalescence event. the graph. When a recombination event is encountered,

each of the two parental edges in the ancestral graphLikewise, an edge is connected down to one “parental”
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is followed with probability 0.5. After moving the edge, to coalesce with another edge uniformly chosen among
all edges. The time of coalescence is chosen uniformlyall other edges in the genealogy are updated accord-

ingly. This algorithm for proposing changes to the an- along the length of the new edge.
Elimination of recombination events is proposed withcestral graph was chosen because it has the desirable

consequence that the probability that an edge will be probability 0.5 by choosing an edge to be eliminated
uniformly among all edges in the ancestral graph. Afterinvolved in a change in the topology of the graph de-

pends on the length of the edge. Presumably, short adding or removing a recombination event, all other
edges in the graph are updated accordingly. However,edges tend to be edges that are less supported by the

data. The algorithm should therefore tend preferen- no additional recombination events are allowed.
Weighting: When adding a recombination event, it maytially to change the topology of the graph in regions

where edges are poorly supported by the data. easily occur that the receiving edge ends at a time before
the recombination event. In such cases, the recombina-Weighting: If this type of change changes the ancestral

graph from A0 to A1 and ti
0 to ti

1, i 5 1, 2, . . . , k, then tion event is not possible and the proposed change is
given weight 0. Also, if adding the recombination eventthe weight associated with such a change is
eliminates any other edges in the graph, the change is
given weight 0. Elimination of an edge occurs when thew01 5

Pk
i51t1

i f(A1|r)
Pk

i51t 0
i f(A0|r)

2(b2g)

edge contains no SNP sites. In all other cases the weight
associated with adding a recombination event, changingif the edge was moved upward in the genealogy and
the ancestral graph from state A0 to state A1, is given by

w01 5
Pk

i51t1
i f(A1|r)

Pk
i51t 0

i f(A0|r)
2(g2b)

w01 5
Pk

i51t1
i f(A1|r)( j 1 3)tdontrecD

Pk
i51t 0

i f(A0|r)j 2
,

if the edge was moved downward in the genealogy. b is
where tdon is the length of the donating edge in whichthe number of recombination events and g is the num-
the recombination event occurs, trec is the length of theber of coalescence events encountered while moving
receiving edge in which the new edge ends, j is thethe edge.
number of edges in the genealogy, and D is the distanceMoving a recombination event: An existing recombi-
between the two most distant ancestral SNP sites innation event may be moved. In that case, an edge origi-
lineage j. The factor of j 2/( j 1 3) arises because addingnating in a recombination event is chosen uniformly
a recombination event introduces three new edges inamong all edges originating in a recombination event.
the genealogy.The time of the new recombination event is bounded

The weight associated with removing a recombinationupward by the time of the origination of the daughter
event is 0 if the chosen edge does not originate as aedge. It is bounded downward by the minimum of the
recombination event or if removing the edge eliminatestime of the end of the edge and the time of the end of
another edge in the graph. Otherwise, the weight associ-the other daughter edge of the parental edge. The time
ated with this type of change isof the new recombination event is chosen uniformly in

this interval.
Weighting: If this type of change alters the ancestral w01 5

Pk
i51t 1

i f(A1|r)( j 2 3)2

Pk
i51t 0

i f(A0|r)jtdontrecD
,

graph from A0 to A1 and ti
0 to ti

1, i 5 1, 2, . . . , k, then
the weight associated with such a change is where j is the number of edges in the graph before the

recombination has been removed and tdon, trec, and D
w01 5

Pk
i51t1

i f(A1|r)
Pk

i51t 0
i f(A0|r)

.

Adding and removing a recombination event: Recom-
bination events are added to the chain with probability
0.5 by choosing an edge uniformly among all edges.
A recombination event occurs on this edge at a time
uniformly chosen along the length of the edge, and the
breakpoint d is chosen uniformly in the interval between
the two most distant sites in the edge. The recombina-
tion event results in two new edges: one edge following
the path of the original edge and a new edge. With
probability 0.5, the new edge will contain the ancestral
genetic material of the original edge in the region (0,
d) and with probability 0.5 the new edge will contain
the ancestral genetic material of the original edge in Figure A2.—The fit of the functiong(r) 5 E(Pk

i51Ti|r) in
the case of the simulated data set described in the text.sites numbered larger than d. The new edge is chosen
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refer to lengths and distances after the recombination Unfortunately, it does not appear possible to find similar
expressions for intermediate values of r. Instead,event has been removed.

Changing r: As mentioned above, a uniform distribu- E(Pk
i51Ti|r)can be evaluated on a grid for arbitrary val-

ues of r by simulations. To get a smooth surface, ation is assumed for the prior of r. r is updated using a
sliding window technique. If the current state of the function must be fit to the simulated values. In this

article, the functional form chosen waschain is r0, new values of r(r1) are chosen uniformly
from the interval (r0 2 Dr, r0 1 Dr), where Dr is some
specified value. If r0 2 Dr , 0, we set r1 5 Dr 2 r0.

c 2 d
1 1 arb

1 d, (A2)
This ensures reversibility of the chain.

Weighting: The weights associated with this type of where c 5 E(Pk
i51Ti|r 5 0), d 5 E(Pk

i51Ti|r→∞), and a
change are simply given by and b are constants to be estimated using simulations.

This function appeared to provide a reasonable fit in
w01 5

f(A|r1)E(Pk
i51Ti|r0)

f(A|r0)E(Pk
i51Ti|r1)

. all examined cases.
An example of the fit of Equation A2 is given in Figure

Estimating E(Pk
i51Ti|r): To run the Markov chain it A2. The example is based on simulated data shown in

is necessary first to calculate E(Pk
i51Ti|r). This can be Table 4 of Griffiths and Marjoram (1996). This data

easily done analytically in the case of no recombination set was chosen to allow easy comparison with the method
(r 5 0) and in the case of free recombination (r → developed by Griffiths and Marjoram (1996). It con-
∞). E(Pk

i51Ti|r→∞) 5 E(T)k 5 (2Rn21
i51 1/i)k, where T tains 50 sequences and nine polymorphic sites. The

now is total tree length of the common genealogy shared vector of distances between polymorphic sites is {9, 26,
by all SNP sites. E(Pk

i51Ti|r 5 0)is given by the kth mo- 25, 8, 1, 2, 10, 7}. It was assumed that the values of r of
ment of a marginal genealogy. The moment-generating interest were in the interval [0, 0.01], corresponding to
function for the total tree length in a marginal geneal- a total rate of recombination between the two most
ogy is distant sites in the interval [0, 1.74/Ne]. A total of

100,000 simulations were performed on two gridpoints
p
n

i52

i(i 2 1)/2
i(i 2 1)/2 2 si

5 p
n21

i51

i
i 2 2s

. (r 5 0.005 and r 5 0.01) and the function (Equation
12) was fitted to the simulation results. Subsequently,

Upon differentiation we find estimates of the function for r 5 0.001, r 5 0.002, r 5
0.003, r 5 0.004, r 5 0.006, r 5 0.007, r 5 0.008, and

E1p
k

i51

Ti|r 5 02 5 k!o
n

i52

(n 2 1)!(2/(i 2 1))k11

2Pi21
j52( j 2 i) Pn

j5i11( j 2 i)
. r 5 0.009 were obtained, again using 100,000 simula-

tions. Note that the function appears to provide a rea-
sonable fit, considering the Monte Carlo error.(A1)


