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ABSTRACT
Estimates of the number of chromosomal breakpoints that have arisen (e.g., by translocation and

inversion) in the evolutionary past between two species and their common ancestor can be made by
comparing map positions of marker loci. Statistical methods for doing so are based on a random-breakage
model of chromosomal rearrangement. The model treats all modes of chromosome rearrangement alike,
and it assumes that chromosome boundaries and breakpoints are distributed randomly along a single
genomic interval. Here we use simulation and numerical analysis to test the validity of these model
assumptions. Mean estimates of numbers of breakpoints are close to those expected under the random-
breakage model when marker density is high relative to the amount of chromosomal rearrangement and
when rearrangements occur by translocation alone. But when marker density is low relative to the number
of chromosomes, and when rearrangements occur by both translocation and inversion, the number of
breakpoints is underestimated. The underestimate arises because rearranged segments may contain mark-
ers, yet the rearranged segments may, nevertheless, be undetected. Variances of the estimate of numbers
of breakpoints decrease rapidly as markers are added to the comparative maps, but are less influenced
by the number or type of chromosomal rearrangement separating the species. Variances obtained with
simulated genomes comprised of chromosomes of equal length are substantially lower than those obtained
when chromosome size is unconstrained. Statistical power for detecting heterogeneity in the rate of
chromosomal rearrangement is also investigated. Results are interpreted with respect to the amount of
marker information required to make accurate inferences about chromosomal evolution.

EVOLUTIONARY change in the macrostructure of cal applications. For instance, the detailed information
on genome structure gained from sequencing and map-individual chromosomes occurs largely by recipro-
ping efforts with model systems such as Arabidopsis thali-cal translocation and inversion. During the course of
ana may assist in the identification of agriculturally im-the independent evolutionary histories separating two
portant genes in domesticated plant species and helpspecies from their common ancestor, divergence in
facilitate marker-based introgression from exotic germchromosome structure arising from chromosomal re-
plasm, marker-assisted selection, and positional cloning.arrangement is manifested as the progressive fraction-
If the chromosomal locations of one or more genes ofation of the genome into increasingly smaller conserved
interest are known with reference to the positions of achromosome segments (Nadeau and Taylor 1984).
set of marker genes in the model species, the probabili-For example, comparative mapping studies often show
ties of linkage between the markers and genes of interestthat closely related organisms share large portions of
in the target species can be calculated (Nadeau andchromosome segments in which the identities and lin-
Taylor 1984). Information on the overall amount ofear orders of genes are conserved, while more distantly
the chromosomal rearrangement separating two speciesrelated taxa exhibit shorter conserved chromosome seg-
may also help to detect conserved gene blocks (i.e.,ments (Paterson et al. 1996; Ehrlich et al. 1997).
blocks that are larger than expected given the overallThe discovery of conserved segments of chromosomes
amount of rearrangement observed between two ge-among taxa suggests that it may be possible to construct
nomes). As well, estimates of the extent and type ofunified genetic maps for a number of organismal groups
chromosomal rearrangement may be useful for recon-(e.g., the grasses, higher plants, fishes, and mammals;
structing evolutionary history or for testing specific evo-Ahn and Tanksley 1993; Paterson et al. 1996; Nadeau
lutionary hypotheses about rates of chromosome evolu-and Sankoff 1997; Gale and Devos 1998). This could
tion (Ohno 1967; Charlesworth 1992).have important consequences for genetic and biotechni-

Currently there are few statistical tools for comparing
genetic maps, and most studies are based on visual in-
spection of shared syntenies and conserved gene ar-
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initiated by Nadeau and Taylor (1984) and subse- segment contains r marker genes is (Sankoff and Na-
deau 1996)quently expanded by Sankoff and colleagues (Sankoff

and Nadeau 1996; Ehrlich et al. 1997; Sankoff et al.
1997; Nadeau and Sankoff 1998). These researchers P(r) 5

n
n 1 m 1nm2Y1n 1 m 2 1

r 2. (1)
proposed the use of a probabilistic model to infer the
amount of chromosomal rearrangement from the

In a comparative mapping study one uncovers con-lengths and numbers of conserved chromosomal seg-
served segments containing r $ 1 marker genes. Thesements detected in a comparative genetic mapping inves-
are referred to as “nonempty segments.” There will alsotigation. They express the amount of chromosomal evo-
be a certain number of conserved segments that dolution between two species as the number of chromo-
not contain markers and that thus remain undetectedsomal breakpoints separating their genomes (Sankoff
(empty segments). Comparison of the maps of the twoand Nadeau 1996). The underlying model is referred
species provides information on the number of non-to as the “random-breakage model” of chromosomal
empty segments, each containing r marker genes (sr ,evolution, because it assumes a uniformly distributed
where r $ 1). The sum total of the nonempty segments,probability that any given chromosomal location will
a 5 Rsr , is sufficient for calculation of the likelihoodexperience a breakpoint (e.g., arising from translocation
that there are n chromosomal breakpoints separatingor inversion) during divergence from a common an-
the two species (Sankoff et al. 1997). This likeli-cestor.
hood isIn practice, the information required to apply the

random-breakage model to the estimation of chromo-
somal evolution comes from the comparative mapping
of homologous marker loci such as conserved expressed L(n | m,a) 5

1m 2 1
a 2 1 2 1n 1 1

a 2
1n 1 m

m 2
. (2)

sequence tags (ESTs; Paterson et al. 1996; Van Deynze
et al. 1998). Estimates based on the model are expected
to depend on the validity of the model assumptions, Numerical analysis of Equation 2 allows one to deter-
and on the amount and quality of the comparative map mine the maximum-likelihood estimate (MLE) of (here-
data. The amount of chromosomal evolution separating after n̂). The estimated asymptotic variance of n̂ can be
the species in question may also influence the accuracy calculated as
of the estimates. Given the increasing interest in com-
parative genomic investigations, it is surprising that

s2(n̂) 5 21]
2L(n | m,n)

]n2 u n 5 n̂2
21

(3)
there have been no studies of how the amount of map-
ping effort influences the quality of inferences obtained

(Elandt-Johnson 1971). To solve for n̂ and its variancefrom the comparative maps. In this article I investigate
estimate, we require the value of a expected when therethe estimation of chromosome evolution based on the
have been n chromosomal breakpoints and m markers.random breakage model, and (1) how estimates of chro-
This expected value, a*, is derived from Equation 1 asmosomal breakpoints and their variances are influenced

by the density of markers used in comparative mapping; a* 5 [1 2 P(0)](n 1 1) 5 m (n 1 1)/(n 1 m). (4)
(2) how estimates of chromosomal breakpoints and
their variances are influenced by the amount and type This solution allows one to obtain numerical solutions

to Equation 3 under different combinations of n, m,of chromosomal rearrangement; and (3) how ability to
detect heterogeneity in the rate of chromosomal re- and a*, and thereby examine how the numbers of mark-

ers used and the actual amount of chromosomal evolu-arrangement is influenced by the density of markers
and extent of chromosomal evolution. tion influence the estimates of chromosomal rearrange-

ment and their variances.
Maximum-likelihood estimates of chromosomal di-

METHODS
vergence and their variances (simulation studies): Re-
sults obtained with the methods outlined above giveMaximum-likelihood estimates of chromosomal di-

vergence and their variances (numerical solutions): In one picture of the relationship of the mean and variance
of n̂ to the numbers of markers used and the amountanalytical studies of the random-breakage model, the

genome is represented as a single interval of unit length of chromosomal evolution separating the species. These
results, however, may differ from those obtained with1.0, broken at n randomly placed positions (e.g., by

translocations and inversions) as well as by chromosome actual genomes for several reasons. First, the analytical
model described above (and the associated likelihoodendpoints (Sankoff and Nadeau 1996). This results in

n 1 1 segments in which gene order is conserved with estimator) assumes that all conserved segments arising
from chromosomal rearrangement will be detected pro-reference to another genome of interest. When there

are m homologous marker genes distributed uniformly vided they contain one or more markers. As illustrated
below, this need not be true in general, especially in theon the interval 0–1, the probability that an arbitrary
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case of chromosomal inversions. Second, the random- trials. A copy of the simulation program (written in
FORTRAN) is available from the author on request.breakage model assumes that the genome is comprised

of a single long interval with uniformly distributed Detection of heterogeneity in the rate of chromo-
somal evolution: Studies have shown that different lin-breakpoints arising from both chromosomal segment

reshuffling as well as from the chromosome end points. eages may undergo different rates of chromosomal re-
arrangement (Ehrlich et al. 1997), though there areTrue chromosome size variation, however, is con-

strained (Stebbins 1971), and so there the assumption few statistical tools for examining rate heterogeneity.
Likelihood estimation as outlined above can be ex-that chromosomal ends are uniformly distributed along

a single interval will be violated. This will not influence tended to the detection of heterogeneity in the rate
of chromosomal rearrangement. One approach is tothe expected value of n̂ (Sankoff and Nadeau 1996),

but it will influence its variance; i.e., there is more varia- compare the estimated rate of chromosomal rearrange-
ment for the taxa of interest with the rate(s) reportedtion in a under the analytical methods compared with

the case where chromosome size variation is con- in studies of other taxa (Paterson et al. 1996; Lager-
crantz 1998).strained. Third, the numbers of markers employed in

a comparative mapping study may be insufficient for Let the MLE of chromosomal rearrangement occurring
between two species, species A and B, be denoted as n̂AB.the asymptotic approximation in Equation 3 to yield an

accurate variance estimate. The estimate of chromosomal rearrangement reported
between two other species C and D (scaled for the sameTo extend the investigation to more realistic ge-

nomes, chromosome evolution was modeled by com- estimated amount of time separating species A and B)
is denoted as nCD. The log-likelihood ratio test statisticputer simulation. A fixed ancestral genome size of T

length units was assumed such that each chromosome follows from Equations 1 and 2 as
was of equal length T/c. The m homologous marker

F 5 22[L(nconstrained | a, m) 2 L(n̂AB | a,m)], (5)
genes were assigned to random positions along the chro-
mosomes. Starting with this ancestral genome, t random where nconstrained is the likelihood when n is constrained

to a given value (e.g., that of nCD). The test statistic istranslocation and i random inversion events were dis-
tributed at random to two isolated lineages. For each distributed as x2 with 1 d.f. (Weir 1996). The sensitivity

of this test depends on the number of markers usedtranslocation, chromosome segment exchange involved
two randomly chosen chromosomes and two randomly as well as on the amount of chromosomal evolution

separating the species of interest from the referencechosen breakpoints (separated by the same distance on
each of the two chromosomes). For each inversion, one species.

The approximate statistical power (probability of re-chromosome was chosen at random, and two break-
points within it were randomly chosen. Following the jection of the null hypothesis) of the test was examined

by simulation. Simulations were conducted, as describede 5 t 1 i chromosome rearrangement events, the chro-
mosomes of the two species were compared, and the above, under a variety of input parameters (different

combinations of m, t, i, and c). For each combinationnumber of conserved chromosome segments (i.e., the
number of segments containing identical runs of one of input parameters, 500 simulations were conducted,

and for each set of simulated data, the value of F wasor more marker genes when compared in forward or
reverse order) was counted. The total number of con- calculated for null hypotheses of nconstrained 5 k n̂AB (where

k is a constant that defines the null hypothesis in ques-served segments containing one or more marker genes
was recorded to obtain the value of a, which together tion). The proportion of cases where the value of the

test statistic exceeded the critical value at the P , 0.05with m was used to calculate the probabilities in Equa-
tion 2. The value of n that maximized the probability and 0.01 levels gives an approximation of the statistical

power of the test.was retained as n̂.
To restrict the number of different simulation condi-

tions, it was assumed that chromosome numbers remain
RESULTS

constant following divergence from the common ances-
tor. Chromosome evolution involving duplication of Maximum-likelihood estimates of chromosomal di-

vergence and their variances (numerical analysis): Thechromosomes, followed by divergence of the duplicated
chromosomes, is thus outside the realm of the results maximum-likelihood estimator returns the value of n̂

expected for a*. The likelihood peak becomes progres-presented below.
Simulations were conducted for a variety of different sively sharper with increases in m (Figure 1). The asymp-

totic variance estimate of n̂ is seen to be a decreasingcombinations of m, c, t, and i. The choice of values for
these parameters was guided by results from published curvilinear function of m. The effect on the estimation

of n can be seen most clearly by examining the relation-investigations (Tanksley et al. 1992; Ahn and Tanksley
1993; Paterson et al. 1996; Nadeau and Sankoff 1997). ship of the coefficient of variation (CV) of n̂ to m (Figure

2). The largest reductions in CV occur in the initialFor each combination of these parameters, the mean
and variance of n̂ was calculated over 500 simulation stages of mapping effort, but as m is increased beyond
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Figure 2.—Coefficient of variation of n̂ under the random-
breakage model evaluated numerically with different numbers
of markers (m).

MLEs from their expected values (Figure 3c). The oc-
currence of inversions contributes further to underesti-
mation of the true value of n by the MLEs. It is in the
range of 5–50% when inversions account for half of the
rearrangements (Figure 3, d–f) and rises to nearly 70%
when inversions account for all rearrangements (Figure
3, g–i). Again, underestimation is most pronounced
when marker number is low relative to chromosome
number. The basis for this underestimation of n̂ is dis-
cussed below.

As seen in the numerical analysis, the CVs of the MLEs
decrease with m in an accelerating manner (Figure 4).
The effect of increasing the number of markers is most
pronounced for the first few hundred markers. For in-Figure 1.—Likelihood function under the random-break-
stance, with c 5 20 chromosomes, progressing from 100age model evaluated numerically for different values of n and

m. True values of n are as follows: (A) n 5 50; (B) n 5 100; to 200 markers reduces the CV by z50–60%, from 200
and (C) n 5 150. to 400 markers by 25%, and from 400 to 800 markers

by z10%. For any given value of m, the CVs are slightly
larger when there are more rearrangement events sepa-several hundred markers, reductions in the variance of
rating the species, but the difference becomes almostn̂ become progressively smaller. For any given value of
nil for m $ 400. The relation of the CVs with m arem, the CVs are larger when there are more chromosomal
similar for translocations and inversions (Figure 4).breakpoints separating the species in question (i.e., true

Heterogeneity in the rate of chromosomal evolutionvalue of n large), but only marginally so (Figure 2).
(simulation results and illustration using publishedMaximum-likelihood estimates of chromosomal di-
data): The power of the log-likelihood ratio test to detectvergence (simulation results): When chromosome evo-
heterogeneity in rates of chromosomal reshuffling in-lution occurs via t translocation and i inversion events
creases as the number of markers placed on the mapsin a pair of species each having c chromosomes, the
increases, but for tests involving rate heterogeneity ofnumber of chromosomal breakpoints expected is n 5
.10%, the rate of gain in statistical power diminishes2(t 1 i) 1 c (Sankoff and Nadeau 1996). Results ob-
rapidly with marker number. These results are showntained from the application of likelihood Equation 2 to
in Figure 5 for c 5 20 chromosomes and e 5 90 re-the estimation of n with simulated data are shown in
arrangements. Nearly identical results were obtainedFigure 3.
for c 5 10 and c 5 30 (results not shown). The increaseWhen chromosome evolution occurs by translocation
in power is roughly linear when rate heterogeneity be-alone, and the density of markers is high relative to the
tween the lineages being compared is in the vicinitynumber of chromosomes, the MLEs are close to their
of 10% or less; but above 20% rate heterogeneity, theexpected values (Figure 3, a and b). In the case where
increase in power is decelerating with increasing markerchromosome evolution occurs by translocation alone,
numbers. When marker numbers are .m 5 200, thereand the number of markers is low relative to the number

of chromosomes, there is significant departure of the are rapidly diminishing returns in power per marker
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Figure 3.—Mean values
of n̂ obtained by application
of the random-breakage mo-
del to estimation of chromo-
somal evolution. (a–c) Re-
arrangements by transloca-
tion only; (d–f) half of the
rearrangements by transloca-
tion, half by inversion; (g–i)
rearrangements by inversion
only. Circles, m 5 100;
squares, m 5 200; triangles,
m 5 400; diamonds, m 5 800.

added to the maps. There is relatively little difference of the results for the A. thaliana-B. nigra rate estimate
in the shapes of the power curves across the range of e with those obtained in other comparative mapping in-
values studied (e 5 15–90) regardless of whether rear- vestigations (Paterson et al. 1996; Lagercrantz 1998)
rangments were due to translocations or inversions (re- lend qualitative support to this conclusion. For instance,
sults not shown). the next highest rate of chromosome rearrangement

To illustrate the application of the log-likelihood ratio currently reported is the 13 rearrangements between
test, published comparative mapping data from A. thali- Triticum and Secale that are estimated to have occurred
ana and Brassica nigra were examined (Lagercrantz over 6 million years. (Paterson et al. 1996). Scaling
1998). In this study, comparative mapping based on 284 the Triticum-Secale estimate for the divergence time
markers uncovered 87 conserved segments. Estimation assumed above for Arabidopsis and Brassica gives 76
of n based on numerical evaluation of the likelihood breakpoints. As this number is smaller than the 87 con-
Equation 2 gives an estimate of 124 breakpoints separat- served segments observed by Lagercrantz (1998) in
ing the species. This is higher than the estimate ob- the Arabidopsis-Brassica comparison, a L(nconstrained |
tained by Lagercrantz (1998), who used the more a*,m), where nconstrained 5 76 cannot be calculated. If
conservative procedure of Nadeau and Taylor (1984) instead we take nconstrained to be equal to 87, F can be
that does not consider segments marked by single loci. calculated as
Lagercrantz (1998) notes that the two mustard family

F 5 22[L(nconstrained 5 87 || a 5 87, m 5 284)species may have diverged z35 million years ago, and
that the rate at which chromosomal rearrangement has 2 L(n̂AB 5 124 | a 5 87, m 5 284)] 5 42.73.
occurred since their divergence is significantly greater
than that seen in other plants and animals. Comparison This result is highly significant (P , 0.001) and supports
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Figure 4.—Coefficient of variation of n̂ vs. number of markers used in comparative mapping (m). Results are from the analysis
of simulated data (see text). The coefficient of variation was calculated over 500 replicate simulations for each value of m, t, and
i. Graphs shown here are for c 5 20 chromosomes. (a–c) Translocations only; (d–f) inversions only. Symbols are as follows:
circles, e 5 50; squares, e 5 90; triangles, e 5 140; diamonds, e 5 200.

Lagercrantz’s conclusion that the rate of chromosomal One type of undetected rearrangement is an inver-
sion that occurs in a segment containing a single markerrearrangement following divergence of Arabidopsis and
(Figure 6a). Such an event is effectively “invisible” toBrassica has been unusually high.
the investigator, and the extent of underestimation can,
in fact, be quantified when rearrangements arise only
by inversion. Note that undetected inversions will occurDISCUSSION
with probability P(r 5 1) as defined by Equation 1.

Underestimates of n: The simulation results illustrate The expected number of rearranged segments, a*, will,
that when marker number is low relative to the number therefore, be reduced by the fraction [1 2 P(0) 2
of chromosomes, or when rearrangements occur by P(1)]/[1 2 P(0)]. From Equation 4, the number of
both translocation and inversion, the number of nonempty fragments (when all rearrangements occur
breakpoints is underestimated under the random break- by inversion) becomes
age model. This can be understood by considering

a*I 5 [1 2 P(0) 2 P(1)](n 1 1). (6)Equations 1 and 2 together with some of the possible
relationships that may arise between marker positions Comparison of the MLE of n based on aI* reveals a
and chromosome rearrangement events, as illustrated relationship with m and a level of underestimation simi-
in Figure 6. As noted, the MLE of n is a function of the lar to that observed with simulation (Figure 7).
total number of nonempty fragments (detected con- Translocations located in nonempty segments may
served fragments), a, observed in the comparative map- also go undetected as illustrated in Figure 6b. When
ping study. Under the random-breakage model, proba- these types of events occur, a is underestimated, and
bilities of observing such fragments are defined by the MLE of n is again underestimated. Compared with
Equation 1. If, however, one considers the biological undetected inversions, however, undetected transloca-
mechanisms by which chromosome breakpoints are tions are less likely to lead to underestimation of n,
generated (Figure 6), it becomes clear that there are because they involve the sequential progression of sev-
several types of rearrangements of nonempty segments eral events. The problem is expected to occur most
that may go undetected. Accordingly, the value of a frequently when the number of markers per chromo-
obtained will be lower than expected under the random- some is low, a result that is supported by the simulations

(Figure 3, a–c).breakage model.
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al. 1996). But because all genomes are interrelated,
most colinear groups of genes detected in a comparative
genomic investigation are likely to reflect nothing more
than the limited number of genomic rearrangements
following descent from a common ancestor. To move
beyond the simple observation of large, conserved ge-
nome segments in the search for functionally related
gene blocks, one requires knowledge of the “null” distri-
bution of conserved segment lengths (i.e., that expected
from random chromosome reshuffling and descent
from a common ancestor). If the number of breakpoints
separating the species in question is known, along with
the total lengths of their genomes (in centimorgans or
base pairs), the mean number of rearrangements per
unit genome length n/L (where L is the total genome
length) can be calculated. Given this information, the
probability distribution of no rearrangements in a seg-
ment of length x can be derived from the Poisson distri-
bution as P(x) 5 exp(2nx/L) (see Nadeau and Taylor
1984). This distribution provides a benchmark against
which to compare the observed distribution of con-
served segment sizes. One may then ask whether thereFigure 5.—Power curves for the log-likelihood ratio statistic
are segments that appear longer than expected givenapplied to the detection of heterogeneity in the rate of chro-
n̂ and L. Such segments may have been selectively con-mosomal rearrangement. Results are for c 5 20 chromosomes.

Symbols are as follows: circles, k 5 1.1; squares, k 5 1.2; served due to their function. But because n is estimated,
triangles, k 5 1.3; diamonds, k 5 1.4; and crosses, k 5 1.5; the distribution P(x) is not known with certainty. The
see text for definition of k. (a) t 5 90 translocations; signifi- question arises, therefore, of how many markers arecance level 5 0.05. (b) t 5 90 translocations; significance

needed to compare observed with predicted segmentlevel 5 0.01.
length distributions. Applying the method of statistical
differentials (Elandt-Johnson 1971) to obtain a vari-
ance estimate and 95% confidence interval around theVariances of the MLE estimate of n: As progressively

more conserved fragments are detected through com- calculated P(x) (Figure 8), it is apparent that in the
region of the distribution that one may wish to exploreparative mapping of new markers, additional mapping

effort will only marginally reduce the variance of the (e.g., large and relatively rare segments, 20–30 cM and
above in the example shown), the upper 95% confi-estimate of chromosome evolution (Figure 4). A similar

relationship was found between mapping effort and abil- dence limit does not fall off as sharply with increasing
marker density (as it does in the case of the CV ofity to detect heterogeneity in the rate of chromosomal

evolution (Figure 5). The actual values of the variances n̂). These results suggest that in contrast to the other
applications discussed above, a comparative genomicsand CVs are significantly smaller (by 50% or more)

than those obtained via numerical analysis based on investigation that aims to detect selectively conserved
chromosome segments by examining segment size dis-the random-breakage model (Figure 2). This qualitative

difference is not unexpected given that the simple ran- tribution may benefit from the mapping of larger num-
bers of markers. Moreover, the comparison of observeddom breakage model studied by numerical analysis as-

sumes that chromosomal boundaries are distributed and expected chromosome segment length requires
that the true segment lengths and the total genomeat random on the interval 0–1 (see above). While the

variances seen using simulation are likely to be more length be known. The segment lengths can be estimated
from the observed distances between the outermostrepresentative than those calculated under the random-

breakage model, nonrandom distributions of transloca- markers on each segment (see Nadeau and Taylor
1984), and genome length can be estimated giventions and inversions could act to inflate variances ob-

tained with actual data. knowledge gained from recombination between mark-
ers (Chakravarti et al. 1991). These additional sourcesMarker numbers, estimation of n, and the detection

of conserved functional gene blocks: There has been of variance have not been addressed here.
Marker numbers, the estimation of n, and exploratorysome discussion that blocks of genes found in conserved

chromosome segments may represent gene combina- surveys of genomic evolution: The results of this in-
vestigation have implications for applied studies andtions that interact functionally to produce important

organismal characteristics (e.g., blocks of genes that in- comparative evolutionary work based on comparative
mapping. They suggest that studies of chromosome evo-teract to produce characteristics closely related to organ-

ismal fitness; Bodmer 1975; Lundin 1979; Paterson et lution based on low densities of markers (e.g., ,100–200
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Figure 6.—Detection of chro-
mosome rearrangements via com-
parative mapping in two species.
(A) Detected and undetected in-
versions in nonempty chromo-
some segments. Nondetection oc-
curs when segments contain only
one marker. (B) Detected and
undetected translocations in non-
empty chromosome segments.
Nondetection occurs when chro-
mosome ends containing the
same set of markers are translo-
cated back and forth between a
pair of chromosomes. Arabic
numbers indicate positions of
marker loci. Roman numerals in-
dicate chromosomes. Short arrows
mark the breakpoints resulting
from inversion and translocation.

per genome) may underestimate the amount of chro- tion from a well-characterized model species to a less
well-characterized target species, the emphasis is oftenmosomal rearrangement, especially between taxa that

are distantly related or in instances where inversion has on uncovering candidate regions containing quantita-
tive trait loci (e.g., for genes contributing to yield orplayed a large role in restructuring the chromosome.

Ehrlich et al. (1997), who have used the random-break- disease resistance; Lin et al. 1995; Paterson et al. 1995;
Pereira and Lee 1995). The first objective is not a fine-age model to study chromosomal evolution in mam-

mals, estimated that interchromosomal rearrangements scale comparative map, but rather the rough evaluation
of the extent of conservation of synteny and gene orderhave occurred roughly four times as often as intrachro-

mosomal rearrangements following the divergence of in the target group. Once a picture of this emerges,
the investigator can determine whether additional maphumans and mice from their common ancestor. This is

unexpected given the apparent strong selection against detail would greatly enhance the prospects of finding
conserved segments containing the gene(s) of interesttranslocations. A relatively high ratio of translocations to

inversions has also been reported in other investigations and marker(s). For the initial task, our results suggest
that several hundred markers per species are sufficient.(Lagercrantz 1998). It is possible that some of the

observed high ratios of translocations to inversions may This means that if other (e.g., related species) are of
interest, comparative mapping effort could be allocatedbe due to the inherent bias against detection of inver-

sions as noted above. over more members of the target group. This has rele-
vance to efforts aimed at uncovering and evaluating theAnother issue is how many markers are required to

obtain a low variance estimate of chromosomal re- potential of nontraditionally used germ plasm (e.g., wild
relatives of crop plants) as sources of useful geneticarrangement. When comparative mapping is used to

examine the prospects of applying genetic map informa- variation (Tanksley and McCouch 1997). In other
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Figure 7.—Analysis of the underestimation of breakpoints
arising when actual breakpoints (due to inversions containing
only one marker) are not detected. Solutions obtained by
numerical maximization of the likelihood Equation 2 when
a* is set equal to aI*. Circles, m 5 100; squares, m 5 200;
triangles, m 5 400; diamonds, m 5 800; and crosses, expected
estimate values.

words, a more useful division of comparative mapping
effort in these types of investigations may be to spread
effort across a larger number of candidate species rather
than to pursue an ever more detailed comparative study
of one or two species. A similar argument may hold
when one is interested in using information on chromo-
somal rearrangement to construct a phylogeny or to
compare rearrangement rates in different lineages
(Ehrlich et al. 1997).

Figure 8.—Probability distribution of no rearrangementsConclusions: Apart from the bias against detection
in a segment of length x (bottom line in each graph), and itsof inversion, the results presented in this investigation
top 95% confidence interval (top line) as obtained by normalaccord well with those of other studies in suggesting approximation. This illustration assumes a total genome

that estimation of numbers of chromosome breakpoints length L 5 2000 cM and n 5 200 breakpoints. The variance
is robust to relatively small numbers of markers. For of n̂ was estimated by the numerical analysis of the random-

breakage model. Results shown in each graph are for differentexample, Nadeau and Sankoff (1998) have shown that
numbers of markers (m).as additional markers are included in a comparative

mapping effort, the undetected but conserved segments
become progressively smaller in number and in length. research will be required to deal with the complications
As well, estimates of genome rearrangement obtained resulting from such events.
with few markers have not changed substantially when
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