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ABSTRACT
The molecular clock hypothesis remains an important conceptual and analytical tool in evolutionary

biology despite the repeated observation that the clock hypothesis does not perfectly explain observed
DNA sequence variation. We introduce a parametric model that relaxes the molecular clock by allowing
rates to vary across lineages according to a compound Poisson process. Events of substitution rate change
are placed onto a phylogenetic tree according to a Poisson process. When an event of substitution rate
change occurs, the current rate of substitution is modified by a gamma-distributed random variable.
Parameters of the model can be estimated using Bayesian inference. We use Markov chain Monte Carlo
integration to evaluate the posterior probability distribution because the posterior probability involves
high dimensional integrals and summations. Specifically, we use the Metropolis-Hastings-Green algorithm
with 11 different move types to evaluate the posterior distribution. We demonstrate the method by analyzing
a complete mtDNA sequence data set from 23 mammals. The model presented here has several potential
advantages over other models that have been proposed to relax the clock because it is parametric and
does not assume that rates change only at speciation events. This model should prove useful for estimating
divergence times when substitution rates vary across lineages.

THE molecular clock hypothesis states that the evolu- substitution process. As an analytical tool, the molecular
tionary rate of a gene is roughly constant among clock has also proven useful. Many of the more interest-

different lineages (Zuckerkandl and Pauling 1962). ing applications of phylogenies assume that the molecu-
Zuckerkandl and Pauling (1965) also suggested that lar clock holds. For example, statistical analysis of host-
the substitution process is approximately Poisson. If the parasite cospeciation often assumes a molecular clock
rate of substitution is constant across lineages, then the (Huelsenbeck et al. 1997). Also, the estimation of diver-
distances between species should be ultrametric (i.e., gence times using molecular data depends upon (1) an
all tips are an equal distance from the root of the tree). accurate calibration date for at least one speciation
Furthermore, if the substitutions follow a Poisson pro- event on the tree and (2) a constant substitution rate
cess, then the variance and the mean of the number of among lineages. Several recent studies have attempted
substitutions that occur on different lineages in the to date the divergence times for eubacteria/eukaryotes
same amount of time should be equal. Since the early (Doolittle et al. 1996), metazoa (Wray et al. 1996),
1970s, however, neither prediction has been shown to birds (Cooper and Penny 1997), mammalian orders,
hold true; the variance to mean ratio of the number of and major lineages of vertebrates (Kumar and Hedges
substitutions is generally greater than one, suggesting 1998) using the molecular clock assumption. To a large
that the substitution process is overdispersed (Ohta extent, the validity of any such analysis depends on how
and Kimura 1971; Langley and Fitch 1973, 1974). well the data conform to the clock assumption.
Moreover, rates of substitution have been shown to vary Several different approaches have been taken to ac-
across lineages (see Gillespie 1991). commodate rate variation among lineages. One

Despite the observation that the molecular clock hy- method, commonly used for estimating phylogenetic
pothesis does not perfectly explain the substitution pro- trees, is to assign each branch of a phylogenetic tree its
cess, it remains a powerful conceptual and analytical own rate parameter. However, this procedure does not
tool in evolutionary biology. Conceptually, the molecu- allow estimation of divergence times of clades because
lar clock provides a timescale, albeit an imperfect one, rate and time are confounded. Another approach was
for evolution as well as a mechanistic description of the proposed by Sanderson (1997), who used a nonpara-

metric method for smoothing the rate differences across
speciation events on the tree. Sanderson’s method
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extreme, Thorne et al. (1998) proposed a parametric scaled branch lengths is referred to as the total length
of the tree, T. The total length of the tree of Figure 1,model for relaxing the clock. Like Sanderson (1997),

they assume that rates are autocorrelated across specia- for example, is T 5 4.55. If the branch lengths are multi-
plied by a parameter m, representing the expected num-tion events; their model assigns new rates to descendent

lineages from a lognormal distribution with the mean ber of substitutions per site on a single branch reaching
from the root of the tree to the tips, the branch lengthsof the distribution equal to the rate of the ancestral

lineage. The model we present here differs from the of the tree are in terms of expected number of substitu-
tions per site. Moreover, the branch lengths on themodels proposed by Sanderson (1997) and Thorne et

al. (1998) by allowing rates to change anywhere on tree conform to a molecular clock; there has been no
variation in rates across lineages with the result that allthe tree. Yet, the model introduces only two additional

parameters over the strict molecular clock. of the tips can be drawn to lie on a single time line.
Figure 2 shows a rescaling of the tree of Figure 1 withIn this article, we propose a compound Poisson pro-

cess for introducing rate variation across lineages on a m 5 0.17.
We use a compound Poisson process to introduce ratetree. We assume that nucleotide substitutions occur

along branches of the tree according to a Poisson pro- variation across lineages of the tree. Events (positions
on the tree at which substitution rate changes) occurcess, as in the Markov substitution models widely used

for phylogenetic inference. However, an independent according to a Poisson process with parameter l. When
an event occurs, the rate of substitution just prior to thePoisson process also generates events of substitution-

rate change. At each of these events, the rate of substitu- event (m) is multiplied by a gamma-distributed random
tion is changed by multiplying the current rate by a variable (taking value r) to produce a new substitution
gamma-distributed random variable. We use Markov rate above the event (m9; m9 5 mr). The gamma distribu-
chain Monte Carlo when making Bayesian inferences. tion has density

G(r |a,b) 5
ba

C(a)
r a21e2lr, r $ 0, (1)METHODS

A compound Poisson process of rate variation: We where a is the shape parameter and b is the scale param-
assume that the phylogeny of a group of species can be eter. One possible parameterization of the gamma distri-
represented by a rooted binary tree, an arbitrary exam- bution that we initially considered is to set a 5 b 5 aP,
ple of which is shown in Figure 1. The tips are labeled so that r is G(r |aP, aP). The mean rate of change, then,
n1 to ns, and the internal nodes are labeled ns11 to n2s21, is E[r] 5 1. A potentially unappealing property of such
where s is the number of sequences. The root of the a model of rate change is that as the branch lengthens,
tree is always labeled n2s21. The times of the nodes are substitutions stop happening along the branch. In such
denoted t 5 (t1, t2, . . . , t2s21). The branches are scaled
such that the tips are at time 0 (t1 5 t2 5 . . . 5 ts 5 0)
and the root is at time 1 (t2s21 5 1). The sum of the

Figure 2.—The branch lengths that result when the tree
of Figure 1 has all branches multiplied by m 5 0.17. The rate
of substitution on the tree, m, is in terms of expected number
of substitutions per site that occur along a single lineage reach-Figure 1.—We assume that a rooted binary tree describes

the genealogy of the sequences n1 to ns. This arbitrarily chosen ing from the root of the tree (t 5 1) to the tips (t 5 0).
Multiplying the branch lengths in Figure 1 by m convertstree illustrates the labeling of the nodes used in this article.

The unscaled times of the tree have the tips at time 0 and branch lengths into expected number of substitutions per site.
Note that this tree has no rate variation among lineages. Thethe root at time 1. All other nodes on the tree have times

between 0 and 1. branch lengths of the tree conform to a molecular clock.



1881A Relaxed Molecular Clock

a model, the rate along a branch is a base rate, m,
multiplied by Pn

i ri, where n is the number of Poisson
change points and ri is G(aP, aP). As the branch length
grows, n becomes large and the product converges to
0 in probability.

A prior model that changes rates multiplicatively with
independent multipliers must be carefully chosen so
that the rate does not tend to either 0 or infinity in
probability. To see this, let ri, i 5 1, 2, . . . be independent
and identically distributed positive random variables
and let Rn 5 Pn

i51 ri. Then for every ε . 0,

P[Rn , ε] 5 P 3p
n

i51

ri , ε4
Figure 3.—The compound Poisson process discussed in

5 P 3o
n

i51

log Ri , log ε4 . this article places events of substitution-rate change on the
tree according to a Poisson process. Associated with each event
is a rate multiplier that multiplies the rate of substitution up

Thus, the product of rates converges in probability to to the event (m) by a gamma-distributed random variable
0 if E[log ri] , 0 and increases without bound in proba- (taking value r) to produce a new rate of substitution above

the event (m9). In this example, which illustrates the processbility if E[log ri] . 0.
for the tree from Figure 1, three events of substitution-rateIn this article, we largely circumvent this problem by
change occur. The rate multipliers are 2.871, 1.103, and 0.776placing a prior on l such that the number of change for events 1, 2, and 3, respectively. The zi specify the event

points on the tree does not become large. In addition, locations on the tree.
we define a one-dimensional family of gamma-distrib-
uted random variables with the property that E[log ri] 5
0 by letting b 5 ec(aP), where c is the derivative of the

[0,T] to points on the tree. Figure 3 illustrates the com-logarithm of the gamma function:
pound Poisson process for rate change events acting
upon the tree of Figure 1. In this example, three events

c(a) 5
d

da
log C(a) of rate change occur on the tree [e 5 (3, z, r), z 5 (1.354,

3.009, 4.301), r 5 (2.871, 1.103, 0.776)]. Associate each
branch with the smaller number of its two nodes (that5

C9(a)
C(a) node that is furthest from the root of the tree) and

partition the interval [0, T] into segments associated
with branches ordered from the lowest index to the5 s#

∞

0
(log x)xa21e2xdxd/s#

∞

0
xa21e2xdxd.

highest index. For example, the branch descending
from node n1 is represented by the interval [0, 0.125].Here is a short derivation of this property. Suppose that
Similarly, the branch descending from node n6 is repre-r z G(a,b). Then r is equal in distribution to X/b where
sented by the interval (0.979, 1.416]. The first event isX z G(a,1):
located on this branch at z1 5 1.354. Events 1 and 2

E[log r] 5 E[log(X/b)] increase the rate of substitution whereas event 3 de-
creases the rate of substitution. Figure 4 shows the rela-

5 #
∞

0
(log x)

1
G(a)

xa21e2x dx 2 log b tive branch lengths in terms of expected number of
substitutions per site. Note that the branch lengths of
the tree no longer obey the molecular clock. The molec-5 c(a) 2 log b.
ular clock is simply a special case of our model with l 5

This is 0 precisely when b 5 ec(a). 0 and/or aP 5 ∞.
In this article, we multiply the rate at an event by a The prior distribution of e 5 (j, z, r) given the tree

gamma-distributed random variable with density and parameters aP and l is described by the probability
measure

g(r |aP) 5
ec(aP)

G(aP)
r aP21e2re c(aP), r $ 0. (2)

f(e|t, t, l, aP) 5 e2lTd0 1 o
∞

j51

e2lT(lT)j

j!
3 11T2

j

3 o
j

i51

g(ri|aP),

The collection of events is denoted e 5 (j, z, r), where
(3)

j is the number of rate change events, z is the vector
of event positions, and r is the vector of rate multipliers. where d0 is the point mass measure at (0, 0/, 0/). This
When j 5 0, z and r are empty. For j . 0, z P [0,T]j corresponds to picking a Poisson (lT) number of

points, choosing their locations from mutually indepen-and r P Rj. There is a mapping that takes points from
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HKY85 model of DNA substitution (Hasegawa et al.
1984, 1985). This model allows different base frequen-
cies and for a transition/transversion rate bias (rAG 5
rCT; rAC 5 rAT 5 rCG 5 rGT; k 5 rAG/rAC). The transition
probabilities are calculated as P(v) 5 {pij(v)} 5 eQv.

Among-site rate variation can be accommodated in
several different ways. One potential method partitions
the DNA sequence into different regions (e.g., first, sec-
ond, and third codon positions) and then estimates the
rate separately for each partition, assuming that the rate
within a partition is homogeneous [i.e., instead of a
single substitution rate (m), applying to all sites, there
are multiple substitution rates (m1, m2, . . . )]. Another
method assumes that the rate assigned to a site is a
random variable. Typically, the gamma distribution, pa-
rameterized with the shape parameter equal to the scale
parameter, is used to model rate variation across sites
(Yang 1993, 1994a). The shape parameter of the gamma
distribution for among-site rate variation is denoted aR.Figure 4.—The branch lengths in terms of expected num-

ber of substitutions per site when the substitution rates are In this article, we assume equal rates across sites or
modified using the compound Poisson process. The rates were gamma-distributed rates across sites. Models that assume
modified using the three events from Figure 3 with a starting gamma-distribution rate variation are denoted “1G.”
substitution rate of m 5 0.17 (at the root of the tree). Note

Our implementation of gamma-distributed rate varia-that the branch lengths of the tree no longer conform to the
tion uses the discrete gamma approximation with fourmolecular clock.
rate categories (Yang 1994a).

The probability of observing the states present at the
ith site (xi) is a sum over all possible assignments of

dent uniform [0,T] distributions, and attaching mutu- nucleotides to the internal nodes of the tree. Suppose
ally independent gamma-distributed rate multipliers. y 5 {yk} for k 5 s 1 1, . . . , 2s 2 1 is a generic data

Model of DNA substitution: We assume that DNA vector at the internal nodes. Branch k of the tree has
sequences from homologous regions are available for length vk expected substitutions per site and ancestral
species n1 to ns. Let X 5 {xij} be the aligned nucleotide node s(k). The transition probability from state i to
sequences, where i 5 1, 2, . . . , s ; j 5 1, 2, . . . ,c ; and state j along a branch with v expected substitutions is
c is the number of nucleotide sites per sequence. Each pij(v). The initial substitution rate at the root is m. Then,
column of the data matrix xj 5 {x1j, . . . , xsj}9 specifies the conditional probability of observing the data at the
the nucleotides for the s sequences at the jth site. ith site given the tree and rate events is

As is usual for DNA sequences, we assume that substi-
tutions occur according to a Poisson process with rate f(xi|t, t, e, m) 5 o

y
py2s211p

s

k51

pys(k)xk(vk)2 1 p
2s22

k5s11

pys(k)yk(vk)2.
matrix Q. A general reversible rate matrix allows a differ-
ent stationary frequency for the four nucleotides p 5 (5)
(pA, pC, pG, pT) constrained to sum to one and six rates

The summation is over all possible combinations offor the 12 substitution types
nucleotide states that can be assigned to the internal
nodes of the tree. The expected number of substitutions
on branch k (vk) is found by integrating the rate over

Q 5 {qij} 5






. pCrAC pGrAG pTrAT

pArAC . pGrCG pTrCT

pCrAG pCrCG . pTrGT

pArAT pCrCT pGrGT .






(4) the length of the branch, vk 5 e tkts(k) rk(u)du, where rk(u)
is the rate along branch k at time u. The rate is a step
function for the compound Poisson process considered(Yang 1994b). The diagonal of the rate matrix is speci-
in this article. Figure 5 shows a single branch startingfied such that the row sums are equal to zero. We add
at tB 5 0.40 and ending at tE 5 0.20. There are twoan additional constraint by rescaling so that 2Rqiipi 5
events of substitution-rate change along this branch,1; this means that branch lengths of the tree are in
occurring at times 0.30 and 0.25. The expected numberterms of expected number of substitutions per site, v.
of substitutions per site along this branch, then, isThis model is reversible because it fulfills the reversibil-

ity criterion that piqij 5 pjqji for all i and j. Most com- v 5 (0.40 2 0.30) 3 0.10 1 (0.30 2 0.25)
monly used models of DNA substitution are constrained

3 0.12 1 (0.25 2 0.20) 3 0.06
to be reversible and are simply special cases of the model
described here. In the analyses that follow, we use the 5 0.019. (6)
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a joint prior probability distribution for the parameters
l, aP, and m along with the rate events and branch
lengths.

All Bayesian inference arises from the joint posterior
distribution of the parameters of interest (in this case,
the posterior distribution of l, aP, and m). The posterior
probability density of l, aP, and m is

f(l, aP, m|X) 5
,(l, aP, m)f(l, aP, m)

f(X)
, (9)

where

f(X) 5 #
h
,(l, aP, m)dF(l, aP, m)

and h is the space for l, aP, and m. We assume that l,
aP, and m have independent priors. The parameters aP

and m have uniform priors on [0, BaP] and [0, Bm],
respectively. We place an exponential prior on l. TheFigure 5.—An example of how the average number of
relative speciation times, t, which are scaled to be be-substitutions per site is calculated for a branch when substitu-

tion rate changes through time. Here, the substitution rate tween 0 and 1 (see Figure 1), are distributed as the
changes according to the compound Poisson process used in order statistics drawn from a uniform (0, 1) distribution,
this article. There are two events of substitution rate change

conditional on agreement with the tree topology t.along this branch. The first doubles the current substitution
There is no biological meaning to the uniformly distrib-rate and the second halves the current substitution rate.
uted priors. However, in Bayesian analysis, such priors
are often used in cases where there is little or no prior
knowledge about the parameters. Using uninformative

The substitution rate at the base of the branch is m 5 priors is a way to avoid biasing the results of the analysis;
0.10. the posterior probability distribution will mainly be de-

Assuming independence of the substitutions across termined by the likelihood function. An exponential
sites, the conditional probability of observing the full prior on l decreases the probability of substitution rate
sequence data set given the tree and rate events is the histories with a large number of small rate-change events.
product of the probabilities of observing the sites: Calculation of the posterior probability density (Equa-

tion 8) involves evaluating high-dimensional integrals
f(X|t, t, e, m) 5 p

c

i51

f(xi|t, t, e, m). (7) and summations. We use Markov chain Monte Carlo
(MCMC) integration to estimate the posterior distribu-

Estimating m, l, and aP using Markov chain Monte tions of interest. Specifically, we used the Metropolis-
Carlo: We wish to estimate the rate of molecular evolu- Hastings-Green (MHG) algorithm (Green 1995; see
tion at each branch through Bayesian estimation of the also Geyer 1999), an extension of the Metropolis-Has-
parameters l, aP, and m (where m is the rate of substitu- tings algorithm for problems in which the dimension
tion at the base of the tree). The likelihood function of the sample space changes. The MHG algorithm con-
for l, aP, and m is structs a Markov chain by first proposing a new state

and then moving to that state with probability R. The,(l, aP, m) 5 #ε f(X|t, t, e, m)dF(e|t, t, l, aP)dF(t),
steps of the algorithm are as follows: (1) the current
state of the chain is u; (2)with probability density f(u*|u),(8)
a new state (u*) is nominated; (3) the acceptance proba-

where the single integral denotes integration over all bility of the nominated state is calculated,
rate events and branch lengths consistent with the tree
topology t. Integration with respect to the probability

R 5 min51,
f(u*)f(u|u*)
f(u)f(u*|u) 6, (10)measure is used to denote a summation for discrete

random variables (such as the number of events on a
where f(u) is the target distribution (i.e., Equations 7tree or the topology of a tree) as well as integration for
or 8); and (4) a uniformly distributed random variablecontinuous random variables (such as the position of
on the interval [0, 1] is generated. If this random vari-the events, the speciation times, and the gamma-distrib-
able is ,R, then the nominated state is accepted anduted rates associated with events). The tree topology is
becomes the current state of the chain (u 5 u*). Other-considered to be fixed in this study, but the speciation
wise, the chain remains in state u. Steps 1–4 are repeatedtimes and the position and rates of events are treated

as random variables. In a Bayesian analysis, we specify many times.
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Several different mechanisms were used to update tree. The first move type (3a) was chosen with probabil-
ity φ3a and picked at random one of the j events on thethe state of the chain. These mechanisms included (1)

adding an event to the tree, (2) deleting an event from tree. A new position was chosen uniformly on the interval
[0, T]. The second move type (3b) was chosen with proba-the tree, (3) changing the position of an event on the

tree, (4) changing the gamma-distributed random vari- bility φ3b and picked one of the j events on the tree at
random and moved its current position by a smallable associated with an event on the tree, (5) changing

the time of an internal node on the tree, (6) changing amount randomly drawn from the interval [2ε3b, 1ε3b].
The acceptance probability for both of these moves isthe substitution rate (m) at the base of the tree, (7)

changing the Poisson parameter (l), (8) changing the
R 5 min{1, (likelihood ratio)}. (15)gamma parameter (aP), (9) changing the transition/

transversion rate ratio (k), (10) changing the gamma Move type 4: Changing the rate multiplier associated with
shape parameter for among-site rate variation (aR), and an event: Two different move types changed the rate
(11) changing the base frequencies (p). associated with an event on the tree. Both move types

The acceptance probabilities for the different moves pick at random one of the j events. This randomly
take the form chosen event will have its rate multiplier changed from

r to r*. For the first move type (4a) a change to r* isR 5 min{1, likelihood ratio) 3 (prior ratio)
proposed with probability φ4a such that loge(r*/r) is

3 (proposal ratio) 3 (Jacobian)} (11) uniformly distributed on the interval [21⁄2, 11⁄2]. The
acceptance probability for this move is then

(Green 1995). For move types 3–8, the standard Markov
chain theory employed in the Metropolis-Hastings algo- R 5 min{1, (likelihood ratio) 3 (r*/r)aPe2(r*2r)ec(aP)}
rithm (Metropolis et al. 1953; Hastings 1970) applies.

(16)However, move types 1 and 2 add and delete an event,
respectively. These move types involve a change in the (Green 1995). The other move type (4b) is chosen with
dimensionality of the sample space. Hence, we construct probability φ4b and picks a new rate by drawing a random
reversible Markov chains for move types 1 and 2 that jump variable from the distribution g(r*|aP). The acceptance
between parameter subspaces of different dimensional- probability for this move type is simply the likelihood
ity using the methodology developed by Green (1995). ratio (Equation 15).

Move type 1: Adding an event to the tree: The prior ratio Move type 5: Changing the time of an internal node on the
for the addition of a single point (z*, r*) to the current tree: With probability φ5, the time of an internal node
state e 5 (j, z, r) is was changed. The times of the internal nodes were up-

dated as follows. First, an internal node of the tree was[(e2lT(lT)j11/(j 1 1)!) 3 (1/T)j11 3 pj
i51 g(ri|aP) chosen at random (excluding the root node). The time

of this node was increased or decreased by adding a3 g(r*|aP)]/[(e2lT(lT)j/j!)3 (1/T)j 3 pj
i51 g(ri|aP)]

uniformly distributed random variable drawn from the
5 lg(r*|aP)/(j 1 1) (12) interval [2ε5, 1ε5]. The acceptance probability for this

move isand the proposal ratio is

R 5 min51, (likelihood ratio) 3
e2lT*(lT*)j

e2lt(lT)j
3

T
T*6,dj11 3 1/(j 1 1)

bj 3 1/(j 1 1) 3 1/T 3 g(r*|aP)
5

Tdj11

g(r*|aP)bj

,

(17)
(13)

where T* is the total tree length after the node time
where dj11 and bj are the probabilities of making a move has been adjusted. A change to the speciation time on
that deletes one of j 1 1 events or adds an event when an internal node affects the length of a total of three
there are currently j events, respectively. The Jacobian branches (the ancestral branch and the two descendant
is 1. The acceptance probability, then, is branches). Often, events of rate change occur along

these branches. The times of the rate-change events are
R 5 min51, (likelihood ratio) 3

lTdj11

(j 1 1)bj
6 . (14) maintained proportionally along the same branch they

started on.
Move types 6, 7, 8, 9, and 10: Changing m, l, aP, k, andMove type 2: Deleting an event from the tree: The accep-

tance probability for the reverse step, deleting an event aR: The substitution rate (m), Poisson parameter (l),
gamma shape parameter (aP), transition/transversionfrom the tree, has the same form as Equation 13, but

with the ratio terms inverted. Detailed balance between rate ratio (k), and gamma shape parameter for among-
site rate variation (aR) were updated with probabilitiesthe move types that add and delete an event on the tree

is demonstrated in the appendix. φ6, φ7, φ8, φ9, and φ10, respectively, by adding to the cur-
rent value a uniformly distributed random variable onMove type 3: Changing the position of an event: Two differ-

ent move types changed the position of an event on the the interval [2ε6, 1ε6], [2ε7, 1ε7], [2ε8, 1ε8], [2ε9,
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1ε9], and [2ε10, 1ε10], respectively. The acceptance
probabilities are

u* 5 5
l 1 (l 2 u9):u9 , l

u9:l # u9 # h

h 2 (u9 2 h):u9 . h.
(23)

R 5 min{1, (likelihood ratio)} (18)

for the update of m, k, and aR, The proposal ratio [in (10)] is one for this type of
proposal.

R 5 min51, (likelihood ratio) 3
e2l*T(l*T)j

e2lT(lT)j 6 (19) Estimating parameters using Bayesian inference: The chain
was sampled every gS generations. The posterior distribu-
tions of the parameters are obtained directly by notingfor the update of l, where l* is the proposed state and
the position of the chain and recording the values ofl is the current state, and
m, l, and aP for each sampled state. The proportion
of the time the chain stays in different intervals is anR 5 min51, (likelihood ratio) 3 p

j

i51

g(ri|a*P )/g(ri|aP)6 (20)
approximation of the posterior distribution.

The chain was burned in by discarding the first gBfor the update of ap, where a*P is the proposed state and generations of the Markov chain. The burn-in was per-
aP is the current state. We also considered gamma priors formed to allow the chain to approach stationarity be-
for m, l, and aP. The gamma prior has parameters a

fore states are sampled.
and b. The exponential prior for l used in the analyses

Validation of computer program: A computer pro-
of this article has a 5 1. A change to m* is proposed

gram implementing the compound Poisson process forsuch that loge(m*/m) is uniformly distributed on the
the HKY85 1 G (Hasegawa et al. 1984, 1985; Yanginterval [21⁄2, 11⁄2]. The acceptance probability for this
1993, 1994a) model of DNA substitution was written inmove is then
C by one of us (J.P.H.; available via anonymous ftp to
brahms.biology.rochester.edu or via the WWW at http://R 5 min{1, (likelihood ratio) 3 (m*/m)ae2b(m*2m)}.
brahms.biology.rochester.edu). The advantage of using(21)
MCMC for Bayesian inference is that the sampled points

The acceptance probabilities for changing l and ap are are a valid (albeit dependent) sample from the posterior
the same as Equation 21, with m and m* replaced by l distribution: the Markov chain law of large numbers
and l* and ap and a*p , respectively. (theorem 3; Tierney 1994) states that posterior proba-

Move type 11: Changing the base frequencies: With proba- bilities can be validly estimated from long-run sample
bility φ11 a move was attempted that changed the equilib- frequencies. However, it is impossible to guarantee that
rium base frequencies, p. The sum of the base frequen- an implementation of MCMC will converge for any par-
cies is constrained to equal 1 and new values are ticular problem (Geyer 1999). As Geyer (1999, p. 80)
proposed from a Dirichlet distribution with expected states, “MCMC is a complex mixture of computer pro-
values at the current values. The Dirichlet distribution gramming, statistical theory, and practical experience.
is the natural conjugate prior for a multinomial distribu- When it works, it does things that cannot be done any
tion and has probability density other way, but it is good to remember that it is not

foolproof.”
f(p|a) 5

G(a0)
PiPSG(ai)

p
iPS

p(ai21)
i , (22) The computer program was validated in several ways:

(1) likelihoods were checked against existing computer
programs (e.g., PAUP*; Swofford 1998); (2) the accep-where S is the state space (A, C, G, or T), ai is the
tance probabilities for the various move types wereDirichlet parameter of the ith nucleotide, a0 5 RiεPSai,
worked out independently by two of us; and (3) theand pi is the frequency of the ith nucleotide. New base
program was run without any data. When the programfrequencies are drawn from the Dirichlet distribution
is run without any data, then the likelihood ratio equalswith ai 5 pia0. We set a0 5 100.0 in all of the analyses
one and the chain should target the prior distribution.of this study.
When the chain is run without data, the expectationChanging parameters near the boundary of the parameter
and variance of the number of events on the tree shouldspace: Note that for move types 3b, 5, 6, 7, 8, 9, and 10
both be equal to lT. Moreover, the average rate associ-that the parameter is changed by adding a uniformly
ated with the events should equal aP/ec(aP) and the vari-distributed random variable from an interval [2ε, 1ε].
ance should equal aP/ec(aP). When the chain was runWhen the parameter is restricted to an interval (l, h)
without data, the results satisfied these expectations.and the proposed value is outside this interval, we reflect
Also, multiple independent chains were started fromthe excess back into the interval. Namely, if u9 5 u 1
different starting values of the parameters. The chainsU, where u is the current parameter value (either z, t,
were examined to see if they converged to the samem, l, or aP) and U is the uniformly distributed change,

the proposed parameter value u* is posterior probability distribution.
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Analysis of DNA sequence data: We applied the ter values of the prior were used [m 5 0.33 (0.32, 0.33);
method to a single DNA sequence data set. The data aP 5 63.89 (30.00, 104.24)]. The posterior distribution
set included complete mitochondrial sequences from of m became broader and the posterior distribution of aP

23 mammals (Arnason et al. 1997). The tree topology increased (there were more events, each with a smaller
was considered fixed in the analysis; the tree topology effect). However, the branch lengths were very similar
estimated using UPGMA (Sokal and Michener 1958) regardless of the exact value of the exponential prior
with the Jukes-Cantor distance (Jukes and Cantor on l. Figure 10 shows the relationship between the
1969) was used in the analysis. All analyses were per- maximum-likelihood estimates of the branch lengths
formed assuming the HKY85 model of DNA substitution obtained assuming the HKY85 model of DNA substitu-
(Hasegawa et al. 1984, 1985). This model allows differ- tion and the mean of the posterior distribution of each
ent base frequencies as well as a transition/transversion branch obtained under the compound Poisson process.
rate bias. Parameters of the substitution model were In both cases, the compound Poisson process was able
estimated on the UPGMA tree using maximum likeli- to accommodate rate variation across lineages of the
hood (as implemented in PAUP*; Swofford 1998). tree (the slope was 1.00, with r2 5 0.999 for both priors).

The Markov chain was run for at least 500,000 genera- We also examined the relationship between the com-
tions. Every 50th state of the chain was sampled (i.e., pound Poisson process with exponential priors of means
gS 5 50). The sampled states were used to construct the 1 and 10 (Figure 11). Again, there is a close relationship
posterior distribution for the variables m, l, and ap. between the branch lengths regardless of the prior used

for l. The posterior distributions of branch lengths are
quite robust to the two different priors used for l.RESULTS

The compound Poisson process for relaxing the mo-
The molecular clock hypothesis of equal rates across lecular clock should prove practically useful for several

lineages could be rejected for the mammalian mtDNA applications. For example, estimation of divergence
sequence data set. We used a likelihood-ratio test to times for clades depends upon a calibration time for at
examine the molecular clock hypothesis (Felsenstein least one speciation event on the tree and equal rates
1981). The HKY85 1 G model was assumed in the analy- across lineages (though see Sanderson 1997). The com-
sis. The null hypothesis is that the molecular clock holds; pound Poisson process can be used to relax the molecu-
the likelihood is maximized under the constraint of lar clock while at the same time allow estimation of
equal rates across lineages (L0). The alternative hypothe- divergence times of clades. An application of the
sis relaxes the clock constraint by assigning a different method applied to the mammalian mitochondrial data
rate to each of the lineages; the likelihood under the is shown in Figure 12. The general approach is the same
alternative hypothesis is L1. The likelihood-ratio test as that taken by Thorne et al. (1998), but we used
statistic (twice the difference in the loge likelihood, 22 the compound Poisson process discussed in this article
logeL; L 5 L0/L1) between the null and alternative mod- instead of a lognormal distribution to relax the clock
els is approximately x2 distributed with s 2 2 degrees of assumption. The estimation of divergence times re-
freedom. The molecular clock hypothesis was rejected quired only one modification to the notation described
at the 5% level (mammalian mitochondrial sequences:
logeL0 5 2114,514.23, logeL1 5 2114,431.21, 22 logeL 5
166.03, P , 0.00001).

We assumed two different priors for l for the mtDNA
data. Figures 6 and 7 show the results of the analysis of
the mammalian mitochondrial sequences assuming an
exponential prior for l with mean 1.0. Figure 6 shows
the change in the loge likelihood through time. The
probability of observing the data increased for the first
10,000 generations of the chain. The loge likelihood then
stabilized, fluctuating around a value of z 2130,240. We
discarded the first gB 5 50,000 generations as the burn-
in time of the chain. Figure 7 shows the posterior distri-
butions for the parameters m and aP. The estimates were
m 5 0.33 (0.32, 0.34) and aP 5 5.70 (2.35, 10.82). The
credibility interval for each variable was determined by
taking the 2.5% tails of the posterior distributions.

Figures 8 and 9 show the results of analyses in which
Figure 6.—The change in the loge probability of observing

an exponential prior with mean 10.0 was assumed for l. the data (Equation 6) for the analysis of the mammalian mito-
Estimates of aP (the shape parameter of the compound chondrial sequences. The prior for l was exponential with

mean 1.Poisson process) and m changed when different parame-
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in this article; instead of rescaling branch times between date of 60 million years for the cow-whale divergence.
We used a calibration date of 56.5 million years for0 (at the tips) and 1 (at the root), the tips of the tree
the cow-whale divergence that is based on the earliestwere considered to be time 0 and the times of other
occurrence of either artiodactyls or cetaceans. The esti-branches on the tree were in terms of millions of years
mate of the Ferungulate-Xenartha divergence is 92.5before present. The HKY85 1 G model of DNA substitu-
mya (83.7, 99.6). The credibility interval overlaps thetion was assumed in the analysis; the gamma model fit
estimate obtained by Arnason et al. (1997). In Figurethe observed sequences better than a model that pooled
12, we also indicate the divergence time estimates ofsites according to codon position and allowed a different
the other clades on the tree, with the 95% credibilityrate for each partition (logeL 5 2114,431.21 for
intervals.HKY85 1 G, logeL 5 2117,091.83 for HKY85 1 SS). An

Two different priors were used in the analysis of theexponential prior with mean 0.006 was placed on l.
speciation times for the mammals. We used exponentialThe estimates of the substitution model parameters
priors with means 0.06 and 0.006 per million years.were m 5 0.010 (0.008, 0.012), aP 5 7.58 (2.60, 17.13),
These numbers were chosen so that the means of thek 5 13.67 (13.00, 14.37), and aR 5 0.230 (0.228, 0.240).
exponential priors were similar to the priors used earlierThe posterior distribution of the divergence time of
(0.06 3 150 mya 5 10; 0.006 3 150 5 1). Figure 13ferungulates (carnivores, perissodactyls, artiodactyls,
shows the relationship between estimates of speciationand cetaceans) and Xenartha (Edentata) is shown in
times for two different priors on l for the mammalFigure 12. Arnason et al. (1997) obtained an estimate
mtDNA data. We used exponential priors with meansof 86 mya for this speciation event using a calibration
0.06 (x) and 0.006 (y). The x-axis shows that speciation
times differed by at most 0.2 for the two priors. The
estimates of speciation times appear robust to the choice
of prior used for l.

DISCUSSION

The molecular clock hypothesis, although useful in
evolutionary biology, is inaccurate in two important de-
tails; rates across lineages appear to vary and the substi-
tution process deviates significantly from a Poisson pro-
cess (Ohta and Kimura 1971; Langley and Fitch
1973, 1974; also see Gillespie 1991). This article consid-
ers only lineage effects on rate variation; that is, we only
consider changes in the overall substitution rate that
occur along different lineages through processes such
as a change in the generation time. We do not relax

Figure 8.—The change in the loge probability of observing
the data (Equation 6) for the analysis of the mammalian mito-Figure 7.—The posterior probability distributions for the

parameters m and aP for the mammalian mitochondrial se- chondrial sequences. The prior for l was exponential with
mean 10.quences. The prior for l was exponential with mean 1.
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Figure 9.—The posterior probability distributions for the
parameters m and aP for the mammalian mitochondrial se-
quences. The prior for l was exponential with mean 10.

Figure 10.—The Bayesian and maximum-likelihood esti-
mates of the branch lengths for the mammalian mitochondrial

the assumption that the substitutions on a tree follow sequences are highly correlated (slope 5 1.0; r 2 5 0.999).
a Poisson process. It is important to relax the assumption Bayesian estimates of branch lengths were taken as the mean

of the posterior distribution. Both sets of branch lengths werethat rates are constant across lineages because almost
obtained under the HKY85 model of DNA substitution.any study of the rate of substitution in DNA or amino

acid sequences rejects the null hypothesis that rates
across lineages are equal through time (Langley and
Fitch 1974; Goodman et al. 1975; Wu and Li 1985). This of substitution for each lineage on a phylogenetic tree
is especially true now that biologists are using recently does not allow estimation of divergence times or allow
available software that allows easy testing of the molecu- comparison of speciation times for different taxonomic
lar clock hypothesis (e.g., PAML, Yang 1997; PAUP*, groups. Sanderson (1997) made an important advance
Swofford 1998). in the estimation of divergence times using molecular

Several approaches have been taken to relax the mo- data by (1) showing how all of the sequences of a study
lecular clock. The most frequently used method for can be used simultaneously to estimate the divergence
relaxing the rate-constancy assumption is to assign a time of a clade and (2) relaxing the molecular clock by
fixed rate parameter to each branch of a phylogeny. smoothing the rate differences across speciation times
This solution works well for the phylogeny problem on a tree. Similarly, Thorne et al. (1998) relaxed the
where rates of substitution are often treated as nuisance molecular clock by assuming that rates change across
parameters and the parameter of interest is the phylog- speciation events. They assigned rates to descendant

lineages by sampling rates from a lognormal distribu-eny of a group of organisms. However, allowing a rate
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cally plausible mechanisms that could cause rates to
change in a nearly step-like manner. For example, any
process that rapidly changes the substitution rate (such
as a change in the proofreading mechanisms, a change
in selective constraints, or a rapid change in the genera-
tion time) can be approximately described using a step
function. One of the main advantages of treating rate
variation as a compound Poisson process is that the
model can introduce rate variation across lineages at
any point on the phylogenetic tree; other methods that
have been considered assume that substitution rate
changes at speciation events (e.g., Sanderson 1997;
Thorne et al. 1998). Such models may be sensitive to
taxon sampling. On the other hand, these solutions may
prove to be more practical for data analysis because
there are fewer parameters to estimate. The gamma
distribution used to modify ancestral rates, however, is

Figure 11.—The Bayesian estimates of branch lengths for not so easily justified using as an argument biological
the two exponential priors examined (1 and 10). The branch plausibility. We chose to use a gamma distribution tolengths are highly correlated (slope 5 1.00; r 2 5 0.999). Baye-

modify rates because of its analytical tractability andsian estimates of branch lengths were taken as the mean of
flexibility. Other methods for modifying rates, however,the posterior distribution. Both sets of branch lengths were

obtained under the HKY85 model of DNA substitution. may work just as well.
We uncovered significant rate variation across lin-

eages for the mammalian mitochondrial DNA sequence
data sets. The clock hypothesis could be rejected usingtion. They evaluated the posterior distribution of specia-
a likelihood-ratio test (Felsenstein 1981). Importantly,tion times using MCMC.
the posterior distribution of the gamma parameter (aP)The compound Poisson process considered here
was close to 0, which also suggests that the data weremodels rate variation across lineages on a tree as a step
not consistent with the clock hypothesis.function. There were several reasons we chose to model

Other models may also prove useful for relaxing therate variation as a step function, with a major reason
being analytical tractability. However, there are biologi- molecular clock assumption. For example, a doubly sto-

Figure 12.—The esti-
mates of divergence times
for 22 mammalian species.
Estimates were made under
the HKY85 1 G model of
DNA substitution. Numbers
at internal nodes represent
the point estimate of the di-
vergence time (top) and the
upper (middle) and lower
(bottom) limit of the 95%
credibility interval. An ex-
ponential prior with mean
0.006 was placed on l.
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to construct a more realistic probability distribution de-
scribing the divergence time of a clade.

One important result of this article is that we demon-
strate that events can be placed onto a phylogenetic
tree under a Poisson process and estimation performed
using MCMC. The Poisson process is one of the most
useful models in biology, and there are several possible
extensions of the approach we describe in phylogenet-
ics. For example, one could place events onto a tree
according to a Poisson process with each event changing
the synonymous/nonsynonymous rate ratio, the base
frequencies, or whether the site has a positive rate or a
rate of zero (i.e., the covarion model). The advantage
of this approach is that it allows the rate of nucleotide
substitution to change on a tree under a biologically
reasonable model with the addition of a small number
of parameters.
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e2lT(lT)j11
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3 11T2

j11
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j

i51

g(ri|aP) 3 g(r*|aP) 3 dx9. (A5)APPENDIX

Here we demonstrate detailed balance between the
We also havemove types that add and delete an event from the tree.

Following the notation of Green (1995), consider the
move m “insert a point into position j 1 1 in the se- qm(x, dx9) 5 bj1 1

j 1 12 1
1
T2g(r*|aP)dz*dr*

quence” and its dual return move “delete the point from
position j 1 1 in the sequence.” We show that (from 3 I {xi 5 x9i : 1 # i # j} (A6)
Green 1995; p. 714)

and#Ap(dx)#Bqm(x, dx9)aPm(x, x9) 5 #Bp(dx9)#Aqm(x9, dx)aPm(x9, x)

(A1)
qm(x9, dx) 5 dj11 1 1

j 1 12 1
1
T2 3 I {xi 5 x9i : 1 # i # j}.

holds for general Borel sets A and B. It is sufficient to
show it holds when A and B are the products of open (A7)
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The left-hand side of Equation 22 simplifies to where G(·|aP) is the cumulative distribution function of
g(·|aP). The right-hand side of equation A1 simplifies#Ap(dx)#Bqm(x, dx9)aPm(x, x9)
to

5 #Ap(dx)#
cj11

aj11
#

tj11

sj11

bj 1 1
j 1 12 1

1
T2 bj11 3 1 dj11

j 1 12 3
e2lT(lT)j11

(j 1 1)!
3 p

j11

i51

(ci 2 ai)

3 g(r*|aP)aPjdr*dz*
3 p

j11

i51

(G(ti|aP) 2 G(si|aP)). (A8)
5 aPjbj1 1

j 1 12 1
1
T2 3 (cj11 2 aj11)(G(tj11|aP)

The left-hand side over the right-hand side is
2 G(sj11|aP))#Ap(dx)

1 aPj

bj11
2 3 1(j 1 1)bj

lTdj11
2 5 1, (A9)

5 aPjbj1 1
j 1 12 1

1
T2

so detailed balance is satisfied for the jump moves.
3 (cj11 2 aj11)(G(tj11|aP) 2 G(sj11|aP)) Note that

3 #A
e2lT(jT)j

j! 11T2j

p
j

i51

g(ri|aP)dx 1 aPj

bj11
2 5 1 lTdj11

(j 1 1)bj
2 5 1, (A10)

whether lTdj11 . (j 1 1)bj or lTdj11 , (j 1 1)bj.5 aPj 3 1bj

T2 3
e2lTlj

(j 1 1)!
3 p

j11

i51

(ci 2 ai)
A similar calculation for inserting/deleting a point in
position i in the list of events would be similarly derived,

3 p
j11

i51

(G(ti|aP) 2 G(si|aP)),
differing only in labeling of subscripts.


