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ABSTRACT

Artificial neural networks have been combined with a
rule based system to predict intron splice sites in the
dicot plant Arabidopsis thaliana . A two step prediction
scheme, where a global prediction of the coding
potential regulates a cutoff level for a local prediction of
splice sites, is refined by rules based on splice site
confidence values, prediction scores, coding context
and distances between potential splice sites. In this
approach, the prediction of splice sites mutually affect
each other in a non-local manner. The combined
approach drastically reduces the large amount of false
positive splice sites normally haunting splice site
prediction. An analysis of the errors made by the
networks in the first step of the method revealed a
previously unknown feature, a frequent T-tract pro-
longation containing cryptic acceptor sites in the 5 ′ end
of exons. The method presented here has been com-
pared with three other approaches, GeneFinder, Gene-
Mark and Grail. Overall the method presented here is an
order of magnitude better. We show that the new
method is able to find a donor site in the coding
sequence for the jelly fish Green Fluorescent Protein,
exactly at the position that was experimentally ob-
served in A.thaliana  transformants. Predictions for
alternatively spliced genes are also presented, together
with examples of genes from other dicots, monocots
and algae. The method has been made available
through electronic mail (NetPlantGene@cbs.dtu.dk), or
the WWW at http://www.cbs.dtu.dk/NetPlantGene.html

INTRODUCTION

The biochemistry of splicing and the processing of introns in
nuclear pre-mRNA in plants has not been understood to the same
degree as in mammals and yeast (1,2). In virtually all organisms
there has been much experimental evidence indicating that the

selection of splice sites in pre-mRNA is based on information
from different length scales in the nucleotide sequence (1,3). In
plants the bias in the nucleotide composition of exons and introns
has in particular been assigned an important role for the correct
recognition of splice sites. Very often the high AU content of dicot
introns is stressed (2,4,5). It has been claimed, based on
experiments with synthetic introns, that appropriate splice site
consensus sequences together with the elevated AU level are the
principal requirements of the pre-mRNA to be spliced correctly
(6). It was found, that the splicing ability of synthetic introns
varies with infusions of AU-rich sequences. The latter may
compensate for the complete lack of the polypyrimidine tract
found in mammalian introns as suggested by work showing that
soybean pre-mRNA cannot be spliced correctly by human HeLa
cells (7). Even among monocot and dicot plants there seem to be
large differences in splicing features, as experiments show that
the pre-mRNA of monocots can only be poorly spliced in dicot
cells (8,9). Also the more or less non-existent branch point
consensus sequence, which seems to be reduced to a single
adenine nucleotide in dicots differs markedly from the clear
consensus sequence found in yeast. In plant genes, the presence
of a strong donor site helps the recognition of a matching acceptor
site (and vice versa), which would otherwise remain cryptic (10).

Identification of active splice sites from local sequence analysis
is difficult due to the presence of a large number of false but
consensus-like splice sites. This holds true for sequence analysis,
but is likely to be true for the splice site selection in vivo as well.
It is therefore important to use non-local information to filter out
false positives. It is unclear precisely how this filtering works in
vivo, but a number of computational methods and rules for
removing false positives can be constructed. These include use of
protein coding potential, predicted exon and intron length, and
strength of neighboring splice sites. Furthermore some non-
sequence specific knowledge can be used. This includes the exon
and intron length distributions and the average GC content.

We present a data driven algorithmic approach for the
recognition of splice sites based on the experimental evidence in
the GenBank entries. The approach is a further development of
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the NetGene method (11), which is founded on the earlier
observation of complementarity between splice site strength and
the strength of the associated exon. Small exons (or long exons
with a weak coding potential) tend to have strong consensus
splice sites, while strong exons allow for weaker splice sites (11).
A large part of the GenBank entries has been discarded because
many of them are of surprisingly low quality, as they contain
numerous false and conflicting splice site assignments (12).
Many of these errors stem from incorrect interpretation of
sequence data by the experimentalists.

MATERIALS AND METHODS

The data set 

Considerable effort went into the preparation of a high quality
data set which does not contain errors of the type previously found
in GenBank (12). The main criteria for the genes extracted were:
no missing exons; contains at least two introns; low sequence
identity between genes. A detailed description of the methods
used for extracting and correcting the data set is given elsewhere
(12). The data set contains 146 genes extracted from GenBank
(rel.87) comprising 764 donor sites and 766 acceptor sites.

The data was divided into two parts, where the first part was
used for network training, and the second for testing the
generalization ability of the final method. The training set
contains 109 genes and two times 539 splice sites. The test set
contains 37 genes, 225 donor sites and 227 acceptor sites. The
imbalance of splice sites stems from two entries which start in the
middle of an intron located in the 5′ UTR. In order to compensate
for the fact that some GenBank entries contain parts of adjacent
genes without annotation, each entry was reduced such that only
150 nucleotides (nt) before and after the transcribed part of the
sequence were included.

The data set was divided into two parts, such that the first 109
genes constituted the training set and the remaining 37 genes
constituted the test set (the complete set was kept in lexicographical
order according to their GenBank LOCUS; 12). Pairwise
comparison between the two sets was performed in order to check
that no pair of closely related genes were present in both parts.
This was done to ensure that the prediction method will extract
general information about the splice sites rather than just
memorizing the training set.

Two sequences were removed from the test set after the final
evaluation of the splice site prediction system due to a seemingly
wrongly placed exon in ATSUCSYN (X60987) and one wrong
and one very suspicious acceptor site in ATU08315 (U08315).

ATU08315: from homology with z18242 it appears that the
third intron is misplaced and should be six positions ahead
(2043/2044 instead of 2049/2050). Homology with U20502 and
z35108 confirms this. Furthermore, in the absence of a cDNA
homolog, the borders of the last intron (which is located in a
poorly conserved region) remain uncertain. We have therefore
discarded the entry.

ATSUCSYN: the entire first exon shows no homology to other
sucrose synthases, albeit these proteins are highly conserved.
However, conserved sequence elements can be found, with the
initiator ATG located at position 585 (instead of 464) and a
possible donor site at 671/672. This produces a frameshift in the
downstream exon, suggesting that there are likely sequencing
errors in that area (maybe two Ts are lacking between position 664

and 666, that would give the canonical ending of the exon:
SLFSR, and give the correct frame for the splice sites). Moreover,
a poly-T tract would appear that again may present a sequencing
problem for the determination of the precise number of Ts. Based
on these considerations we have discarded the entry from the
dataset.

Neural network algorithms 

The networks used in this study are of the multi-layer error-back-
propagation type (13). They are fully connected and have three
layers: an input layer, one hidden layer and an output layer. The
network input is a segment of nucleotides from the nucleotide
sequence. The sequence of nucleotides is sparsely encoded: A as
(1000), C as (0100), G as (0010) and T as (0001) to avoid
algebraic dependencies between nucleotides in the encoding. The
output consists of one unit, giving a real valued output between
0.0 and 1.0. Using a threshold this number is interpreted as a
category assignment for the middle nucleotide in the input
window.

The networks were trained by standard error backpropagation
(13) on two different tasks: (i) detection of coding nucleotides
(versus non-coding nucleotides), and (ii) the prediction of splice
sites (defined as the first and last intron nucleotide, respectively).

We used the correlation coefficient (14) to quantify the
performance and stop the training of the coding/predicting
networks:

C�
(PN)–(NfPf)

(N� Nf)(N� Pf)(P� Nf)(P� Pf)�
1

Here P is the number of correctly predicted coding nucleotides
(true positives), N is the number of correctly predicted non-coding
nucleotides (true negatives), Pf is the number of incorrectly
predicted coding nucleotides (false positives) and Nf is the
number of incorrectly predicted non-coding nucleotides (false
negatives). Output activities larger than a threshold of 0.5 are
interpreted as coding predictions, while output activities ≤0.5
represent non-coding predictions. A perfect prediction gives C = 1.0
whereas a truly imperfect prediction gives C = –1.0, which is
actually just as good. A random prediction gives a value of C
close to zero. Networks that have been stopped with a maximal
correlation coefficient have a balanced prediction of coding and
non-coding nucleotides. A balanced prediction gives more
information about the coding properties of the pre-mRNA than a
biased prediction.

A different measure is used to evaluate and stop the training of
the splice site predicting networks. The network training was
stopped when the false positive rate at a sensitivity level of 95%
was minimal. The false positive rate is given by

F� Pf

N� Pf 2

where Pf is the number of incorrectly predicted splice sites and
N + Pf the total number of non-splice sites, while the sensitivity,
or true positive rate, is given by

S� P
P� Nf 3

To keep the sensitivity level at 95%, the threshold separating the
splice site predictions from the non-splice site ones cannot be kept
at 0.5, but must be adjusted until S = 95%. The virtue of this
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criterion is that a large number of true splice sites are detected.
This is essential for the subsequent application of rules because
the system only selects splice sites among the predictions from the
splice site detecting network, see below.

Information content in the splice site sequence context 

The local sequence information available to the networks can be
visualized using sequence logos (15), which are based on
Shannon’s information measure (16,17). The donor (or acceptor)
sites are aligned, and for each column i, R(i) is computed

R(i) � 2.0��
T

��A

P�

i � log2(P
�

i ) 4

where P�

i  is the probability of finding nucleotide α, α ∈ {A,C,G,T},
at position i. In each column the four nucleotide letters have heights
corresponding to their frequency (15).

RESULTS

Exon and intron lengths 

The length distributions of Arabidopsis thaliana exons and
introns were compared with the case of human genes. The
average length of internal exons was 179 nt, which is longer than
the average for human exons (≈150 nt). The bulk of the exons
(74%) are between 40 and 200 nt long, the smallest is 9 nt, while
the longest exon is 2151 nt. This compares very well with the
length distribution of human exons (data not shown), and
suggests that similar evolutionary mechanisms govern the
internal exon lengths in plants and mammals. The intron length
distribution (Fig. 1) differs from the length distribution of human
introns. The average length of A.thaliana introns is 146 nt, while
the average for human introns is much longer at 740 nt (Tolstrup,
Dalsgaard, Engelbrecht and Brunak, manuscript in preparation).
However, both distributions peak at an intron length between 80
and 90 nt, but where 84% of all A.thaliana introns are between 65
and 200 nt long, only 31% of human introns are found in this
length interval, most of them are longer. This indicates that an
intron length of 80–90 nt is favorable in both organisms. The
longest occurring intron in the A.thaliana data set is 1242 nt long.
A minimum intron length of 70–73 nt in dicots has been
postulated earlier (6). Our data set contains four introns below this
size. In ATHATCC1A:M85523 the shortest intron (second of
two) is 59 nt long, in ATHANSYNAB:M92354 the tenth intron
(of 10) is 63 nt long, in ATU06745:U06745 the second intron (of
10) is 69 nt long, and in ATU12126:U12126 the sixth intron (of
eight) is 69 nt long. A minimum functional length of 55–70 nt is
perhaps more realistic, at least for A.thaliana. This length is
slightly smaller than the minimum length of 64 nt given by
Filipowicz et al. (2).

We have investigated the number of introns in A.thaliana genes
and compared them with the number of introns in human genes
(Fig. 2). The highest number of introns found in the A.thaliana
genes is 30 (ATHACOACAR:L27074). The average number of
introns is five for both organisms and the distributions are very
similar. These findings indicate that larger genomes like the
human genome do not have more introns than small genomes, but
rather that the length of introns increase with genome size only.

Figure 1. The two intron length distributions from A.thaliana (766 introns) and
Homo sapiens (1573 introns) shown in one histogram. Only introns <600 nt are
included.

Figure 2. The number of introns per gene for A.thaliana (146 genes) and
H.sapiens (286 genes). Only genes with at least two introns are included.

Nucleotide frequencies 

The nucleotide frequencies for exons and introns are given in
Table 1. Arabidopsis thaliana genes have a high content of
adenine and thymine, while the average frequencies of the four
nucleotides is closer to 25% in human genes (data not shown).
The introns contain less cytosine and guanine than exons and
much more thymine, while the adenine content differs only by
1%. A similar tendency holds true for human genes although the
absolute values differ. 

In Table 2 the nucleotide frequencies of the average codon in
A.thaliana is shown. The most frequent nucleotide(s) at position
one is guanine, in position two adenine or thymine, and in position
three it is thymine. The main difference from the reading frame
of human genes is that the third position here is occupied
preferably by cytosine or guanine.
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Table 1. The nucleotide distribution in the data set given for
translated exon (E), intron (I), untranslated exon (M), and
non-transcribed DNA (N)

Notice, in introns, the high presence of adenine and, especially,
thymine.

Table 2. The nucleotide distribution at the three
codon positions for the translated exon sequence in
A.thaliana

The non-organism specific reading frame pattern 
G/non-G on the two first codon positions is clearly
visible (34).

The dinucleotide frequencies and the ‘mutual information’
(17,18) of the exons and introns did correspond quite well to the
frequencies found for dicots in earlier work (18). In the first 13 nt
downstream from the donor site, there is generally a selection
against the GT dinucleotide. Only at position five downstream
can a positive selection for the GT dinucleotide be observed. Also
upstream from the donor site GT is suppressed, and only 33 GT
dinucleotides were found in the last 5 nt of the exons, while 75
instances were to be expected from the G and T frequencies.
These findings support the view that the GT dinucleotide at intron
position five is used for donor site recognition (19).

It has been proposed (20) that the scenario for localization of
the acceptor site in mammals is the following: Once the lariat has
been formed, the sequence from the branch point to the splice site,
consisting of between 20 and 30 nt, is scanned, and the first AG
dinucleotide is used as the splicing acceptor. To find out whether
our data set supports this theory, we scanned for AG dinucleotides
up to 70 nt upstream from the acceptor site and compared the
result with the expected number of AG dinucleotides upstream
from the acceptor site (Fig. 3). It is clear that there is a very strong
selection against AG dinucleotides close to the acceptor site and
30 nt upstream into the intron. Only very few AG dinucleotides
are found in this region consistent with the scanning hypothesis.

The sequence context of the splice sites has been visualized as
logos (Figs 4 and 5). In the donor site logo (Fig. 4) we notice a lot
of structure. The highest frequency nucleotides correspond to the
well known consensus sequence for dicot plant donor sites (18),
AG|GTAAGT. There is a lot more structure in the intron part than
in the exon part, in particular, there is a high frequency of thymine

Figure 3. The expected and observed number of dinucleotides upstream from
the acceptor site in the alignment of all acceptor sites in the data set. The
expected number of AG dinucleotides (with the A at a given position) is the
product of the frequency of A at that position and G at the next position
multiplied by the total number of sequences (766).

Figure 4. The sequence logo plot for the A.thaliana donor sites in the data set.
The most frequent nucleotides correspond to the consensus sequence for dicot
plant donor sites, AG|GTAAGT.

in the introns (41%). In the exons the corresponding value is 26%
(Table 1). In introns, adenine is the second most common
nucleotide, 27%, while guanine and cytosine occur at 17% and
15%, respectively. According to Wiebauer et al. (7), the average
thymine/adenine level for dicotyledonous plants is 73% in introns
and 55% in exons. The A.thaliana genes examined in this paper
have the percentages 67 for introns and 54 for exons. However,
Goodall and Filipowicz (4) report that A.thaliana has the lowest
known thymine/adenine level in dicots, namely 50.5%. This
number is not confirmed by our analysis.

For the acceptor site logo (Fig. 5) we see much the same pattern
with a lot of structure on the intron side and a high thymine level.
There seems to be more structure on both the intron and the exon
side of acceptor sites compared with donor sites. The dicot
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Figure 5. The sequence logo plot for the A.thaliana acceptor sites in the data
set. The most frequent nucleotides correspond to the consensus sequence for
dicot plant acceptor sites, TGYAG|GT.

consensus sequence given by White et al. (18) is TGYAG|GT in
agreement with the corresponding positions in the logo.

A separation of the splice sites according to their intersections
with the triplet reading frame was also examined. While the
resulting three logos differed somewhat in appearance, no
informative pattern, was visible (data not shown). The ratio
between the three possible intersections was 3:1:1, with the type
of splice site that cuts the beginning (or the end) of the reading
frame being the most common. In human genes the correspon-
ding ratios are close to 2:1:1. It has been suggested that the weaker
consensus sequences in plants, compared with humans, are
somehow compensated by their large A and T content (21).
Below, we return to the reading frame when we analyze the
weights of the trained networks.

Splice site predicting networks 

To find an optimal network configuration for the donor site
recognition problem, we did train and test a wide range of
architectures. Networks with 3–71 nt in the input window and
with 0, 2, 5, 10, 15 and 20 units in the hidden layer have been
examined.

From these runs a network architecture with 23 nt visible in the
input window and 10 hidden units was chosen. To further enhance
the performance of the donor site recognition, 10 networks with
this architecture initialized differently were trained. The average
output of these networks was used as the result (a so called neural
network ensemble). This ensemble was able to recognize 138 of
the 225 test set donor sites with only 62 false positives, equivalent
to a correlation coefficient of 0.65 (Fig. 6). 

To get a view of the pattern of the false donor sites we have
plotted the sequence logo for the alignment of all the test set
non-donor sites that the network ensemble classifies as donor
sites (data not shown). The false donor sites clearly follow the
consensus of the A.thaliana donor sites. Also there is a clear
overweight of thymine and adenine on the ‘intron’ side of the
false splice sites. The fact that no network can make a better
performance using local information, indicates that the selection

Figure 6. Percentages of false positive test set donor site predictions plotted
against the sensitivity level for five different prediction methods. The line
designated ‘local’ is the prediction of the ensemble of the local donor site
predicting neural networks. The line designated ‘combined’ is the performance
of the local network ensemble with a threshold controlled by the derivative of
the coding prediction output. The NetPlantGene line is the final performance
of the present method including the rule based system. The diamond is the
performance of Xgrail, the sensitivity level is fixed for this method therefore
only one data point appears on the plot.

Figure 7. Percentages of false positive test set acceptor site predictions plotted
against the sensitivity level for five different prediction methods. See legend to
Figure 6 for details.

may benefit from a combination of local and global sequence
information.

We trained and tested the acceptor site networks on a lot of
different network architectures. From these runs an ensemble of
10 networks with 61 nt present in the input window and 15 units
in the hidden layer were chosen. The percentage of false positives
as function of the sensitivity (true positive rate) is shown in Figure
7. The quality of the acceptor site prediction is very similar to the
quality of the donor site prediction, showing that it is equally
difficult to predict donor and acceptor sites from local informa-
tion only.
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Figure 8. Combined weight logos of the positive (top) and negative (bottom) weights from the input to the three hidden units sensitive to the reading frame pattern
in the window. For two of the weight vectors the components were shifted one position to the left and right, respectively. The logo therefore covers the input window
from position 2 to position 200.

It is interesting that good acceptor site recognition requires a
much larger window, 61, than donor site recognition, 23.
However, we should not be too surprised that a difference exists,
as in the cell different mechanisms in the spliceosome are used for
the identification. Donor sites are recognized by base pairing to
the U1 snRNA, while several less sequence specific elements
seem to be involved in the recognition of the acceptor site.

As for donor sites we have plotted the information logo for the
alignment of the false positive acceptor sites that the network
assigned (data not shown). The false positive acceptor sites
follow the consensus except in position –4 where the guanine is
substituted by thymine. As with the false positive donor sites there
is a clear overpopulation of thymine and adenine on the ‘intron’
side of the false acceptor sites.

Analysis of the local network weights 

It is highly interesting to understand as precisely as possible what
sequence features the networks are looking for. These features are
encoded in the weights, especially those connecting the input
window positions and the hidden units. For each hidden unit its
incoming weight vector will show the positions and nucleotide
types that will excite or inhibit its activation.

Examination of the weights in the local network shows that they
essentially learn what is present in the corresponding logos,
together with negative weights of an anti-consensus sequence.
For the donor site network the consensus sequence AG|GTAAGT
can be identified as strong weights in the network. Donor sites are

flanked by high frequencies of T in the intron part, but in the right
part of the window the networks look for G deficiency instead.

The acceptor site network has strong weights for the consensus
T(non-C)YAG|GNNG. This should be compared with the
consensus read from the logo TGYAG|GT. In the network
weights deficiency of C at position one in the logo is more
significant than a large weight on G, and a strong weight for a G
four positions into the exon can be observed as well. We assume
that this G is part of the reading frame which is recognized in the
exon by the acceptor site network. 

Recognition of coding DNA 

In order to utilize global information which is available in the DNA
sequence we have trained large window networks to discriminate
between coding and non-coding nucleotides. When the middle
nucleotide in the input window belongs to a translated exon the
network will be trained to answer yes, otherwise no. We also trained
networks to predict untranslated exons, but the prediction of
untranslated exons proved to be very hard. Untranslated exons tend
to be more intron- than exon-like. Their nucleotide frequencies
correspond more to those of introns than those of exons (Table 1).

Networks with 101, 151, 201, 251, 301, 351 and 401 nt visible
in the input window were examined, with different numbers of
units in the hidden layer. The best network had a window of
201 nt, 15 hidden units, and a correlation coefficient of 0.75. This
network was able to recognize 89.7% of the true coding
nucleotides and 87.4% of the non-coding nucleotides. An
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Figure 9. Weight logos for the three statistical hidden units which are sensitive to either intron- or exon-like DNA. The top shows the weights for one intron sensitive
unit, while the bottom plot shows a combined logo for two exon sensitive units. Negative weights are indicated by upside-down symbols.

Figure 10. The average activity of the six hidden units at all donor sites in the
test set. The qualitative differences of the reading frame units and the statistical
transition-region recognizing units can be seen clearly.

ensemble of six networks, one with a window size of 101 nt, four
with a window of 201 nt and one with a 251 nt window, was used
in the final system. The reason for the use of networks with
suboptimal window sizes in the ensemble is that these networks
have a better performance for small or large exons, respectively.
The joint correlation coefficient was 0.76, and the percentages
91.0% and 89.5%. The optimal window size for coding/non-cod-
ing networks trained on human genes (11) was 301 nt. This is a

Figure 11. The average activity of the six hidden units at all acceptor sites in
the test set. The qualitative differences of the reading frame units and the
statistical transition-region recognizing units can be seen clearly.

result of the difference in average intron length in human and
A.thaliana genes.

Analysis of the global coding/non-coding network weights 

Networks with many different numbers of hidden units were
analyzed, they all seemed to use similar detection principles in
their internal working albeit with some smaller difference in their
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Figure 12. The NetPlantGene prediction for the test set sequence ATRAH1GNA. The correct exons are depicted as boxes in the top of the figure. The top plot designated
‘Coding’ shows the activity of an ensemble of coding predicting networks, values close to 0.0 indicate intron, while values close to 1.0 indicate exon. In the ‘Donor’
and ‘Acceptor’ panels the activity of the ensembles of the local splice site predicting networks are shown as impulses. An impulse with a height close to 1.0 indicates
a strong A.thaliana splice site. A magenta impulse is a prediction that has been discarded during the refinement, and a cyan colored impulse is a prediction that has
been changed by the rule based system. The variable threshold, computed from the coding predicting ensemble output, is used to select donor and acceptor site
predictions. In this example 11 out of the 12 splice sites are predicted correctly at the cost of five false positive predictions. The donor site at position 584 is missed
because it differs considerably from the consensus sequence, and because there is no clear transition between a coding and a non-coding region. This site is not
recognized by the rule based system either, because there is another nearby candidate, with a strong splice site prediction in the vicinity of a transition region at position
553. At positions 1425 and 1429 two false acceptor site predictions are removed by the refinement, and at position 848 a donor site prediction is enhanced by the rule
based system.

performance. If a network is deprived of resources (weights), the
primary features will stand out more clearly.

Networks with an input window of 201 nt and at least six hidden
units all had correlation coefficients >0.70. For simplicity we
present a weight analysis of the smallest six unit network here only.

The six weights connecting the hidden units and the output unit
had about the same numerical size. Five of the weights were
positive, while one was negative, meaning that this unit will be
pro-intron when activated. The weights were approximately one
order of magnitude larger than the thresholds of the hidden units.
The thresholds of the hidden units had almost been nullified by
the training and were of no numerical importance for the function.

For the 201 × 6 input-to-hidden weights we found that three of
the six hidden units were involved in checking the triplet reading
frame. A weight logo (22) of the combined weights to these three
hidden units can be seen in Figure 8, positive weights in the upper
part and negative weights in the lower.

In Table 2 the nucleotide frequencies at each codon position can
be seen. Position 100 in Figure 8a, for instance, corresponds to
position one in the codons. The large G corresponds to the large
guanine fraction of 0.34 at codon position one. The large negative
T in Figure 8b corresponds to the low thymine fraction of 0.18 at
codon position one. This is a general tendency: for each of the
four nucleotides at each position in the codons, their size and sign
relative to their size and sign at the two neighboring positions
more or less mirror their frequencies in Table 2. If we again take
position 100 as reference, this position corresponds to position
one in the reading-frame in one of the hidden units, to position
two in the reading-frame in another hidden unit, and to position
three in the reading-frame in a third hidden unit. We expect that
one of the three units will be active for a given input window
where the central nucleotide belongs to an exon. Plots of the
activities of the three reading frames checking hidden units on
presentation of all windows in the test set (Figs 10 and 11)
confirmed this. It also appears that the units are mostly inactive
when inside an intron.

The three other hidden units are engaged in the recognition of
intron-and exon-like DNA, their weight logos can be seen in
Figure 9. One unit will be activated by a high adenine and thymine

content combined with a low cytosine and guanine content in the
left side of the input window. In other words, when the nucleotide
frequencies correspond to those found in A.thaliana introns. This
means that inside an intron, this hidden unit will be active and due
to its hidden-to-output weight being negative it will suppress the
output activity of the network. This suppression will level off
when the input window enters a coding region.

Two units are activated by a high cytosine and guanine content
combined with a low adenine and thymine content in the right
side of the input window. These units will be deactivated by an
intron-like nucleotide composition, while activated inside a coding
region, note that the added weights from these two units are shown
in Figure 9. Together with other features they recognize the GC
content. One of the units gives the most accurate prediction of the
coding to non-coding border at an acceptor site due to its weights
being largest in the left part of the window, while the other gives
a more accurate prediction at the donor site because the weights are
largest in the right part of the window (data not shown). The
pruning technique ‘optimal brain damage’ (23), which discards
unessential weights, has previously been used with great success
on networks trained on human genes (22).

Combining local and global sequence information 

From the weight analysis we know that the local and global
networks exploit the nucleotide pattern of the reading frame, the
transition between coding and non-coding DNA and the consensus-
like sequence of the splice sites quite differently. The combined
approach used here proceeds in two steps: a prediction step and
a refinement step. The first step is equivalent to earlier work on
human genes (11). The second step is based on rules found by
investigating the mistakes of the first step.

In Figure 12 a typical output of the coding/non-coding network
ensemble can be seen for the test sequence ATRAH1GNA.
Several interesting features can be observed. The exon covering
positions 979–1027 is predicted nicely by the ensemble. Strong
splice site predictions are also found at the border of this region.
In this unproblematic case, the splice sites could be determined
either from the global prediction or from the local prediction
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alone. However, a conflicting situation is found further down-
stream. At this point the global network ensemble incorrectly
predicts a coding region from position 1250 to 1350, but no
corresponding splice sites are found by the local network
ensembles in this region. The combined system should not predict
splice sites here. At position 1134 a weak acceptor site is predicted
and it is indeed at the start of a region predicted as being coding.
This splice site should be predicted, while the donor site predicted
at position 1135 is very strong, but in conflict with the prediction
from the global network ensemble, and it should therefore not be
predicted by the combination. How do we combine the predic-
tions made by the global and local systems?

The combination is made by letting the signal from the
coding/non-coding network ensemble control the threshold of the
local splice site assigning network ensembles. In regions with
abruptly decreasing output activity of the coding/non-coding
networks, donor sites should be enhanced and acceptor sites
should be suppressed. On the other hand regions with abruptly
increasing output activity should enhance acceptor site assign-
ment and suppress donor site assignment. Regions with a more or
less uniform activity should demand a high confidence level to
suppress false positives.

To obtain this we calculate an approximation to the first
derivative of the output activity of the coding/non-coding
network ensemble, ∆. This is done by summing up n output values
to the left of the potential splice site and n values to the right of
the splice site. The left side sum is subtracted from the right sum
and the result is divided by the number of addends. For each
output this gives a value between –0.5 and 0.5. The output of the
local network ensemble, (Olocal), is interpreted by using the
following simple formula

Olocal� a�� t 5

∆ is the value calculated from the coding/non-coding network
ensemble, a and t are constants. This means that if Olocal is greater
than a∆ + t, the output should lead to the assignment of a splice
site, otherwise a non-splice site.

We found the optimal values of a and t for all sensitivity levels.
The maximal correlation coefficient for donor site prediction is
0.86 at a sensitivity level of 84%, while the best correlation
coefficient for acceptor site prediction is 0.76 at 74% sensitivity
(Figs 6 and 7).

Post-prediction rule based filtering 

The rule based filtering of splice sites is performed on the basis
of predictions from the combined networks as described above.
The combination can give predictions at different sensitivity
levels, and it is not clear a priori what sensitivity level to choose
for the refinement. Loosely speaking we want to extract the
maximal information from the prediction data. A quantitative
measure of gained information can actually be defined for cases
like this (24), and an analysis showed that this measure did peak
close to the 70% sensitivity level. This is also where the splice site
correlation coefficients C(D) and C(A) peak, similar to the result
obtained earlier on human genes (11).

We have designed a number of post-processing steps in order
to (i) discard wrong splice site predictions, (ii) choose between
two or more nearby equally strong predictions, and (iii) to
enhance weak (or missing) predictions which must be preferred
when viewing the prediction non-locally. Each step can be

associated with a biological mechanism previously suggested in
the splicing literature. The mechanisms may or may not be active
in the cell, but their computational efficiency may be used as
indications in this direction.

Discarding splice sites in uniformly predicted regions 

A fair amount of false sites are located in the middle of uniformly
predicted strong coding, or non-coding regions. Consequently,
splice sites may safely be discarded in these regions. In the cell
nucleus, one can speculate that these ‘perfect’ sites are hidden due
to the secondary structure of the pre-mRNA, and thus not
available for incorporation in the spliceosome.

We then need to know when we are in a uniformly predicted
region. The derivative of the coding prediction is not a good
measure of strong uniform prediction as it can average to zero in
regions of oscillating prediction as well. To estimate how flat a
coding prediction around a true splice site can be in general, we
extracted all splice sites from the training set with a flank of 1 nt
to each side, with 2 nt to each side and so on up to 45 nt. For each
flanking length and each splice site the maximal and minimal
coding prediction values were found. If a splice site is found in a
uniformly low coding region, the maximal coding prediction in
this region will be close to zero. The minimal value of all the
maximal values found for all splice sites with a given flanking
length represent an upper bound for the flatness of the surround-
ings of a splice site with a low coding prediction. Likewise, an
upper bound for the flatness of the surroundings of a splice site
with a high coding prediction can be found. A table of flanking
length and max/min values can immediately be used to filter out
false splice sites without removing true splice sites from the
training set (data not shown). To allow for values beyond those
in the training set, a 20% margin was added, respectively
subtracted, from the max/min values. These values show a
close-to linear progression, and therefore in practice we used a
linear approximation to the max/min curve. 610 out of 8818
potential donor sites from the test set with a non-zero score could
be removed, and 819 out of 5708 potential acceptor sites without
removing any true sites.

Scanning procedure for acceptor site pairs in T-tract
prolongation in 5′ exon ends 

Figure 7 shows the result of the acceptor splice site network and
of the combination. The detection of unambiguous acceptor sites
is generally harder than the prediction of donor sites. To
investigate this phenomenon further we have checked the false
positives that arise when we have a recognition of 25%, 36% and
55% true positives. In this low sensitivity region the correspon-
ding number of false splice sites in the entire test set is 3, 8 and
20, respectively. The majority of these false splice sites are found
between 2 and 20 nt downstream from the correct splice site into
the exon. These sites are characterized by having a strong
consensus and by an elevated adenine and thymine content
between the true splice site and the false. Moreover, the
coding/non-coding network often shifts from intron to exon
closer to the false splice site (data not shown). At 25% recognition
of true acceptor sites 2 out of 3, at 36% 7 out of 8, and at 55% 14
out of 20 false positives were of this kind. Table 3 shows the 14
false splice sites and the sequence from the true acceptor site to
the false one. The above mentioned false acceptor sites in the
T-tract prolongation are consistent with an experimental observa-
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Table 3. The false acceptor sites detected downstream from the true
acceptor splice sites at a true site recognition level of 55% on the test set

The table is subdivided into three parts. The top two sites are already present
with a recognition level of 25% true acceptor sites, the top seven are present
with a recognition level of 36% and all 14 are present with a recognition level
of 55%. For each false site the sequence is shown starting 6 nt upstream from
the true splice site and ending 2 nt downstream from the false splice site. The
third column from the left gives the position downstream of the G in the AG
dinucleotide in the false acceptor site. The high A+T content in the exon
sequence between the true and false acceptor sites can be clearly seen in some
of the entries.

tion made by Lou et al. (9,21). In dicot plant nuclei, when the true
acceptor site is eliminated, cryptic acceptor sites located down-
stream are preferentially selected over cryptic sites located
upstream (in the intron). 

The observation that a correctly predicted acceptor site is often
followed by a weaker falsely predicted acceptor site, suggests a
potential method for discarding false predictions. By identifying
all instances of double predictions, where the leftmost prediction
was strongest, and by removing all predictions to the right up to
a distance of 20 nt, a further 632 out of the remaining 4889
potential acceptor sites could be discarded at the cost of two true
sites from the sequence ATU08315. An investigation of the two
sites in ATU08315 showed that they were highly suspicious (see
Materials and Methods).

Selection between nearby donor site predictions 

Inspection of the donor predictions made it clear that the most
strongly predicted donor site in a pair is normally the true donor
site. We removed all weaker donor site predictions within 15 nt
from each strongly predicted donor site thereby reducing the
number of donor predictions by 5413 from 8208 to 2795. Two
true sites from ATSUCSYN and one from ATPGIC were lost by
this approach. The ATSUCSYN sequence was later discarded due
to a wrongly annotated exon (see Materials and Methods).

A model for scoring intron-exon pairs—coupling
between splice sites 

Experiments (10) indicate that close cooperation exists between
donor and acceptor sites, and that such cooperation influences
their mutual selection. A vertebrate acceptor site was spliced by
a dicot plant splicing system, when a plant donor site was present.
This was not the case when the plant donor site was substituted

by a vertebrate donor site. This indicates that the splicing
mechanisms utilize information beyond what is present in the
local context of the splice sites and that splicing will not function
properly without the availability of this information.

In non-alternatively spliced genes perfect predictions must
obey a number of constraints, for example that donor and acceptor
sites must come in alternating order to be correct. If a donor site
prediction is followed not by an acceptor site prediction, but by
yet another donor site prediction, something is definitely wrong.
Either we missed a site or one of the donor sites is wrong and must
be discarded. To detect a missing donor (acceptor) site between
two acceptor (donor) sites, all potential donor (acceptor) sites
must be evaluated and compared. This means that we would like
to quantify the likelihood of consistently spliced pairs of exons
and introns. We therefore assign scores to D-intron-A-exon-D
and A-exon-D-intron-A objects. The score for each potential
‘middle’ splice site is obtained by multiplying a number of factors
(including added combinations of them): the local prediction
strength and confidence, scores from the exon/intron length
distributions, the distance from the steepest transition in the
coding/non-coding output, and maximal and minimal coding
output in the ‘exon’ and ‘intron’ sequence surrounding the
potential site.

The score S(D) = S‘exon’ × S‘intron’ for the ‘middle’ donor splice
site is obtained by computing S‘exon’ and S‘intron’ separately,

S‘exon’ = SlocalSelengthSc–max 6

where Slocal is a score quantifying the strength of the donor and
acceptor sites, Selength is a score derived from the exon length
distribution and Sc–max is the maximal coding prediction found by
the coding/non-coding network in the exon. These three factors
are described in detail below. The intron score S‘intron’ is
computed similarly.

After all the S(D) scores have been obtained for the A-exon-
D-intron-A objects the best donor site is reported as a final
prediction provided S(D) exceeds a threshold of 0.3. If the best
S(D) value is below the threshold, one of the surrounding splice
sites must be removed. We remove a site if its partner is <50 nt
away, and at least 20% stronger in local network output. If we
cannot find the missing site nor remove one of the splice sites, we
cannot improve the prediction, but must leave things as they are.
In this way the system is very conservative and produces very few
errors. The acceptor sites are treated similarly.

Scoring donor and acceptor sites 

The strength of the donor and acceptor sites Slocal is calculated
from the confidence of the splice site predictions Scnf, the local
network output Olocal, and the ∆ value from the coding/non-coding
prediction

Slocal�
2Scnf�Olocal

3
1

1� e–20� 7

Here the confidence Scnf of a site is equal to the specificity of the
lowest sensitivity level that would accept the splice site. The
specificity Sp is defined as

Sp� P
P� Pf 8

where P is the number of correctly predicted splice sites (true
positives), and P + Pf is the total number of splice site predictions.
The sensitivity levels and the corresponding specificities have
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been determined on the test set. If the local network output for a
site is zero, its confidence is also zero. If the site is predicted by
the network combination at a sensitivity level close to 100% only,
its confidence was empirically found to be ∼0.5. Below a
sensitivity level of 50%, the confidence was close to 1.0.
Empirically we weight the confidence value and the local
network output Olocal in the relation 1:2. The site closest to the
largest change in coding value is usually preferred over its
competing neighbors. This observation is implemented by the
non-linear squashing function 1/(1 + e–20∆).

Exon/intron length distributions 

From the exon length distribution we observed that practically no
exons are <20 or >3000 nt in length. Likewise, the intron lengths
are found between 55 and 1500 nt. If the distance between a
predicted donor and its neighboring acceptor site falls outside this
range, one of the predictions is probably wrong, or a site in
between has been missed. We can also discriminate between
lengths inside these constraints, some being more likely than
others. Exons with a length <45 nt are rare, and there are fewer
long exons than short exons. Most introns have a length between
65 and 100 nt. From these observations exon Selength and intron
length scores Silength can be calculated, estimating how much we
believe in a proposed length. Using simply the raw log-normal
distribution of exon lengths, will not work because even though
internal exons at length 300 nt are relatively rare, a downscaling
to this probability level will be quite harmful in single cases. If
one was supposed to make predictions for a large set of test genes,
this general distribution could be used to regulate the level of
larger exons. Instead, we use a piecewise linear candidate exon
length score which is increasing from 0.0 to 0.98 for lengths
between 0 and 20 nt, increasing to 1.0 at 45 nt and then decreasing
to 0.98 at 3000 nt where it drops to zero. Likewise, the candidate
intron length score was 0.0 for lengths <55 nt, increased linearly
to 1.0 for lengths up to 65 nt, being 1.0 between 65 and 100 nt,
and decreasing linearly to 0.97 between 100 and 1500 nt where
it drops to zero.

Maximal and minimal coding prediction in exons and introns

A final factor found to be of relevance is the maximal coding
prediction for exons Sc–max and the minimal coding prediction for
introns. The predictions of the coding/non-coding network should at
least once come close to 1.0 in a potential exon, othewise it is
probably not a correct exon, at least not a coding exon. Likewise, we
must assume introns to have at least one very low coding prediction
to accept them. As the coding prediction for very short exons is
known to be weak, a special correction for exons <30 nt was applied,
where a value of 0.5 was added to the maximal exon prediction
Sc–max. For introns 1 – Sc–min is used as factor instead of Sc–max.

NetPlantGene performance 

The final performance of our method, NetPlantGene, on the test set
is shown in Figures 6 and 7. They show the false positives plotted
against the number of true positives for donor and acceptor sites,
respectively. The maximal correlation coefficient for donor sites
was reached with a recognition level of 88.4% true positives and
0.02% false positives. The correlation coefficient C(D) was 0.90
with adonor =  0.45 and tdonor = 1.02. The approach was able to
detect 57.3% or more than half of the true donor sites without any

false sites. When detecting 95% of the true donor sites, the
combined approach makes 0.097% false donor site assignments.

The maximal correlation coefficient for acceptor sites was
reached with a recognition level of 80.2% true positives and
0.034% false positives. The correlation coefficient C(A) is 0.83
with aacceptor =  –1.75 and tacceptor =  1.04. When detecting 95%
of the true acceptor sites, the combined approach makes 0.26%
false acceptor site assignments. 21.1% of the true acceptor sites
in the test set could be predicted without any false predictions.

Comparison with GeneMark, GeneFinder and Grail 

The prediction quality of the coding/non-coding network in the
present study was compared with the prediction quality of
GeneMark (25) (used with its A.thaliana matrices). As mentioned
above, the overall performance of the coding/non-coding net-
work ensemble on the test set is 0.76 in terms of the correlation
coefficient. The overall performance of GeneMark reaches 0.55
only. The reason may be that the inhomogeneous Markov models
of order 4 used by the program have problems in dealing with the
often weak and irregular reading frame in A.thaliana genes. To
investigate the prediction quality on protein-coding exons of
different length, a set of ‘partial’ correlation coefficients was
calculated for each method. The data used for the calculation of
a partial correlation coefficient in a given length interval is all test
set non-coding material and all protein-coding exons with lengths
in that given interval. (This definition produces correlation
coefficients which are generally lower than the overall perform-
ance correlation coefficients, so the values should not be regarded
as an additional measure of the absolute quality of the prediction
technique, but only as a fair means of comparison.) In every
interval our coding/non-coding network is superior to GeneMark
in prediction quality. While the former reaches a sustained
performance on all exon lengths, the latter actually approaches a
negative correlation coefficient for short exons, rendering
GeneMark useless for exons <50 nt.

The prediction quality of the splice site assignment by our
combined method, NetPlantGene, was also compared with that of
an A.thaliana version of GeneFinder (26). We recalculated the
weight matrices used by GeneFinder on our training set to give
a fair comparison between the two methods. When assigning the
same number of true splice sites GeneFinder assigns nearly an
order of magnitude more false splice sites than NetPlantGene. At
a recognition level of 90% true splice sites NetPlantGene assigns
24 false donor sites and 90 false acceptor sites. GeneFinder
assigns 506 false donor sites and 812 false acceptor sites at the
same level. The detailed comparison for all levels can be seen in
Figures 6 and 7. The performance of the GeneFinder donor
prediction is very similar to the performance of the local neural
networks. The local neural network performance is better for high
sensitivity levels and worse for low sensitivity levels. This is
because we have pushed the networks to perform well at the high
sensitivity levels at the cost of a slightly inferior performance at
the low sensitivity levels by using the stopping criterion for the
training. The GeneFinder performance on acceptor site prediction
is significantly lower even when compared with the local neural
networks. We think this is a result of the sequence window length
used by GeneFinder. GeneFinder uses an asymmetric window of
31 nt (5 exon and 26 intron nt). This window size is significantly
smaller than the window size of 61 nt found to be optimal for
neural network acceptor site prediction. We believe that the
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performance of GeneFinder could be improved to the level of the
local neural networks by changing the window size to 61 nt and
recalculating the weight matrix.

Xgrail predicts exons, we have compared the quality of the
exon/intron and intron/exon border prediction with our method
(Figs 6 and 7). Xgrail predicts acceptor sites at a sensitivity level
of 54% and produces 0.14% false positives. NetPlantGene comes
up with 0.01% false positives at this sensitivity level, more than
an order of magnitude improvement. The donor prediction of
Xgrail has a sensitivity of 47% and produces 0.16% false
positives. NetPlantGene did not come up with any false positive
predictions at this sensitivity level. We conclude from this that the
splice site prediction of NetPlantGene is significantly more
accurate than both Xgrail and GeneFinder. As information on the
training set used for constructing Xgrail is not available
(Uberbacher, personal communication) the performance reported
here for Xgrail must be viewed as an upper limit. We cannot
exclude that several of the test set sequences used in this study
were used for training the Xgrail method (Grail 2, version 1.3b).

NetPlantGene and alternative splicing 

Although splicing efficiency appears to be low in plants,
alternative splicing is rarely observed, compared with metazoa
(2). NetPlantGene predictions for known cases of alternatively
spliced coding sequences from dicots were investigated. In
A.thaliana itself, the RuBisCO activase gene (M86720) contains
six introns, the last one having two alternative acceptor sites (27).
All sites are predicted by the method, apart from the first
alternative acceptor site of intron 6. The first alternative, 11 nt
upstream from the second, did indeed have a high network score
but was later discarded by the rules.

The HprA gene from Cucumis sativus (X58542) contains 12
introns, the last one showing an alternative choice between two
donor sites separated by 35 nt (28). NetPlantGene predicts each
of the 24 sites with high score (>0.85) including the second
alternative position from intron 12, which is the one utilized in
most species. The first site is also predicted, but with a lower score
(0.74) together with one false positive donor in the CDS.

The GdcsH gene from Flaveria trinervia is spliced by three
introns, the first one having two alternative acceptor sites,
separated by 6 nt (29). All introns are predicted, but only the
second alternative acceptor site of the first intron is. Lastly, three
genes coding for glycine-rich RNA-binding proteins from
tobacco (D16204–D16206) contain one intron each in the CDS,
with alternative donor sites for all of them (30). The upstream
donor was predicted for one gene (D16205), while none of the
other donors were, whatever the gene.

Alternative splicing was also reported in the gene encoding the
large subunit of RNA polymerase II from A.thaliana and soybean.
The intron is situated outside the CDS, in the 3′ trailer sequence.
Both sites for this alternate intron were predicted in the soybean
gene, while none of them were in A.thaliana. This tells us that at
least some of the predictions made in the 3′ non-coding sequence
are relevant, albeit NetPlantGene was trained for predictions inside
the coding sequence. Interestingly, the two entries for the
A.thaliana gene diverged from one another by several frameshifts
and gaps in the sequence, and moreover by positioning of the
introns, one of them is even missing in one entry, and was excluded
from the data set for these reasons (12). In this specific case we find
that NPG helps in searching for the correct features of this gene,

Table 4. NetPlantGene predictions in other species, monocots, dicots,
gymnosperms and algae, for two gene families: adh coding for alcohol
dehydrogenase (ADH), and nia coding for nitrate reductase (NR)

D means number of donor sites, DP the number of predicted sites, DF the
number of false positives, and LCDS indicates the length of the CDS in the
GenBank entry (p, partial).

locating the missing exon, and identifying the likely borders of two
others with divergent locations.

NetPlantGene performance in other plants 

A preliminary test of the performance of NPG on various plant
genes was done using two sets of genes, coding for the same
proteins, respectively alcohol dehydrogenases (ADH) and nitrate
reductases (NR). The results of this comparison (Table 4) shows
that NPG keeps predicting nearly all of the splice sites in dicot
genes, but works differently on monocot genes, predicting a
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Figure 13. NetPlantGene splice site prediction for the cDNA from the A.victoria green fluorescent protein. A donor site is predicted at position 405 with a confidence
of 0.94. The mutated version of the CDS does not result in any splice site predictions.

fraction of them only, always more than a half. The results on pine
ADH genes is surprisingly good, owing to the phylogenetic
distance with monocots. A dramatic fall in performance is
observed with NR genes from green algae. Besides the varying
capacity to recognize the true sites, according to phylogeny
outside the dicots, NPG shows an increased level of false
predictions compared with A.thaliana. The level of false predic-
tions varies from species to species, even among dicots. One
explanation for these variations is clearly the very different sizes
of the plant genomes in the comparison. These observations
would benefit from further investigations on a wider scale. As
such, they fit with the observation of differences in splicing
capacity between monocots and dicots, and point to the use of
NPG as a way to anticipate how a gene from one species will be
spliced when transferred into another plant species.

Green fluorescent protein 

The coding sequence for the green fluorescent protein from the
jelly fish Aequorea victoria is used as a reporter gene in a number
of organisms and experimental assays. If the gene is expressed,
the organisms glow green. Expression of the gene in A.thaliana
has proven unsuccessful because the gene is spliced at a cryptic
splice site. A mutant has been made that is not spliced in
A.thaliana (31). To test the performance of NetPlantGene, the
cDNA encoding the green fluorescent protein and its mutated
version were tested for potential splice sites. NetPlantGene
correctly identifies the cryptic donor splice site in the wild type
(Fig. 13). No site is predicted in the modified sequence.

CONCLUSION

Neural networks have been trained to recognize splice sites in
A.thaliana DNA. This task is not trivial for several reasons. First,
the number of possible AG and GT dinucleotides are ∼100 times
larger than the number of true splice sites. Secondly, the fact that
a portion of the AG and GT sites may have been active as splice
sites once and therefore are very similar to real splice sites makes
this a difficult task. Thirdly, it is not known for sure how much of
the information needed for splicing is available directly in the
DNA sequence and how much is contributed from other sources;
e.g. the structure of the pre-mRNA and information contained in
the spliceosome and other parts of the cell machinery. The last
reason of course puts a potential theoretical upper limit on the
possible quality of a prediction based on the nucleotides in the
genomic DNA sequence alone.

To ensure a conservative estimate of the performance of the
algorithm presented in this paper we have used a large part of the
available data to test the performance (nearly 25% of the available
splice sites have been used). Furthermore, we have made sure that
the sequence similarity between the entries used for training the
neural networks and the test sequences is low.

When comparing the results of the final algorithm with the
results obtained using the local network only, it is clear that a lot
is gained by combining the local and global networks. At 80%
true donor site recognition the combination assigns 0.011% false
positives only, while the local network alone assigns 0.20% false
positives. At 95% recognition the numbers are 0.097% and
0.60%. For the acceptor site recognition the corresponding
numbers are: at 80% recognition 0.034% and 0.20%; and at 95%
recognition 0.26% and 0.56%. Furthermore, the combination was
able to predict more than half of the true donor sites without false
positives. Comparison with three other approaches, GeneMark,
GeneFinder and Grail, showed that the method presented here has
an order of magnitude fewer false sites at nearly all sensitivity
levels.

One of the main criticisms of neural networks is their ‘black
box’ status, meaning that one will gain no insight into the
characteristics of the problem when using neural networks. In this
study we have analyzed the inner workings of the trained local
and global networks. This has led to the discovery of the main
features of the algorithms used by the local and global networks.
It is clear that the base distribution plays an important role when
identifying transition region between coding and non-coding
nucleotides in the global context. Especially, the elevated A and
T content of the introns in A.thaliana is an important factor in
identifying the transitions, but surprisingly a reading frame
recognition scheme develops by itself through the training
process.

The analysis of the coding/non-coding network together with
the fact that the network combination has severe difficulties in
identifying true acceptor sites without making false predictions as
well, led us to the discovery that A.thaliana introns often have a
prolongation of the T-tract ending in a cryptic acceptor splice site.
This might explain why the splicing machinery prefers cryptic
acceptor sites located downstream in the exon and not cryptic
sites located upstream in the intron, when the true acceptor site is
eliminated (9,21).

As global sequence information is essential for computational
selection of splice sites at low levels of false positives, one may
ask how global information influences spliceosome assembly in
the cell nucleous? Inference of a too detailed model from this
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work would clearly be far too speculative, but it is interesting that
the network, by training, develops detectors which correspond to
experimentally observed features: the triplet reading frame and
the AT-high to AT-low transition regions. Recently it has been
shown that the reading frame in internal exons is scanned for
potential stop codons (see ref. 32 for a review), and also that
AT-richness plays a prominent functional role in the splicing of
plant introns (4).
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