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ABSTRACT
A coalescence-based maximum-likelihood method is presented that aims to (i) detect diversity-reducing

events in the recent history of a population and (ii) distinguish between demographic (e.g., bottlenecks)
and selective causes (selective sweep) of a recent reduction of genetic variability. The former goal is
achieved by taking account of the distortion in the shape of gene genealogies generated by diversity-
reducing events: gene trees tend to be more star-like than under the standard coalescent. The latter issue
is addressed by comparing patterns between loci: demographic events apply to the whole genome whereas
selective events affect distinct regions of the genome to a varying extent. The maximum-likelihood approach
allows one to estimate the time and strength of diversity-reducing events and to choose among competing
hypotheses. An application to sequence data from an African population of Drosophila melanogaster shows
that the bottleneck hypothesis is unlikely and that one or several selective sweeps probably occurred in
the recent history of this population.

LOW genetic variability in natural populations is not different patterns in distinct species or distinct loci just
by chance. Additionally, some variance between observ-a rare feature: numerous examples have been re-

ported in animals (e.g., O’Brien and Evermann 1988), able patterns of polymorphism in distinct species is in-
troduced by random sampling of individuals. Assessingplants (Liu et al. 1998), and protists (Rich et al. 1998),

among others. Low present-day levels of variation may the statistical significance of an “apparent” discrepancy
between data sets is therefore essential.reflect a persistent state maintained by, say, nonpanmic-

tic mating systems (Charlesworth and Charles- Given that genetic variability has been reduced re-
cently, the question of distinguishing between demo-worth 1995) or recurrent background selection

(Charlesworth et al. 1995) at linked loci. In many graphic and selective causes is a major one: the two kinds
of events have different biological meanings. Detectingcases, however, a recent event in the history of the popu-

lation is invoked to explain reduced variability. bottlenecks is relevant to conservation biology since the
global reduction of genetic variability they induce maySuch diversity-reducing events essentially fall into two

categories: demographic factors and selective factors. endanger populations. Detecting selective sweeps, on
the other hand, is an important goal for the study ofDemographic factors include bottlenecks and popula-

tion founder events; both involve a temporary reduction evolutionary mechanisms. In particular, a long-standing
controversy persists about the relative importance ofof population size resulting in an increased rate of ge-
positive selection vs. neutral or nearly neutral evolutionnetic drift. Rapid fixation of a new, favorable allele
at the genomic level (e.g., Gillespie 1991).through directional selection (a “selective sweep”) also

The theory of coalescence (Kingman 1982; Hudsongenerates a sudden drop of genetic variability at linked
1991) provides a promising framework to address theseloci by hitchhiking (Maynard-Smith and Haigh 1974).
questions. Variability-reducing events can be detectedIn this article, we address two questions: first, how recent
because they modify the shape of the genealogy of al-diversity-reducing events can be detected, and second,
leles. Basically, they tend to generate star-like (parts of)how demographic and selective causes can be distin-
genealogies, as a consequence of a sudden increase ofguished.
coalescence rate (Figure 1). Demographic events applyThe issue of detecting diversity-reducing events is not
to the whole genome whereas selective events affecttrivial. Usually, a bottleneck (or a selective sweep) is
different regions of the genome to various extentsinvoked when the variability at some locus of some spe-
thanks to recombination (e.g., Hudson et al. 1987). Thiscies is much lower than that usually observed in related
gives the possibility of distinguishing the two hypothesesspecies (or at distinct loci). However, mutation and drift
by sampling several loci: a more or less common patternprocesses have a high variance and may generate highly
is expected in the case of a bottleneck, while selective
sweeps generate heterogeneity across loci.

Griffiths and Tavare (1994a) devised an efficient
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where m is the total number of events before reaching the
common ancestor Dm of genes in the sample, and where Pr(Dm)
is one. Transition probabilities Pr(Di|Di11) in (3) are given by
adjusting n in (2) to the size of Di. Pr(D0) is the likelihood
of parameter u. It is expressed as a sum over all possible setsFigure 1.—Effect of bottlenecks on genealogies. (A) Stan- of ancestral states (D1, D2, . . . , Dm), that is, the topology ofdard genealogy under the neutral, constant-population size the genealogy and the order of events.coalescent. (B1) A short, moderate bottleneck occurs at time For large data sets, one cannot compute (3) exactly: thereT (gray zone). Looking forward, all the individuals in the are too many sets of ancestral states. Griffiths and Tavaré’ssample descend from three of the lineages that entered the idea was to randomly sample a reasonable number of sets ofbottleneck: today’s sample includes three “gene families.” ancestral states and to estimate the likelihood from this sam-Looking backward, three lineages survived the burst of coales- ple. Let A be a set of ancestral states (D1, D2, . . . , Dm), andcences generated by the bottleneck. (B2) Strong bottleneck. let H be the hypothesis of the coalescent model (includingOnly one lineage survived it. parameter value u). Equation 3 can be rewritten

Pr(D0|H) 5 o
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variable population size (Griffiths and Tavare
1994b). In this article, we implement a model of sudden 5 o

A

Pr(D0 & A|H) · Pr(A|D0, X)
Pr(A|D0, X)reduction of genetic variability into Griffiths and

Tavaré’s scheme and devise likelihood-ratio tests to de-
5 EX 1Pr(D0 & A|H)

Pr(A|D0, X) 2, (4)tect and discriminate between bottlenecks and selective
sweeps. The new method is applied to polymorphism

where EX means expectation with respect to X. Here, X issequence data from an African population of Drosophila any sampling distribution of ancestral states of the data D0.melanogaster. Equation 4 provides a method for estimating the likelihood
in reasonable time: (i) sample one set A of ancestral states
according to distribution X; (ii) calculate the expression in

METHODS the expectation in (4) using the recursion (3) with that partic-
ular A (numerator) and the probability of A under X (denomi-

In this section, we first recall the main ideas of Griffiths nator); and (iii) iterate (i) and (ii) several times and take the
and Tavare’s (1994a,b, 1995) approach, then show how it average.
can be used to model a bottleneck at one locus, and finally Obviously, an efficient sampling process X is one that sam-
address the issue of hypothesis testing with multiple loci. ples probable ancestral states (according to H) with high prob-

Griffiths and Tavaré’s method: Consider a data set D0 con- ability, i.e., one as close as possible to the unknown “H given
sisting of DNA sequences (genes) sampled at one locus in n D0” (the distribution of ancestral states under the coalescent
individuals of a panmictic population of effective size 2N. conditional on D0). For instance, a uniform sampling of sets
Assume that neutral mutations occur at rate m. Assume that of ancestral states is inefficient since most sets of ancestors
no recombination occurs within the locus. A fundamental have a very low probability, but a few of them have a high
recursion is probability. Sampling uniformly, one would have to perform

many replicates of X to get an accurate estimate of the likeli-Pr(D0) 5 o
D1

Pr(D0|D1) · Pr(D1). (1)
hood. Griffiths and Tavare’s importance sampling scheme X
is a Markov chain: (i) start from D0; (ii) for all possible D1,Here, D1 is any state of the data one “step” before D0, i.e., any compute Pr(D0|D1, H) according to (2); (iii) randomly sample

sample at a previous time that may be transformed into D0 by D1 with probability proportional to Pr(D0|D1, H),
either a mutation or a separation of lineages. The transition
probabilities are (Griffiths and Tavare 1994a,b)

Pr(D1|D0, X) 5
Pr(D0|D1, H)

o
D1

Pr(D0|D1, H)
; (5)

Pr(D0|D1) 5 kc ·
n 2 1

u 1 n 2 1
and (iv) iterate until Dm.

if the backward event is a coalescence This algorithm is presumably optimal if “Bayesian” probabil-
ities Pr(Di11|Di, X) equal the unknown Pr(Di11|Di, H): in this
case, X becomes identical to H given D0. This requirement isPr(D0|D1) 5 km ·

u

u 1 n 2 1 met if, for any given state Di, all the possible ancestral states
Di11 are equally probable under H.if the backward event is a mutation, (2)

The above equations hold whatever the assumed mutation
model. In this article, we used the infinite-site model: it iswhere u is the population mutation rate 4Nm. Coefficients kc

assumed that no more than one mutation arises at any oneand km depend on how many distinct forward events can lead
site in the genealogy. A consequence is that no more thanfrom D1 to D0 and on the mutation model (see below). The
two distinct states should be observed at any site. Under thisnumber of genes in D1 is n if the event is a mutation and n 2

1 if it is a coalescence. Recursion (1) can be expanded, model, m equals s 1 n 2 1 (where s is the number of segregat-
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ing sites in the data set), and coefficients in (2) are kc 5 nc/ to the problem of distinguishing selective sweeps from bottle-
necks. We approximate the expected effect of a selective sweep(n 2 1) and km 5 nm/n, where nc is the number of genes in

D1 leading to D0 by splitting (in the case of a coalescent event), at one neutral locus linked to the locus under selection by
that of a population bottleneck: T is the time of fixation ofand nm is the number of genes in D1 leading to D0 by mutating

(in the case of a mutation event). the favorable mutation, and S depends on the ratio between
the selection coefficient associated with this mutation and theA bottleneck model: The above scheme can be used with

models more complex than the standard coalescent (e.g., recombination rate between the selected locus and the neutral
locus. The discrepancy between the two hypotheses appearsNielsen 1998). Griffiths and Tavare (1994b) showed how

it can be generalized to account for variable population size. when several loci are considered: under the bottleneck model,
all loci share a common T and S, while distinct loci haveIn this case, the relative probabilities of coalescence and muta-

tion given in (2) depend on the time of the current state. distinct T ’s and S ’s under the selective sweep hypothesis. In
both cases, a specific mutation rate u is assigned to each locus.This means that one has to keep track of the times of successive

events when sampling ancestral states backward through the Three nested models are therefore to be compared. Suppose
that p loci are examined:genealogy.

The bottleneck model we used has three parameters: popu-
M1 (no founder event), p parameters: u1, u2, . . . , uplation mutation rate u, time T of occurrence of the bottleneck,
M2 (bottleneck), p 1 2 parameters: u1, u2, . . . , up, S, Tand “strength” S of the bottleneck; all are scaled relative to a
M3 (selective sweep), 3p parameters: u1, S1, T1, u2, S2,timescale set by 2N, which is the current number of genes.

T2, . . . , up, Sp, Tp .Looking backward in time, it is assumed that the population
undergoes a drop of effective size at T (measured in units of The likelihood for a data set of several independent loci is
2N generations) during a short period of time and then re- the product of the likelihoods for individual loci. Likelihood-
covers its initial size. If the duration of the bottleneck is short ratio tests can be performed to detect a diversity-reducing
enough that one can neglect the occurrence of mutations event (M2 vs. M1 and M3 vs. M1) and to distinguish sweeps
during that period, the effect of the bottleneck depends only from bottlenecks (M3 vs. M2): twice the logarithm of the ratio
on the amount of coalescence it generates. Parameter S mea- of likelihoods of two competing models asymptotically follows
sures this coalescence pressure: it is the time that would be a x2 distribution with k d.f., where k is the difference between
required for an equal expected amount of coalescence if the the numbers of parameters of the two models.
population size had not changed. Under these assumptions,
the bottleneck model can be implemented under Griffiths
and Tavare’s scheme by keeping N constant, but changing

SIMULATIONSthe time scale during the bottleneck. The new Markov chain
X9 has three distinct phases: (i) starting from t 5 0, recurse The reliability and efficiency of our method for de-
until t reaches T allowing coalescences and mutations, as in tecting bottlenecks were assessed using simulated dataX; (ii) while T , t , T 1 S, recurse allowing coalescences

sets, although an exhaustive power analysis was impossi-only; and (iii) when t . T 1 S, switch on mutations again. In
ble because of the extensive running time. We first simu-case of a severe bottleneck (high S), phase (iii) may not be

reached for most realizations of X9: only one lineage survives lated 100 one-locus data sets under the null hypothesis
the bottleneck (backward), as in genealogy B2 of Figure 1. of constant population size (eight genes, u 5 10). The
This model reduces to the constant-size model by either setting null hypothesis was rejected in 6 cases out of 100, sug-S 5 0 or T 5 ∞.

gesting that the test is reliable. Bottlenecked data setsMaximizing the likelihood: The problem here is to find the
were simulated under two conditions: old, strong vs.values of u, T, and S that maximize the likelihood for a given

data set. Griffiths and Tavare (1994a) provide an efficient recent, weak bottlenecks (see Table 1). The number of
method for generating likelihood surfaces with respect to u. rejections of the null hypothesis (power) and the mean
The basic idea is to calculate the likelihoods of many u’s and standard errors of estimates of parameters T and
using a single sample of sets of ancestral states. This sample

S are shown (Table 1). The power of the test was z25%,is obtained by performing X with transition probabilities com-
and the parameter estimators were quite imprecise. Theputed from one particular value of u called u0. Theoretically,
power, however, was significantly higher than that ofthis procedure may be used for all the parameters of any

model. In practice, however, it does not work properly for T Tajima’s (1989) D-statistics, sometimes used to detect
and S in the bottleneck model. The reason is that sets of bottlenecks. When four-locus data sets (simulated under
ancestral states that have a high probability for some value the same conditions) were analyzed, the power of theT0 (S0) of the bottleneck time (strength) may have very low

test and the accuracies of parameter estimates signifi-probability for other T ’s (S ’s). Using a common sample for
cantly increased (Table 2), suggesting that standardall T ’s (S ’s) would therefore lead to variable accuracy in the

estimation of the likelihood across parameter values. There- multilocus DNA sequence data sets are large enough to
fore, a single sample of sets of ancestral states was used to allow a reliable reconstruction of population history.
generate a likelihood curve with respect to u given T and S, The above analyses address the M2/M1 test, i.e., de-but different samples were used for different (T, S) pairs.

tecting bottlenecks. The power to detect selective sweepsWe used a numerical technique to maximize the likelihood
is more difficult to assess since it depends much on howwith respect to T and S. The problem with standard algorithms

in this particular case is that the function to be maximized is many loci depart from the null hypothesis. For example,
“unstable”: because of the stochastic process, several evalua- when two-locus data sets including one “neutral” locus
tions of the likelihood for a given (T, S) would return distinct plus one bottlenecked locus were analyzed, the rejection
numbers. The heuristic we used is a modification of the down-

rate (M3/M1) was 24 out of 100. This power would ofhill simplex (Press et al. 1992). Details can be found in the
course be increased by adding loci with their own Thelp file of the program, both available on request.

The multilocus case and likelihood-ratio tests: We now turn and S, but decreased by adding “neutral” loci. The M3/
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TABLE 1

Simulations: one-locus data sets

Actual parameters Estimations Rejection ratec

n u T a S a u* T* S* M2/M1
d De

Old, strong 8 10 0.5 1 13.80b 0.56 1.66 26/100 5/100
Bottleneck (6.64) (0.40) (0.99)
Recent, weak 8 10 0.1 0.5 11.35 0.27 0.72 23/100 14/100
Bottleneck (5.75) (0.16) (0.59)

a In units of 2N generations.
b Mean over 100 simulations, standard errors within parentheses.
c Number of data sets for which the null was rejected (5% level) out of 100.
d Likelihood-ratio test (this article).
e Tajima’s D-test.

M1 test is conservative: the maximum rejection rate un- termined. Orienting sites allows one to sample rooted
rather than unrooted genealogies during the likelihoodder the null hypothesis is 5%.
estimation (Griffiths and Tavare 1995), greatly de-
creasing the running time. To orient sites, we first recon-

DATA ANALYSIS
structed a neighbor-joining phylogenetic tree (Saitou
and Nei 1987; observed divergence) and located theThe above method has been applied to DNA se-

quence data obtained from an African population of D. root thanks to an outgroup sequence (D. simulans). Sites
were oriented according to this tree: the monophyleticmelanogaster (Lamto, Ivory Coast). Three loci were used:

Fat Body Protein 2 (Fbp2, 2.15 kb, 10 individuals; Benassi character state was said to be derived. When both char-
acter states defined a monophyletic group (i.e., whenet al. 1999), Suppressor of Hairless [Su(H), 1 kb, 20 individ-

uals; Depaulis et al. 1999], and Vacuolar H1 ATPase the mutation occurred in the branch connected to the
root), the state shared by the outgroup was supposed68-1 (Vha, 1 kb, 20 individuals; Depaulis 1998). These

genes are located near a region polymorphic for a to be ancestral.
The maximum likelihood of the data under threechromosomal inversion on chromosome 2. This proxim-

ity increases the chances of detecting a selective sweep, competing models is given in Table 3, together with the
parameter estimates. Likelihood-ratio tests favored theif any (see Depaulis et al. 1999). Loci were sequenced

in distinct but overlapping samples of a single popula- hypothesis of a selective sweep (M3) vs. either the no-
founder-event model (M1) or the bottleneck modeltion of D. melanogaster.

For each data set, sequences were truncated to fit the (M2). A demographic event seems unlikely to explain
the observed pattern, as indicated by the M2 vs. M1assumptions of infinite number of sites and no recombi-

nation: the largest segment of each locus showing no comparison. The optimal times of occurrence and
strengths of variability-reducing events were quite differ-homoplasy was sought. Sites in such segments are phylo-

genetically compatible: one can find a genealogy for ent among loci (model M3): a very recent, weak sweep
was detected for locus Su(H), a strong, recent one forwhich the mutants at any site are a monophyletic group.

Sites showing more than two distinct states were re- locus Vha, while no significant sweep was found at locus
Fbp2. As a consequence, the optimal T value undermoved. This data-paring strategy reduced the number

of variable sites from 64 to 19 (Fbp2), 44 to 40 [Su(H)], model M2 is high: no recent bottleneck scenario was
found that fits the data better than the simple no-and 11 to 11 (Vha), respectively. Sites were oriented:

the ancestral/derived status of character states was de- founder-event model. By excluding demographic

TABLE 2

Simulations: four-locus data sets

Actual parameters Estimations
Rejection rate:

n u T S u* T* S* M2/M1

Old, strong 8 10 0.5 1 13.12 0.48 1.49 21/25
Bottleneck (4.83) (0.18) (0.54)
Recent, weak 8 10 0.1 0.5 10.23 0.17 0.56 20/25
Bottleneck (4.17) (0.10) (0.24)
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TABLE 3

Analysis of three nuclear loci in an African population of D. melanogaster

Fbp2 Su(H) Vha log(L)f 2 · log(likelihood ratio)g

M1
a u: 8.2 u: 10.2 u: 6.1 278.5

(224.7)d (238.2) (215.6)
M2

b u: 9.8 u: 12.6 u: 6.1
T e: 1.9 T: 1.9 T: 1.9 278.2 M2 vs. M1: 0.6 (2)
S e: 1.0 S: 1.0 S: 1.0

M3
c u: 8.6 u: 22.0 u: 8.6

T: 1.4 T: 0.0 T: 0.2 269.4 M3 vs. M1: 18.2* (6)
S: 1.1 S: 0.1 S: 1.2 M3 vs. M2: 17.6* (4)

(223.6) (234.8) (211.0)

* Significant (5% level).
a No diversity-reducing event model.
b Bottleneck model.
c Selective-sweep model.
d Logarithm of the maximum likelihood for individual loci.
e Measured in units of 2N generations.
f Logarithm of the maximum likelihood for all three loci.
g To be compared to a x2 distribution (degrees of freedom within parentheses).

hypotheses, this result reinforces the hypothesis that associated with the favorable mutation has a particular
status: it is older than the other lineages that emergedone or several selective sweeps may have occurred re-

cently in this region of chromosome 2 for this African thanks to recombination at various times during the
sweep. Barton (1998) gives a detailed description ofpopulation of D. melanogaster (Depaulis et al. 1999).
the properties of genealogies under a selective sweep.
He shows that the discrepancy mentioned above results

DISCUSSION in distinct expected distributions of the size of “gene
families” (see Figure 1 legend) under the two hypothe-The new method presented in this article aims to
ses. These can readily be distinguished statistically fromreconstruct the recent history of a population. It allows
a sample of 100 genes, with pairwise identity 0.1, pro-detection of diversity-reducing events at one or several
vided that the genealogy is known with certainty (com-loci and bottlenecks to be distinguished from selective
pare Figures 8 and 9 of Barton 1998). However, it issweeps if more than one locus is available. The informa-
not known how far errors in estimating the genealogytion dealt with to achieve the former goal is the distor-
from (say) infinite-sites mutation reduce the power oftion in gene genealogies generated by diversity-reducing
this method. We decided here to neglect this differenceevents. The latter issue—distinguishing demographic
and to approximate the effect of a sweep at one locusfrom selective causes—is addressed by measuring the
by that of a bottleneck. We suspect that for many dataheterogeneity in time and strength of diversity-reducing
sets the major part of the information lies in the hetero-events across loci. The maximum-likelihood approach
geneity between loci, rather than in the pattern at indi-allows one to test hypotheses and to estimate the times
vidual loci. This intuition would be worth verifying for-and strengths of diversity-reducing events. It is more
mally.efficient than methods based on pairwise differences

The method we present does not make use of data(e.g., Rogers and Harpending 1992) or test statistics
from an outgroup, in contrast with, say, the Hudson,(Tajima 1989), which do not make use of all the infor-
Kreitman and Aguadé (HKA) test (Hudson et al. 1987).mation contained in the data. Note that this method
If it has some power in its current form—and our dataapplies only to panmictic populations. Population struc-
analysis suggests it actually has some—then this propertyture is likely to introduce bias, especially if samples for
should be considered a strength. Using outgroup se-distinct loci belong to distinct demes.
quence data to estimate some neutral mutation rateTheoretically, it should be possible to distinguish bot-
involves making disputable assumptions. Any selectivetlenecks from selective sweeps using a single locus. This
force having applied to some of the surveyed loci sinceis because what is happening during the course of the
the ingroup and the outgroup diverged may bias theevent is different in both situations. Basically, a bottle-
estimation of mutation rates. Departure from the molec-neck applies identically to all the lineages that enter it.
ular clock has been observed in many genes and manyIn the case of a partial selective sweep (where recombi-
taxonomic groups (e.g., Li 1993). It may lead to signifi-nation occurred, so that more than one lineage escapes

the sweep, e.g., tree B1, Figure 1), the lineage originally cant HKA tests even if all the loci under consideration
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are currently neutrally evolving. If the user believes he
has a reliable outgroup, information about it can be
incorporated into our method. First, characters can be
oriented by deciding that the state observed in the out-
group is the ancestral one. Second, the relative mutation
rate of loci can be estimated from the ingroup/out-
group divergence. This would add valuable information
and reduce the number of parameters of each model
by p 2 1, where p is the number of loci. Incidentally,
this would significantly reduce the running time. Figure 2.—Infinite-site (ISM) and infinite-allele (IAM) mu-

tation models in the case of a recent bottleneck. (s) ActualTwo assumptions of the present method deserve dis-
mutations that occurred during the genealogy, i.e., mutationscussion: the infinite-site mutation model and the no
dealt with by the ISM. (d) “Mutations” dealt with by the IAM.recombination assumption. Both are clearly violated by
A method based on the IAM would “see” seven alleles, with

some data sets. One has to worry about them before frequencies compatible with a constant population size and
using the method—Griffiths and Tavare’s algorithm can a low mutation rate. In addition to allele frequencies, a method

based on the ISM “sees” a high number of segregating sites,be applied only if the data are consistent with these
incompatible with a low mutation rate, and can detect theassumptions, i.e., if distinct sites support phylogeneti-
bottleneck.cally compatible bipartitions of the individuals.

The assumption of an infinite number of sites can be
avoided. Kuhner et al. (1995) compute the likelihood very recent bottlenecks cannot be detected from allele
using a finite-site mutation model in the constant-popu- frequencies, consistent with the above argument and
lation size case and use the Metropolis-Hastings algo- with Maruyama and Fuerst (1985).
rithm (Hastings 1970) to find the value of u that maxi- The assumption of no recombination within loci dur-
mizes it. This, however, involves exploring a larger space ing the genealogy is a major one. Meeting it involves
of sets of ancestral states, e.g., including genealogies reducing sequences to blocks whose sites share a unique
where identical genes are not monophyletic. The Me- genealogy and therefore losing information. Further-
tropolis-Hastings Monte Carlo Markov chain algorithm more, one can hardly be sure that the length of se-
is an interesting alternative to Griffiths and Tavare’s quence used is actually nonrecombined, even when no
method for computing likelihoods under the coalescent incompatibility between sites is found. Whether unde-
(e.g., see Wilson and Balding 1998). In the case of the tected recombination events do or do not bias the
bottleneck model, it may provide an efficient way to method is an open question that goes beyond the scope
maximize the likelihood with respect to T and S. of this article. We doubt, however, that this issue has

When its assumptions are more or less met, the infi- major practical consequences. This is because the bias,
nite-site model (and DNA sequence data) is presumably if any, must be higher when data strongly depart from
preferable to the infinite-allele model (and, say, micro- the model assumptions, i.e., when distinct fragments
satellite data) for the purpose of detecting diversity- of the surveyed sequence have highly different actual
reducing events. The latter model is one where each genealogies. But important departures are likely to be
mutation creates a new allele, but where successive mu- detected by the four-gamete rule (see data analysis).
tations in the same lineage “hide” each other. The infi- Undetected recombination events are more likely to
nite-site model is better because, in addition to allele occur when distinct fragments have closely related gene-
frequencies, the number of differences between alleles alogies, i.e., when the bias is low.
carries much information. Suppose that a moderate bot- For data sets showing a high number of recombina-
tleneck occurred very recently in the history of a popula- tion events, the present method is inapplicable. Actu-
tion, so that no mutations have arisen since T. The ally, such data sets hardly include any genealogical infor-
expected pattern of allele frequencies is identical to mation. Rather, the data can be recoded by pooling
that expected under constant population size and low u, together sites of equal “size” (i.e., the number of individ-
since the shape of the observable genealogy is a standard uals carrying the mutation), irrespective of which indi-
one (Figure 2). Sequence data, however, would reveal viduals carry the mutation. Coalescence theory allows
a large number of segregating sites (i.e., highly divergent predictions about the frequency distribution of these
alleles), incompatible with the hypothesis of low u, and classes of sites under various models of population his-
therefore would have some power to detect the bottle- tory (Wakeley and Hey 1997). This approach may be
neck. Microsatellite data, however, are often more vari- applied to the three models we develop in this article,
able than sequence data and are more easily collected making it possible to detect diversity-reducing events
from a high number of loci. Cornuet and Luikart from highly recombining sequence data.
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