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ABSTRACT

The Drosophila adult external sensory organ, comprising a neuron and its support cells, is derived from
a single precursor cell via several asymmetric cell divisions. To identify molecules involved in sensory
organ development, we conducted a tissue-specific gain-of-function screen. We screened 2293 independent
P-element lines established by P. Ragrth and identified 105 lines, carrying insertions at 78 distinct loci, that
produced misexpression phenotypes with changes in number, fate, or morphology of cells of the adult
external sensory organ. On the basis of the gain-of-function phenotypes of both internal and external
support cells, we subdivided the candidate lines into three classes. The first class (52 lines, 40 loci) exhibits
partial or complete loss of adult external sensory organs. The second class (38 lines, 28 loci) is associated
with increased numbers of entire adult external sensory organs or subsets of sensory organ cells. The
third class (15 lines, 10 loci) results in potential cell fate transformations. Genetic and molecular character-
ization of these candidate lines reveals that some loci identified in this screen correspond to genes known
to function in the formation of the peripheral nervous system, such as big brain, extra macrochaetae, and
numb. Also emerging from the screen are a large group of previously uncharacterized genes and several
known genes that have not yet been implicated in the development of the peripheral nervous system.

HE development of the Drosophila adult external
sensory (es) organ, a mechanosensory bristle, in-
volves lateral inhibition and asymmetric division, two
mechanisms that underlie numerous developmental
processes (Posakony 1994; Jan and Jan 1995; Campos-
Ortega 1996). First, a single sensory organ precursor
(SOP) cell is selected from a proneural cluster, a group
of cells that are competent to become neuronal precur-
sors, via lateral inhibition. Genes within the achaete-scute
complex (AS-C) and the daughterless (da) gene are re-
quired to confer neuronal potential to these cells (Ghy-
sen and Dambly-Chaudiere 1989). After the SOP cell
is singled out, it divides asymmetrically to produce two
different secondary precursor cells, 11A and IIB. 1A
gives rise to two external cells: one shaft cell (trichogen)
and one socket cell (tormogen). IIB gives rise to the
internal cells: one neuron, one sheath cell, and, for
at least one class of es organs, an additional glial cell
(Hartenstein and Posakony 1989; Gho et al. 1999).
The Notch (N) signaling pathway mediates the cell-
cell interactions that occur during lateral inhibition.
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The transmembrane protein Notch is a receptor and
its principal ligand during lateral inhibition is Delta
(reviewed in Artavanis-Tsakonas et al. 1999). Within
the proneural cluster, Notch signaling is mediated
through the transcription factor Suppressor of Hairless
[Su(H)] and results in the activation of target genes at
the Enhancer of split [E(spl)] locus (Schweisguth and
Posakony 1992; Fortini and Artavanis-Tsakonas
1994; Bailey and Posakony 1995; Jarriaultetal. 1995;
Lecourtois and Schweisguth 1995). Hairless (H) is
believed to act as an antagonist of Notch through physi-
cal interaction with Su(H) (Brou et al. 1994; Bang et
al. 1995).

Both Notch-mediated cell-cell interactions and asymmet-
ric segregation of the cell-intrinsic determinant Numb
operate during divisions of the SOP lineage (Posakony
1994; Rhyu et al. 1994). During divisions of the SOP
cell and its progeny, Numb protein is unequally segre-
gated to one of the two resulting daughter cells. In that
cell, Numb inhibits the activity of N, which receives
signals from two redundant ligands, Delta and Serrate
(Rhyu et al. 1994; Frise et al. 1996; Guo et al. 1996;
Zeng et al. 1998a). The pathways downstream of Notch
are different for the asymmetric divisions of IIA and
11B cell lineages. Su(H) acts as a transducer of Notch
signaling only within 11A and her daughter cells; the
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downstream molecules that mediate Notch signaling in
the 11B cell lineage are unknown (Wang et al. 1997). A
potential downstream target of Su(H) in 1A is tramtrack
(ttk), a gene that does not appear to have a function
during lateral inhibition (Guo et al. 1995, 1996). An-
other gene that affects lineage events and might be a
component of the Notch signaling pathway is sanpodo
(Dye et al. 1998; Skeath and Doe 1998).

The Notch signaling cascade in the SOP cell lineage
differs from that involved in lateral inhibition. Addi-
tional components involved in N signaling during asym-
metric divisions of the SOP lineage remain to be identi-
fied (e.g., ones that are specific for the II1B cell lineage).

Many genes with a function in lateral inhibition or
asymmetric divisions of the adult es organ lineage, such
as N, Delta, numb, prospero (pros), and ttk, were initially
identified due to embryonic loss-of-function (lof) phe-
notypes (Lehmann etal. 1981, 1983; Uemura et al. 1989;
Doeetal. 1991; Vaessinetal. 1991; Xiong and Montel |l
1991; Salzberg et al. 1994). However, pleiotropy or
redundancy of gene function may hamper the identifi-
cation of other genes important for the formation of
the adult es organ. One strategy to identify such genes
is to look for gain-of-function (gof) phenotypes.

For this purpose, we screened 2293 independent Dro-
sophila lines with the modular P-element-based EP (en-
hancer/promoter) misexpression element devised by P.
Rarth (Rgrth 1996; Rgrth et al. 1998). This misexpres-
sion element contains upstream activating sequence
(UAS) sites that are recognized by the transcriptional
activator Gal4 (Brand and Perrimon 1993). Tissue-
specific overexpression of genes that lie near the EP
element can be achieved by using a line that expresses
Gal4 in specific cells. In cells that both express Gal4
and carry the EP element, Gal4 binds to the UAS sites
and causes misexpression of the adjacent gene.

On the basis of overexpression studies with genes pre-
viously shown to be involved in adult es organ formation,
we expected certain phenotypes from such a gof screen.
Overexpression of genes such as numb, ttk, Su(H), H,
and N give phenotypes opposite to the respective lof
phenotypes (Bang and Posakony 1992; Lieber et al.
1993; Rhyu et al. 1994; Schweisguth and Posakony
1994; Guo et al. 1995; Doherty et al. 1997; Wang et
al. 1997). Overexpression of N or its transducer Su(H)
during lateral inhibition results in loss of entire es or-
gans due to suppression of SOP formation. At later
stages, during asymmetric division, overexpression of
these two genes produces up to four external cells, all
socket-like, due to I1B-to-11A cell and/or shaft-to-socket
cell transformations (Lieber et al. 1993; Schweisguth
and Posakony 1994; Wang et al. 1997; Doherty et al.
1997; Figure 1). Conversely, misexpression of H, which
antagonizes Notch signaling, results in increased num-
bers of SOPs, I1A-to-11B, and socket-to-shaft transforma-
tions (Bang and Posakony 1992).

In our screen, we first identified lines that produced
visible misexpression phenotypes in the external cells

A wild-type B reduced N activity C increased N activity

SOoP SOP

sh $0 sh sh

Figure 1.—Potential cell fate transformations in the IIA
sublineage. (A) In wild-type, 11A divides asymmetrically to give
rise to shaft (sh) and socket (so) cells. (B) Reduction of N
signaling results in socket-to-shaft transformations. (C) Con-
versely, increased N signaling (e.g., in Hairless mutants) results
in shaft-to-socket transformations. Genetic interactions were
assayed on the basis of the effects of the EP misexpression on
heterozygous mutant N or H phenotypes and vice versa.

of the es organ, i.e., the daughters of 1lIA. Next, we
analyzed the effect of misexpression on the sheath cell,
a daughter of IIB. Finally, we examined the effect of
reducing N or H function on the gof phenotype. These
analyses, combined with preliminary molecular charac-
terizations, have led to the identification of genes pre-
viously shown to be important for es organ develop-
ment, as well as other genes that may be involved in
this process.

MATERIALS AND METHODS

Drosophila stocks: The collection of 2293 EP target element
lines was a generous gift of P. Rerth through the Berkeley
Drosophila Genome Project. For tissue-specific analysis of the
misexpression effects, the individual EP lines were crossed to
sca-Gal4, a P{Gal4} line with an insertion at the scabrous locus
(Nakao and Campos-Ortega 1996). The sca-Gal4 line ex-
presses Gal4 in SOP and surrounding cells and later in the
lineage of the es organ. To test the effects of different levels
of expression, parents from initial crosses were serially trans-
ferred and progeny from individual crosses were raised at 18,
25, and 29° during larval and pupal stages. The phenotypes
at 29° were generally stronger and more penetrant. All subse-
guent crosses were maintained at 29°.

The A101 line carries an insertion of P{lacZ,ry*} at the
neuralized locus (Usui and Kimura 1993). It expresses nuclear
B-galactosidase in the SOP cell and the es organ lineage. On
the notum, lacZ expression is strongest in the nuclei of the
two external support cells. The pros-lacZ enhancer trap line
P{laczZ,ry™} expresses B-galactosidase in the sheath cell. We
visualized B-galactosidase expression by X-gal staining of pha-
rate adults.

Genetic interactions: To test genetic interactions with N,
males from individual EP lines were crossed to w2N %t/FM6;
sca-Gal4/CyO females and the phenotypes of waN%£1/+; sca-
Gal4/ + flies carrying one copy of the EP element were com-
pared to those of FM6/+; sca-Gal4/ + flies carrying one copy
of the EP element and to those of w3N >/ +: sca-Gal4/ + flies
without the EP element. Most lines that showed a positive
interaction were retested using a reciprocal crossing scheme
with waN %1 /w-Y; sca-Gal4/CyO males (w-Y is a partial duplica-
tion of the first chromosome including the N locus). Genetic
interactions with H were tested by crossing males from individ-
ual EP lines with y w; sca-Gal4/CyO; FRT HE/TM3 females.
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Phenotypes of y w; sca-Gal4/+; FRT H®/+ flies with one
copy of the EP element were compared to those of y w; sca-
Gal4/+; TM3/+ flies carrying one copy of the EP element
and to those of sca-Gal4/+; FRT HE2/+ flies without the EP
element. For most crosses, parents were serially transferred
and progeny from individual crosses were maintained at 18,
25, and 29° during larval and pupal stages. This genetic interac-
tion scheme allowed us to evaluate changes of the EP misex-
pression phenotypes as an enhancement or suppression. In
addition, enhancement or suppression of the H mutant phe-
notype was evaluated. Since N/ + flies lack a bristle phenotype,
only the enhancement of N haploinsufficiency could be de-
tected.

Molecular analysis: Genomic sequences flanking the 3'end
of the EP misexpression element were isolated by plasmid
rescue using EcoRIl or Sacll (Pirotta 1986). Sizes of three
independent clones for each plasmid rescue were compared
to determine the number of insertions per line. In total, there
were 7 lines with two insertions (7/105 = 6.7%). Genomic
sequences adjacent to the EP element were sequenced.

Flanking sequences were analyzed by searching the Berkeley
Drosophila Genome Project (BDGP) and National Center for
Biotechnology Information databases. Expressed sequence
tags (EST) within a 3-kb distance from EP element insertion
sites were tested for sequence similarities using “blastx”
searches. Sequenced genomic regions within a 3-kb distance
from EP element insertions for which no candidate transcripts
had been identified were tested using open reading frame
finders. Only significant sequence similarities were reported
(see Table 1).

RESULTS

Using the modular misexpression system (Rgrth
1996; Ragrth et al. 1998), we misexpressed genes in the
SOP cell and its neighbors and examined the effects on
the development of the adult external sensory organ.
The sca-Gal4 line was chosen as driver because it is ex-
pressed in clusters of cells surrounding the presumptive
macro- and microchaetae on the notum and head (Fig-
ure 2). Expression persists in the SOP lineage. All misex-
pression phenotypes described in this paper are pro-
duced by sca-Gal4 in conjunction with an EP insertion.
We then examined the effects of reducing N or H func-
tion on the gof phenotype. The enhancer trap lines
A101 and pros-lacZ were used to assist our characteriza-
tion of misexpression phenotypes. A101-lacZ expresses
B-galactosidase strongly in the nuclei of the two external
support cells, while pros-lacZ expresses p-galactosidase
specifically in the sheath cell, one of the internal cells.

In total, 4.6% of the lines (105/2293) produced phe-
notypes affecting the number or fate of outer cells of
the es organ. These phenotypes fall into three major
classes:

1. class I: loss of external support cells (sockets and
shafts)

2. class Il: supernumerary es organs or support cells

3. class I11: potential cell fate transformations, with in-
creases in one cell type associated with loss of another
cell type.

Tables 1 and 2 summarize the molecular, phenotypic,
and genetic interaction data presented in this study.

Many EP lines resulted in phenotypes with characteris-
tics of more than one class. To simplify the classification,
all EP lines with potential lineage transformation pheno-
types were grouped into class 11 independently of other
phenotypes. Similarly, among the remaining EP lines,
those with phenotypes that include supernumerary es
organs or subsets of support cells were grouped into
class Il independently of other phenotypes. Many lines
in all three classes also exhibited an altered morphology
of shaft or socket cells.

Loss of external cells: We identified 52 lines repre-
senting 40 loci that produced loss of some or all of
the external and internal support cells. Loss of both
external and internal support cells could arise from loss
of the entire es organ. Alternatively, the support cells
could have been transformed into neurons. Genes re-
sponsible for such phenotypes could interfere with lat-
eral inhibition and function in lineage decisions, pre-
vent cell cycle progression, or result in cell lethality.

This is the largest class of EP lines and includes
P-element insertions into genes known to have impor-
tant functions in asymmetric cell division, lateral inhibi-
tion, and other aspects of development. For example,
misexpression of extra macrochaetae (emc) by EP(2)0415
caused a loss of macro- and microchaetae (Figure 3A)
that resembles the phenotype of a dominant emc muta-
tion (emc®; Craymer 1980). emc acts as a repressor that
blocks the activity of achaete and scute gene function
during sensory organ neurogenesis (ElNlis et al. 1990;
Garrell and Modolell 1990; Skeath and Carroll
1991; Van Doren et al. 1991) and its misexpression is
predicted to block SOP formation.

Another example is the misexpression of escargot (esg)
[by EP(2)0683, EP(2)0684, EP(2)2009, EP(2)2159, and
EP(2)2408], which caused the most severe loss of es
organs observed in this screen. In EP(2)0684 and
EP(2)2009, there was an almost complete loss of es or-
gans on the notum (Figure 3B). esg encodes a zinc finger
protein that acts as a repressor of Scute/Daughterless-
dependent transcription in vitro (Whiteley et al. 1992;
Fuse et al. 1994). It also acts as negative regulator of
endoreplication in imaginal tissues (Hayashi etal. 1993;
Hayashi 1996).

We also identified several genes known to be required
for correct cell cycle progression. dacapo [EP(2)2584]
is a cyclin-dependent kinase inhibitor that is required
during embryogenesis for a timely exit from the cell
cycle (Lane et al. 1996; de Nooij et al. 1996). Misexpres-
sion of dacapo produced a loss of external cells of scutel-
lar and dorsocentral macrochaetae (Figure 3C). Insome
cases, there was a single prospero-positive cell that was
no longer accompanied by shaft and socket cells. An-
other gene, divisions abnormally delayed (dally), encodes
a proteoglycan that is required for normal cell cycle
progression (Nakato et al. 1995) and might act as core-
ceptor for Wingless (Lin and Perrimon 1999; Tsuda
et al. 1999). Misexpression of this gene by EP(3)3168
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Figure 2.—Macro- and microchaetae are arranged in ste-
reotyped patterns on the notum of Drosophila (for recent
review on es organ pattern formation, see Simpson etal. 1999).
(A) Four dorsocentral (dc) and four scutellar (sc) macrochae-
tae decorate the adult notum. (B) sca-Gal4 expresses Gal4 (in
green, driving UAS-GFP) within the four cut-expressing cells
of the es organ (red) and surrounding cells (Blochlinger
et al. 1993). On the scutellum and between the dorsocentral
macrochaetae, sca-Gal4 is expressed not only in the developing
sensory organs but also in surrounding domains.

resulted in the occasional loss of scutellar or dorsocen-
tral macrochaetae. Misexpression of these genes could
interfere with SOP lineage events by blocking cell cycle
progression (e.g., by forcing the SOP cell to exit mitosis)
or, in the case of dally, by affecting Wingless signaling,
which is involved in the patterning of es organs (Phil-
lips and Whittle 1993).

A large number of P-element insertions targeted
genes that are known to have essential functions during
development but have not previously been implicated
in sensory organ development. One line, carrying an
insertion at the inscuteable (insc) locus [EP(2)2010], ex-
hibited a loss of external structures of scutellar macro-
chaetae without a concurrent loss of the prospero-posi-
tive sheath cell. Whether this phenotype is entirely due
to altered expression of insc, which serves an essential
function in asymmetric divisions of delaminating neuro-
blasts and embryonic muscle progenitor cell divisions
(Kraut et al. 1996; Carmena et al. 1998), requires fur-
ther study. One potential complication is the presence
of the gene skittles, which encodes the phosphatidylinosi-
tol 4-phosphate 5-kinase, in the first intron of insc. Mis-
expression of skittles has been shown to generate ectopic
es organs (Hassan et al. 1998). It is not clear whether
misexpression of insc, skittles, or both is driven by
EP(2)2010.

Other known developmental regulators found in this
screen include gliotactin [EP(2)2306], which encodes a
transmembrane protein that functions in peripheral
glia to establish the blood-nerve barrier (Auld et al.
1995); fat facets [EP(3)0381], which encodes a deubiqui-
tination enzyme required for correct eye development

(Fischer-Vize et al. 1992; Huang et al. 1995); apontic
[EP(2)2373], a gene involved in multiple processes, in-
cluding head patterning (Gellon et al. 1997) and heart
morphogenesis (Su et al. 1999); Drosophila lim-domains
only [EP(X)1306, EP(X)1383, and EP(X)1394], a gene
with a role in wing patterning (Milan et al. 1998; Shor-
esh et al. 1998; Zeng et al. 1998b), longitudinals lacking
(lola) [EP(2)0343], which is required for correct axonal
projection (Giniger et al. 1994); and hnRNP 27C
[EP(2)0748], which encodes a heterogeneous nuclear
RNA-associated protein. Previous studies suggest that
different heterogeneous nuclear RNA-associated pro-
teins may play a role in the development of the es organ
(Hammond et al. 1997; zur Lage et al. 1997).

This class includes insertions at 15 previously unchar-
acterized genes. Four of these insertions showed genetic
interactions with N or H (see Table 2), indicating that
they affect genes that are potentially in the N signaling
pathway. These genes are therefore good candidates for
future analyses.

Supernumerary es organs or support cells: Thirty-
eight lines, carrying insertions at 28 loci, caused misex-
pression phenotypes with increased numbers of internal
and external cell types. We further subdivided these
lines into two subclasses. One subclass of lines produced
ectopic (i.e., spatially separate) es organs; these might
arise from defective lateral inhibition or ectopic pro-
neural activity. The other subclass of lines exhibited super-
numerary support cells that were clustered together. This
phenotype could be due to either increased cell numbers
within an es organ or formation of several tightly associated
es organs. Such phenotypes could result from defects in
lateral inhibition or cell cycle regulation.

In this class, there are 16 previously uncharacterized
genes (Table 1). To distinguish lines that affect lateral
inhibition from those that affect other functions, we
tested a subset of these lines for genetic interactions
with N and H. Eight lines representing eight indepen-
dent loci displayed significant genetic interactions (see
Table 2).

Ectopic supernumerary es organs: This subclass includes
big brain [EP(2)2278], a gene involved in lateral inhibi-
tion that encodes a channel-like transmembrane pro-
tein (Rao et al. 1990). Also in this subclass are two
genes with a known function in eye development: yan
[EP(2)0598 and EP(2)2500], which encodes an ETS do-
main nuclear protein that has an essential function in
photoreceptor cell development (Lai and Rubin 1992;
O’Neill et al. 1994); and hedgehog [EP(3)3521], which is
involved in multiple developmental processes including
eye furrow progression (Heberlein et al. 1993; Ma et al.
1993). hedgehog has also been implicated in the correct
patterning of es organs on the adult notum (Gomez-
Skarmeta and Modolell 1996; Mullor et al. 1997).
Another gene, split ends (spen) [EP(2)2583], resulted in
a misexpression phenotype with increased numbers of
scutellar and dorsocentral macrochaetae (Figure 4A).
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TABLE 2
Genetic interactions with N and H
Genetic interactions with
Notch Hairless
EP no. Notch phenotype Misexpression phenotype Hairless phenotype Misexpression phenotype
Class |
EP(2)0383 Enhanced Not affected Suppressed Suppresses misexpression
phenotype (on wing
margin)
EP(2)0595 Enhanced Enhances balding on Not determined Not determined
notum; suppresses loss
of abdominal microchaetes
EP(2)2306 Not informative Enhanced Not informative Enhanced
EP(2)2010 Enhanced Not affected Enhanced Suppressed
EP(3)0415 Not determined Not determined Not affected Enhanced
EP(3)3673 Enhanced Not affected Enhanced Enhanced
EP(3)3519 Enhanced Enhanced Suppresses shaft-to-socket Enhanced
transformation;
enhances loss of
es organs
Class Il
EP(X)1408 Enhanced Not affected Suppressed Not affected
EP(2)2583 Enhanced Enhanced Enhanced Suppressed
EP(2)1229 Enhanced Not affected Not determined Not determined
EP(2)0639 Not determined Not determined Enhanced Suppressed
EP(2)0647 Enhanced Alters misexpression Not informative Suppressed
phenotype
EP(2)0954 Enhanced Enhanced Not informative Not informative
EP(3)3622 Enhanced Enhanced Not affected Suppressed
EP(3)2409 Enhanced Enhanced Not informative Not informative
Class 111
EP(X)1503 Enhanced Suppresses two socket/ Enhanced Suppresses additional
no shaft phenotype scutellar macrochaetae
EP(2)2478 Not determined Not determined Suppresses shaft-to-socket Enhances loss of es organs
transformation;
enhances loss of
es organs
EP(2)0386 Not affected Suppressed Enhanced Suppresses shaft/no
socket phenotype
EP(3)0596 Not informative Not informative Not informative Enhances no shaft/one

socket phenotype

A total of 76 EP lines (64 loci) were tested for genetic interactions with N and H. Misexpression of the genes targeted by 19
independent lines showed interpretable genetic interactions in heterozygous backgrounds of either N or H. Genetic interactions
were scored as the effect of the EP misexpression on the haploinsufficient N or H phenotype and as the effect of these mutations
on the EP misexpression phenotype. For N, EP misexpression enhanced the N phenotype when socket-to-shaft transformations
occurred. Conversely, for Hairless, EP misexpression enhanced the H phenotype when the number of es organs with shaft-to-
socket transformations was increased (relative to the dominant Hairless phenotype), while EP misexpression suppressed the H
phenotype when reduced numbers of es organs with such transformations were found. An enhancement of Hairless is also
associated with the loss of es organs. None, no genetic interactions observed.

spen has multiple developmental functions including
correct axon formation (Kolodziej et al. 1995) and
control of correct segment identity (Wiellette et al.
1999). Two insertions near nuclear fallout [EP(3)3324
and EP(3)3339] resulted in additional scutellar macro-
chaetae and in one-socket/two-shaft phenotypes. This
gene encodes a coiled-coil protein with a function in
cortical actin organization and cytokinesis (Rothwell
et al. 1998).

Several previously uncharacterized genes targeted by
the EP element displayed genetic interactions with N
and H. For example, EP(3)3622 produced a misexpres-
sion phenotype with additional es organs and tufts (i.e.,
a large number of clustered shafts; Figure 4B). The
misexpression phenotype produced by EP(3)3622 is en-
hanced by removing one copy of N and suppressed by
removing one copy of H (Table 2).

Increased numbers of internal and external support cells:
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Figure 3.—Examples of class | misexpression phenotypes.
(A) Misexpression of EP(3)0415 at the extra macrochaetae locus
resulted in the loss of scutellar and dorsocentral macro- and
microchaetae. (B) Several insertions targeting escargot, includ-
ing EP(2)0684, resulted in the loss of almost the entire popula-
tion of macro- and microchaetae. (C) Misexpression of
EP(2)2584 at the dacapo locus resulted in the loss of external
cells of scutellar and dorsocentral macrochaetae. The shaft
cell morphology of many macrochaetae was abnormal. The
arrowhead indicates an abnormal shaft cell morphology.

Supernumerary internal and external support cells
could arise from ectopic cell divisions caused by altered
cell cycle regulation. A previously uncharacterized gene
targeted by EP(3)3559 has sequence similarities with
human regulatory subunits of protein phosphatase 2A
(PP2A). Genes coding for the regulatory subunit B of
PP2A (abnormal anaphase, twins) are involved in both cell
cycle progression and cell fate determination (Gomes et
al. 1993; Shiomi et al. 1994). EP(3)3559 shows increased
numbers of support cells in each es organ (Figure 4C).
This misexpression phenotype mimics the phenotype
observed in twins, a mutation in the regulatory B subunit
of PP2A (Uemura et al. 1993). Regulatory subunits that
are under temporal or tissue-specific control in turn
regulate the activity of PP2A. It will be of interest to test
how the newly identified regulatory subunit regulates
the function of PP2A.

Three insertions at a novel locus, EP(2)0639,
EP(2)2148, and EP(2)2437, produce supernumerary sup-
port cells in the es organ (Figure 4D). The orientation
of the EP elements at this locus is such that they presum-
ably generate a partial antisense transcript. Therefore,
the phenotypes could be caused by lof or neomorphic
effects.

Genetic interactions with N and H were found with
EP(2)0647, an insertion at a gene that has sequence
similarities with BTB-domain-containing proteins such
as Pipsqueak. Misexpression of this gene resulted in,
among other phenotypes, increased numbers of support
cells associated with es organs.

Potential cell fate transformations: We expected to
identify P-element insertions that target genes that func-
tion in the asymmetric divisions of the stereotyped es
organ lineage. In total, 15 lines representing 10 loci
resulted in apparent cell fate transformations. These
lines fall into three subclasses. The first two subclasses
are transformations within the 1A cell sublineage: (a)
a socket-to-shaft cell transformation, which would result
in a two-shaft/no-socket phenotype (twinned pheno-
type); and (b) a shaft-to-socket cell transformation,
which would result in a no-shaft/two-socket phenotype.
The third subclass is transformations from IIA to 1IB,
which would resultin loss of external support cells (bald-
ing). However, mechanisms other than transformations
may cause these phenotypes as well (e.g., ectopic cell
division of one type of support cell combined with the
elimination of another type of support cell).

Potential transformations of socket cell to shaft cell: The
misexpression of numb by EP(2)2542 resulted in socket-
to-shaft transformations similar to the numb over-
expression phenotype (Figure 5A; Rhyu et al. 1994).
The misexpression phenotype of EP(2)2542 also in-
cluded the loss of external structures of macrochaetae.
This phenotype might be the result of 11A-to-11B trans-
formations.

Each of the two insertions [EP(X)1149 and
EP(X)1179] that target the same unknown gene pro-
duced both socket-to-shaft and reciprocal shaft-to-socket
transformations (Figure 6C). Both lines also caused a
loss of external support cells on the notum.

Potential transformations of shaft cell to socket cell: This
subclass includes string, twine, and grapes, three genes
with a function in mitotic or meiotic cell cycle regulation
(Edgar and O’Farrell 1989; Alphey et al. 1992; Cour-
totetal. 1992; Fogartyetal. 1994, 1997). We identified
four independent insertions at or near the string locus
[EP(3)1213, EP(3)3261, EP(3)3426, and EP(3)3432].

Figure 4. —Examples of class Il misex-
pression phenotypes. (A) Misexpression
of EP(2)2583 at the split ends locus re-
sulted in ectopic additional scutellar and
dorsocentral macrochaetae (arrowheads).
(B) Insertion EP(3)3622 resulted in tuft-
ing, a phenotype with clustered shafts,
and ectopic scutellar and dorsocentral
macrochaetae. (C) Misexpression of
EP(3)3559, which targets a new regula-
tory subunit of protein phosphatase2A,
resulted in increased numbers of sup-

port cells. (D) Similarly, misexpression of EP(2)2437 resulted in increased numbers of internal and external cell types. EP(2)2437
is an insertion in antisense orientation within EST SD02913 and may cause lof effects. Arrows indicate ectopic macrochaetae.
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Figure 5.—Examples of class 111 misex-
pression phenotypes. (A) Misexpression
of EP(2)2542 at the numb locus resulted

| in apparent socket-to-shaft transforma-
- tions. (B) EP(2)0587 at the grapes locus
caused apparent shaft-to-socket transfor-
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by the presence of two large A101 lacz-
positive nuclear stains. (D) The ab-
dominal misexpression phenotypes of
EP(3)0596 were apparent shaft-to-socket transformations (asterisk) and branching of shaft cells (arrowhead). (E) Misexpression
of EP(2)2478 resulted in apparent 11A-to-11B or neuron-to-sheath transformations. In the absence of external support cells, two
proslacZ- positive sheath cells were tightly associated (asterisk). (F) Similarly, misexpression of EP(3)3390 resulted in apparent
11A-to-11B or neuron-to-sheath transformations. Two associated proslacZ-positive sheath cells were commonly scored in the absence
of differentiated external structures (asterisk). However, abnormal cuticular structures were visible (arrowheads). Potential
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transformation phenotypes are indicated with an asterisk.

With the exception of EP(3)1213, which carries an inser-
tion ~1.5 kb upstream of the normal transcript, the
other three insertions lie close to the transcription initia-
tionssite (see Table 1). However, only EP(3)1213 resulted
in possible shaft-to-socket transformations, raising the
guestion whether a gene other than string is affected in
this line. The misexpression by EP(3)3261 produced
increased numbers of internal and external support
cells. X-gal staining with enhancer trap lines A101 lacZ
and prospero lacZ, which mark the external and the
sheath cells, respectively, showed an approximate dou-
bling of the cell number in many es organs (not shown).

Insertions near grapes [EP(2)0587] and twine
[EP(2)0613] resulted in potential shaft-to-socket trans-
formations on the abdomen and notum, respectively
(Figure 5B). Mutations in grapes, a protein kinase with
homologies to Saccharomyces cerevisiae CHK1, have been
shown to interfere with the DNA replication checkpoint
control of the cell cycle (Fogarty et al. 1997). In addi-
tion, embryos mutant in grapes exhibit cortical cytoskele-
tal defects during syncytial divisions (Sullivan et al.
1993). Misexpression of twine caused, in addition to
possible shaft-to-socket transformations, a four-socket
phenotype. twing, a cdc25 homolog, has a function dur-
ing male and female meiotic divisions and participates
in some aspects of mitotic control at the syncytial em-
bryo stage (Alphey et al. 1992; Courtot et al. 1992;
Edgar and Datar 1996).

The most prominent phenotype found with two other
lines, [EP(2)0386 and EP(2)0988], was apparent shaft-
to-socket cell transformations on the abdomen. X-gal
staining with enhancer trap line A101 lacZ, which pre-
dominantly marks two large nuclei of the two external
cells of the es organ, confirmed the presence of two
socket cells (Figure 5C). A third line, EP(3)0596, pro-
duced a similar misexpression phenotype (Figure 5D).

Potential transformations of 11A to 11B: Two insertions at
two independent loci each produced potential 11A-to-

11B cell fate transformations, with two or more prospero-
positive cells in the absence of external support cells.
With EP(2)2478, both macro- and microchaetae exhib-
ited a loss of external support cells as well as a duplica-
tion of presumptive sheath cells (Figure 5E). Similarly,
the misexpression caused by EP(3)3390 resulted in a loss
of external support cells of macro- and microchaetae
as well as duplication of prospero-positive sheath cells
(Figure 5F). In rare cases, up to four sheath cells were
present.

Defective morphology of the es organ: At least 41
lines, representing 38 loci, identified in this screen pro-
duced aberrant morphology of either the socket or the
shaft cell. The following are examples of different mor-
phology phenotypes observed.

Misexpression driven by EP(2)2356 produced an ab-
normal shaft cell morphology. Most prominently, the
shaft cell was short and branched into many distal tips
(Figure 6A). Branching of the shaft cell into two distal
tips was observed in several lines [i.e., in EP(3)0596,
Figure 5D].

Morphologically abnormal socket cells were pro-
duced by EP(3)3463. Among other phenotypes, the
socket cells frequently were large and flattened (Figure
6B). EP(X)1149 (see also phenotype in class I11) pro-
duced an abnormal socket cell morphology with a pro-
truding tip similar to a short shaft (Figure 6C).

We observed a massive reduction in the size of shaft
cells and morphologically abnormal socket cells with
EP(2)2317, an insertion at elF-4A (Figure 6D). Similar
phenotypes were seen with several other lines.

The sensitivity of cell morphology to the misexpres-
sion of candidate genes might yield an entry point to
identify genetic components involved in differentiation
and morphogenesis. Several of the phenotypes de-
scribed here resemble phenotypes caused by mutations
of genes that function in cytoskeletal assembly (Cant
et al. 1994; Tilney et al. 1995, 1996).
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DISCUSSION

Analyzing development of the es organ using a gain-
of-function approach: Traditionally, genetic screens
have been based on the isolation of lof mutations. This
approach has been invaluable in unraveling the mecha-
nisms underlying many biological processes, including
the formation of the peripheral nervous system (Salz-
berg et al. 1994; Kania et al. 1995; Go et al. 1998).
However, lof screens have several limitations. Redun-
dancy between genes that have overlapping functions
might partially or completely mask gene function. In
such cases, it is necessary to make double or multiple
mutant combinations to produce a phenotype, an ap-
proach that is not generally applicable during lof
screens. Moreover, early phenotypes caused by a muta-
tion might prevent the detection of later phenotypes
(Miklos and Rubin 1996). Such limitations can be par-
tially circumvented by screens that are based on analyz-
ing the phenotypes of clones of mutant tissue generated
by somatic recombination (Xu and Rubin 1993) or by
screens for enhancers or suppressors of a particular
mutant phenotype (Simon et al. 1991). Nevertheless,
many genes might have escaped detection by lof ap-
proaches.

The gof screening system devised by P. Rgrth comple-
ments lof approaches. This system is based on the analy-
sis of phenotypes generated by tissue-specific misexpres-
sion of genes using the UAS-Gal4 system. Any gene that
produces a misexpression phenotype is detectable by
the system in spite of possible functional redundancy
and pleiotropy of gene function (Rgrth 1996; Rgrth
etal. 1998). In addition, the tissue specificity of the UAS-
Gal4 system allows the examination of misexpression
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Figure 6.—A group of 41 EP lines carry insertions near
genes that when misexpressed, produced an abnormal es or-
gan morphology. Examples are as follows: (A) EP(2)2356
caused branching of shafts into multiple tips (arrowheads).
(B) Flattened and enlarged socket cells were commonly scored
with EP(3)3463. (C) EP(X)1149 resulted in potential shaft-
to-socket transformations. Socket cells frequently displayed
protruding shaft-like tips. (D) EP(2)2317 resulted in the severe
reduction of shaft cells into shortened or dot-like structures.
Arrowheads indicate abnormal cell morphology. Potential
transformation phenotypes are indicated with an asterisk.

phenotypes in the biological context of choice. In vari-
ous screens, phenotypes that affected eye development,
wing development, and follicle cell migration were ana-
lyzed (Rorth et al. 1998).

In this study, these 2293 randomly inserted P elements
were each driven by a sensory-organ-specific Gal4 driver
and any resulting misexpression phenotypes in the es
organ were analyzed. Of these lines, 105 produced es
organ phenotypes. Our preliminary phenotypic and mo-
lecular analyses suggest that we have identified genes
that are involved in lateral inhibition, cell cycle control,
cell fate specification, and cell differentiation. A subset
of these genes is likely to play a role in es organ forma-
tion.

One potential drawback of gof screens is that misex-
pression of a gene may affect the development of tissues
in which that gene is not normally expressed. In some
cases, misexpression of a gene may ectopically effect a
signaling pathway that functions in multiple develop-
mental processes. Another concern is that phenotypes
may be artificial. For example, the phenotype caused
by misexpression of a gene at levels much higher than
normal may interfere with development, even if that
gene does not have a function in development.

To identify those genes that normally function in es
organ development, it will be important to examine
the lof phenotype, the expression pattern, and genetic
interactions with genes known to be involved in es organ
development.

The systematic misexpression screen identifies candi-
date genes that interfere with distinct developmental
aspects of es organ formation: Among the 105 lines
(78 loci) identified in the screen, 49 lines (37 loci)
correspond to previously characterized genes. A subset
of these genes has been shown to have roles during es
organ development. Some, such as emc and big brain,
have a function in lateral inhibition (Skeath and Car-
roll 1991; Rao et al. 1992). Several are genes with a
function in cell cycle regulation, including dacapo and
string, and thus might be required during es organ cell
division. Others, such as numb, are known to be involved
in asymmetric cell division (Rhyuetal. 1994). Moreover,
a large group of genes with essential roles in other
developmental processes were identified. Some of these
genes, such as hedgehog and yan, have not been tested
for their role in es organ development, but it is possible
that they are involved in this developmental process as
well. Since many of the known genes identified in this
screen are likely to have normal functions in es organ
development, the concern of the potentially artificial
nature of the gof screen may be alleviated. It thus seems
likely that at least a substantial subset of the new genes
identified in our screen will turn out to be important
for the formation of es organs, perhaps in some of
the less understood aspects of es organ development,
including the following:

Context-specific components of the N-signaling pathway:
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The transducers of N signaling in 11B and her daughters
are currently not known (Wang et al. 1997). EP(2)2478
and EP(3)3390 target genes with possible functions in
IIB and her daughters. Misexpression of those genes
was sufficient to generate potential I1A-to-11B or neuron-
to-sheath transformations. One possible explanation for
this phenotype is ectopic activation of I1B-specific target
genes (e.g., by IIB or sheath-cell-specific N-signaling
components).

Cell cycle regulation of stereotyped lineage events: One likely
link between cell cycle regulation and asymmetric cell
division is the cell-cycle-dependent asymmetric localiza-
tion of cell fate determinants and adaptor proteins (Hir-
ata et al. 1995; Knoblich et al. 1995; Spana and Doe
1995; Kraut et al. 1996; Ikeshima-Kataoka et al. 1997;
Shen et al. 1997; Lu et al. 1998, 1999; Schuldt et al.
1998). Untimely cell cycle progression or defective inte-
gration of cell cycle with the localization of Numb pro-
tein may create a phenotype reminiscent of numb lof,
a phenotype that was observed with misexpression of
the cell cycle regulatory genes grapes and twine.

Inaddition, cell cycle regulatory genes may serve addi-
tional functions that affect cell fate specification. grapes,
for example, is essential for the normal formation of
the cortical cytoskeleton during syncytial divisions (Sul-
livan et al. 1993). Given the importance of the cortical
cytoskeleton during asymmetric division (Broadus and
Doe 1997; Knoblich et al. 1997), genes that regulate
the dynamics of this structure may also turn out to be
essential during cell fate decisions.

Highly stereotyped division patterns occur through-
out Drosophila development (Foe 1989; Gho et al.
1999). Several cell cycle regulators, including dacapo,
are required to control the cell division patterns in the
neural lineages of the embryonic nervous system (Cui
and Doe 1995; Weigmann and Lehner 1995; de Nooij
etal. 1996; Lane et al. 1996; Hassan and Vaessin 1997).
It is not known at this time whether dacapo normally
functions during the development of the es organ to
control precise cell division patterns.

Execution of morphogenesis: There are different types of
genes that when misexpressed could give rise to mor-

phology defects. These include genes that affect differ-
entiation of a single cell type (e.g., shaft cell differentia-
tion controlled by pax2; Kavaler et al. 1999) or that
affect proper regulation of cytoskeletal dynamics. We
found a large number of lines that, when misexpressed,
resulted in aberrant morphogenesis of the socket or
shaft cell. One phenotype observed was the branching
of shafts. It has been suggested that mutations causing
branched hairs are in genes that regulate the actin cy-
toskeleton (Turner and Adler 1998). Consistent with
this prediction, mutations of genes with a function in
actin bundle formation display similar branching phe-
notypes (Cant et al. 1994; Tilney et al. 1995, 1996).
Several of the lines identified in this screen might pro-
vide additional components involved in executing shaft
cell morphology or in regulating the actin cytoskeleton
in other tissues. Less is known about the morphogenesis
of socket cells. EP lines that affected predominantly
socket cell morphology might provide clues to this pro-
cess.

Genomic considerations and perspectives: Genome
sequencing by the European and Berkeley Drosophila
Genome Projects (EDGP and BDGP) and the ease with
which genomic sequences flanking the EP element can
be cloned have greatly facilitated the identification of
targeted genes. Of the insertion sites we sequenced, 49
(37 loci; 46.7% of all lines) matched known genes, 34
(28 loci; 32.4% of all lines) matched EST, and 22 (13
loci; 20.9% of all lines) matched sequenced genomic
regions but still have no candidate transcripts.

Altogether, 105 lines or 4.5% of the lines tested gave
rise to misexpression phenotypes. Rgrth et al. (1998)
reported comparable frequencies of misexpression phe-
notypes: 7% with ombGal4, 4% with dppGal4, 3% with
slboGal4, and 2% with sevGal4. Among the few genes
that were reported from those screens, we have isolated
escargot, hedgehog, yan, scalloped, and big brain. It will be
interesting to compare those screens to obtain an esti-
mate of the overlap of the genes used in those different
developmental processes.

In a separate database analysis, we searched for EP
element insertions that target genes with a known func-

TABLE 3

Summary of EP element insertions

Map

Locus position EP no. Insertion site
kuzbanian (kuz) 34D4 EP(2)2503 —916 bp of transcript
neuralized (neur) 85D EP(3)3026 +466 bp of transcript (CDS at +278 bp)
Enhancer of split

transcript m2 (E(spl)m2) 96F9 EP(3)3635 —2702 bp of transcript
Enhancer of split EP(3)3272 —11 bp of transcript

transcript m7 (E(spl)m7) 96F9 EP(3)3587 —646 bp of transcript

Summiary of those EP element insertions near genes with a function in neurogenesis or es organ development
that did not result in misexpression phenotypes. The EP element insertions were identified by database analysis.
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tion in neurogenesis and sensory organ development.
Among seven EP element insertions that target six genes
(extra macrochaetae, big brain, kuzbanian, neuralized, and
Enhancer of split transcripts m2 and m7), only two inser-
tions near two loci yielded misexpression phenotypes
in our assay (extra macrochaetae, big brain). Five insertions
near four loci did not cause obvious misexpression phe-
notypes (Table 3). Therefore, the misexpression screen
was not fully efficient. Similarily, there may be other
unknown geneswith a function in es organ development
that escaped detection even with an EP element inserted
nearby.

Determining the exact insertion site and orientation
of the EP element is essential to the interpretation of
misexpression phenotypes. In the lines for which we
identified a transcript, most of the EP transposons were
inserted between —850 bp upstream and +800 bp down-
stream of the transcription start site (61/83 = 73.5%).
Seven lines (8.4%) were identified with insertions at
greater distances from the transcription start site of pu-
tative target genes. In these cases it is possible that addi-
tional transcripts that have not been identified might
be located closer to the EP element. One example is
EP(3)1213, which carries an insertion ~1.5 kb 5" of the
transcriptional start site of string. The misexpression
phenotype produced by this line was qualitatively differ-
ent from other EP insertions closer to the string tran-
scriptional start site. Whether these differences are at-
tributable to different levels of expression or are caused
by an unidentified transcript needs to be determined.
Another 9 lines (10.8%) carried EP elements with an
apparent antisense orientation and might generate par-
tial antisense transcripts. How these antisense messages
might cause phenotypes is not clear. In addition, there
are several lines (6/83 = 7.2%) that carried insertions
3’ of the CDS, or insertions within new transcripts for
which the CDS is not known. In these cases, the pheno-
types might be caused by truncated transcripts.

The EP transposon allows only the unidirectional
transcription of potential target genes. Therefore,
~50% of the EP lines are expected to be in the correct
orientation to drive misexpression of a sense transcript
[only nine of the lines that gave rise to phenotypes with
sca-Gal4 (8.6%) had an inverted or antisense orienta-
tion]. Thus, the total number of genes targeted for
overexpression in the screen might be no more than
1150. The number of targeted genes is further reduced
by multiple lines targeting the same gene (1.33 inser-
tions/locus) and by insertions that lie too distantly to
drive sufficient transcriptional activation.

The current estimate for the number of genes in
the Drosophila genome by the BDGP is around 14,000
(based on Miklos and Rubin 1996). Therefore, the EP
collection targets ~10% of the genome. In an extrapola-
tion, for a genome-wide saturation screen we would
expect =800 different loci or ~5-6% of all genes to give
rise to misexpression phenotypes. The future challenge

will be to determine the biological significance of the
genes identified during this screen.
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