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ABSTRACT
The usual approach to characterizing and estimating multilocus associations in a diploid population

assumes that the population is in Hardy-Weinberg equilibrium. The purpose of this study is to develop a
set of summary statistics that can be used to characterize and estimate the multilocus associations in
a nonequilibrium population. The concept of “zygotic associations” is first expanded to facilitate the
development. The summary statistics are calculated using the distribution of a random variable, the number
of heterozygous loci (K) found in diploid individuals in the population. In particular, the variance of K
consists of single-locus and multilocus components with the latter being the sum of zygotic associations
between pairs of loci. Simulation results show that the multilocus associations in the variance of K are
detectable in a sample of moderate size ($30) when the sum of all pairwise zygotic associations is greater
than zero and when gene frequency is intermediate. The method presented here is a generalization of
the well-known development for the Hardy-Weinberg equilibrium population and thus may be of more
general use in elucidating the multilocus organizations in nonequilibrium and equilibrium populations.

THE extent and patterns of nonrandom associations cies, alleles derived from the same populations or spe-
cies tend to cluster together in the same individuals,between linked as well as independent loci provide

important information about the history of a popula- either because of Wahlund’s (1928) effect or because
of strong selection against hybrids or both. The resultingtion, the evolutionary forces governing these loci, and

the location of the loci on the chromosomes. Such Hardy-Weinberg disequilibria at individual loci and
multilocus associations across loci may be persistent andmultilocus associations may arise from many demo-

graphic and evolutionary events including epistatic se- may be detectable for a number of generations after
an initial mixing of gene pools. Thus, the multilocuslection, random drift due to population growth and

decline, mixing of two or more distinct gene pools, associations in the hybrid population need to be charac-
terized at the zygote level.nonrandom mating, and mutation, regardless of

whether or not the loci are physically linked (e.g., A related issue about characterizing and testing the
multilocus associations is that most of the proposedHedrick et al. 1978; Brown 1979; Barton and Clark
measures are defined for a pair of loci only. When there1990).
are a large number of loci, each having many alleles,A number of statistical measures have been proposed
pairwise measures may be too many to be readily man-to characterize the multilocus associations, but the liter-
ageable and interpretable. For example, for 20 loci,ature has focused on characterizing gametic disequilib-
each with four alleles in a nonequilibrium population,ria, i.e., nonrandom associations of alleles at two loci
there are 6 independent Hardy-Weinberg disequilibriaordered within gametes (e.g., Hedrick 1987). While
for each of the 20 loci, 9 gametic disequilibria, 9 nonga-these measures are useful for analyzing haploid data or
metic disequilibria, 54 trigenic disequilibria, and 45diploid data from a Hardy-Weinberg equilibrium popu-
quadrigenic disequilibria for each of 190 locus pairs.lation, they may not be appropriate for a nonequilib-
Furthermore, unless a stringent significance level is im-rium diploid population in which a complete character-
posed, the large number of required pairwise tests un-ization of two-locus associations also requires other types
der commonly used significance levels of 5 and 1% mayof disequilibria (Cockerham and Weir 1973; Weir
produce spurious association realizations (Karlin and1979). For example, in a hybrid population arising from
Piazza 1981; Weir 1996, pp. 133–135). Therefore, it ismixing of genes from two or more populations or spe-
desirable to have a set of summary statistics that ade-
quately describe the extent and patterns of multilocus
structure in a nonequilibrium population.
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(Haldane 1949; Bennett and Binet 1956; Allard et
al. 1968) is first expanded to facilitate the development.
The summary statistics are calculated using the distribu- jlvuy9
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A similar method by Brown et al. (1980) has been used (2b)
to analyze multilocus data collected from haploid, in-

which is analogous to Lewontin’s (1964) normalizedbred, or random mating populations (e.g., Brown et
gametic disequilibrium.al. 1980; Whittam et al. 1983; Nevo and Beiles 1989;

When summing over all alleles at loci j and l, weMaynard Smith et al. 1993; Yeh et al. 1994; Haubold
obtain an overall measure of zygotic associations (vjl)et al. 1998), but it considers only gametic disequilibrium.
and the following relations:Numerical analyses are also carried out to depict the
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Let us consider a diploid population in which individ- locus j and heterozygous at locus l; (iii) heterozygous
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loci j and l,

jp u 5 jP u.
.. 5 o

r

v51
o

s

y51
o

s

z51

jlP uy
vz and lp y 5 lP .y

.. 5 o
r

u51
o

r

v51
o

s

z51

jP uy
vz. Hj 5 oo

u?v

jPu.
v. 5 1 2 o

r

u51

jP u.
u. 5 hj 2 o

r

u51

jDu.
u.

Following Bennett and Binet (1956) and Allard et
Hl 5 oo

y?z

lP .y
.z 5 1 2 o

s

y51

lP .y
.y 5 hl 2 o

s

y51

lD .y
.y , (5)al. (1968), we now define a zygotic association between

loci j and l as a deviation of joint frequencies of double
with hj (5 1 2 Rr
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under Hardy-Weinberg equilibrium) and Hardy-Wein-

jlvuy
vz 5 jlP uy

vz 2 jP u.
v.

lP .y
.z . (1) berg disequilibrium for allele u at locus j, respectively.

The other three zygotic associations, jlvuy
uz , jlvuy

vy , and
jlvuy

uy , can be similarly defined by substituting appropriate MULTILOCUS HETEROZYGOSITY
allele indexes in (1). It is easy to find the ranges of

Number of heterozygous loci (K): When a diploidthese zygotic associations. For example, the range of
individual is randomly taken from the population (de-jlvuy

vz is
fined above), it can be either homozygote or heterozy-
gote at a given locus. If all m loci are evaluated, then the2jP u.
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random variable K is simply the number of heterozygous(2a)
loci found in the randomly chosen diploid individual

This dependence of the zygotic association on the mar- from the population. Thus, K is the sum of m indicator
ginal frequencies at single loci suggests a need to nor- variables, K 5 Rm

j51Xj, where Xj takes either 1 or 0, de-
pending on whether the jth locus is heterozygous ormalize the zygotic association jlvuy

vz ,
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homozygous. The probability that this locus is heterozy- cies {jlP uy
uy} are expressed in terms of gene frequencies

and various genic disequilibria. Given these results andgous is Hj, the population heterozygosity at the jth locus,
and the probability that it is homozygous is 1 2 Hj. K those in (5) for {Hj}, s2
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can take any integer value from 0 to m. If K 5 0, then
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tailed in many places (e.g., Weir 1979). Here it suffices
to recognize that there are five types of disequilibria: (i)and
single-locus digenic disequilibria (i.e., Hardy-Weinberg
disequilibria, jDu.
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where, for example, E(x 2
j xl) is the {21}th central mixed disequilibria (jlDuy

uy).
moment of variables Xj and Xl for loci j and l (Elandt- Table 2 lists six special cases of s2

K as given in (9a) or
Johnson 1971, pp. 106–107). It is evident from (7a)– (9b). The first two cases assume that there are no zygotic
(7c) that evaluating the ith central moment of K re- associations between pairs of loci for all m loci (R j,l
quires a specification of joint genotypic frequencies for v jl 5 0), but case 1 further assumes Hardy-Weinberg
i loci, which include various associations for genes at equilibrium in the population. When genotypes (zy-
up to i loci. For example, the variance (second central gotes) result from random union of gametes, all non-
moment) of K is a function of single-locus heterozygosi- gametic disequilibria including Hardy-Weinberg dis-
ties and two-locus associations only and is independent equilibria at all loci disappear (e.g., jDu.

u. 5 jlDu.
.y 5 jlDuy

.y 5
of higher-order associations involving three or more jlDuy

uy 5 0). This leads to s2
K(3) as given in case 3. s2

K(3)
loci. Similar arguments can be carried out for the third was previously derived (cf. Equation 15 of Brown et al.
or higher central moments of K. If there is complete 1980). Case 4 states a well-established fact that nonzero
interlocus independence, (7a)–(7c) reduce to (3)–(5) quadrigenic disequilibria occur under Hardy-Weinberg
of Brown et al. (1980) but we use heterozygosity {Hj} disequilibrium, even in a population that is in gametic
instead of gene diversity {hj} to measure genetic variation equilibrium (e.g., Haldane 1949; Bennett and Binet
at individual loci. When the population is in Hardy- 1956; Weir and Cockerham 1973).
Weinberg equilibrium, the heterozygosity equals to the The last two cases in Table 2 are not directly obtain-
gene diversity (cf. Equation 5). able from (9a) or (9b), but rather serve to illustrate the

Variance of K: The variance of K as given in (7a) has difficulty of finding the maximum value of s2
K because

two components, one being the sum of variances at the upper bound for jlvuy
vz in (2a) is not unique. Case 5

individual loci and the other being the sum of covari- portrays a scenario where all m loci are absolutely associ-
ances between pairs of loci, ated (Clegg et al. 1976). The final case constructs a

population of hypothetical multilocus zygotes with maxi-
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mum variance of heterozygosity by ranking the {Hj} such
that H1 . H2 . H3 . . . . . Hm. Similar expressions

where Var(Xj) 5 Hj 2 H 2
j and Cov(Xj, Xl) 5 vjl as com-

for these two cases were given by Brown et al. (1980) and
puted using the joint probability distribution between

Brown and Burdon (1983) for haploid and random
loci j and l (Table 1). Thus,

mating populations.
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NUMERICAL ANALYSIS
It is evident from (1) and (3) that vjl 5 Rr
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uy 2 jP u.l

u. P .y
.y], for example. Following Cockerham and

Weir (1973) and Weir (1979), the two-locus frequen- disequilibria: It is evident from (9a) and (9b) that the
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TABLE 1

Joint frequency distribution of indicator variables Xj and Xl in terms of heterozygosities (Hj and Hl)
and zygotic associations (vjl) at loci j and l

Xl

Xj 0 1 Total

0 f00 5 (1 2 Hj)(1 2 Hl) 1 vjl f01 5 (1 2 Hj)Hl 2 vjl f0. 5 1 2 Hj

1 f10 5 Hj(1 2 Hl) 2 vjl f11 5 HjHl 1 vjl f1. 5 Hj

Total f.0 5 1 2 Hl f.1 5 Hl 1.0

The overall measure of zygotic associations (vjl) can be expressed in one of five ways: vjl 5 f00 f11 2 f01 f10 5
f00 2 f0. f.0 5 2(f01 2 f0. f.1) 5 2(f10 2 f1.f.0) 5 f11 2 f1. f.1 .

overall measure of zygotic associations between a pair of zygotic associations (v) can be calculated using the
relations given in Table 1. To gauge the relationshipsof loci is a complex function of gametic, nongametic,

trigenic, and quadrigenic disequilibria weighted appro- between zygotic associations, gene frequencies, and vari-
ous disequilibria, the two-locus genotypic frequenciespriately by gene frequencies. The range of values for

each of these disequilibria is defined by gene frequen- are expressed in terms of disequilibrium functions (cf.
Table 6.1 of Weir and Cockerham 1989). All types ofcies and disequilibria of lower orders. To further ex-

plore such intricate interrelationships among zygotic disequilibria except for Hardy-Weinberg disequilibria
affect the zygotic associations because they are genicassociations, gene frequencies, and various genic dis-

equilibria, numerical calculations are carried out. For disequilibria between the two loci.
We examine the effects of three genic disequilibriasimplicity, let us assume that there are two alleles (1

and 2) at each of the two loci. Frequencies of the ten (gametic, trigenic, and quadrigenic disequilibria) on
the distribution of zygotic associations. Since we assumepossible genotypes are denoted as P 11

11, P 11
12, P 12

12, P 11
21, P 11

22,
P 12

21, P 12
22, P 21

21, P 21
22, and P 22

22, dropping the identifiers for equal gene frequencies (p) at both loci, the nongametic
disequilibrium and gametic disequilibrium are equal,the two loci. These genotypic frequencies are grouped

into four classes (f00, f01, f10, and f11) based on whether and so are the two trigenic disequilibria. To illustrate
the three-way relationship, the effect of gene frequen-genotypes at individual loci are homozygous or hetero-

zygous (Table 3). The marginal totals for the individual cies and gametic disequilibria on zygotic associations is
depicted in Figure 1. In this case, the zygotic associationloci are, respectively, f0. 5 f00 1 f01, f1. 5 f10 1 f11, f.0 5

f00 1 f10, and f.1 5 f01 1 f11. Thus, the overall measure is v 5 2(1 2 2p)2D 1 4D2, where D (5 D11
.. 5 2D12

.. 5

TABLE 2

Single-locus and multilocus components of variance of K, s2
K, under six special cases

Variance of K(s2
K)

Case Single-locus component Multilocus component

1. Hardy-Weinberg equilibrium 0o
m
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2. Hardy-Weinberg disequilibrium 0o
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j ) 2oo
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with gametic disequilibria
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5. Maximum s2
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j ) (m 2 1)o
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j )associations

6. Maximum s2
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HjHllocus heterozygosities
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Figure 1.—Dependence of
zygotic associations on gene
frequency and gametic disequi-
librium.

2D21
.. 5 D22

.. ) is the gametic disequilibrium. The maxi- same estimation procedure is used in the following simu-
mum zygotic association (v 5 0.25) is obtained at p 5 lation study.
0.5 and D 5 60.25, but while v always increases with The nonequilibrium population for two loci each with
D . 0, it can be negative with D , 0 for some gene two alleles is constructed using the fact that each two-
frequencies as shown in Figure 1. The zygotic association locus genotypic frequency can be written as a sum of
is affected little by trigenic disequilibria, but increases the product of single-locus frequencies and its zygotic
with positive and decreases with negative quandrigenic association (Table 4). For a given gene frequency (p)
disequilibria, respectively (the 3D plots for trigenic and at a locus, Hardy-Weinberg disequilibrium (D 5 D1.

1. 5
quadrigenic disequilibria are not presented). 2D1.

2. 5 2D2.
1. 5 D2.

2.) is bounded by
Estimating zygotic associations from variance of

max[2p2, 2(1 2 p)2] # D # p(1 2 p) (11)multilocus heterozygosity: The variance of K in (9a)
suggests that the average zygotic associations (v) may so that the frequencies of the three genotypes at this
be obtained by locus are completely described by p and D: P 1.

1. 5 p2 1
D, P 1.

2. 5 2p(1 2 p) 2 2D, and P 2.
2. 5 (1 2 p)2 1 D. We

v 5 oo
j,l

vjl 5
1
2
[s2

K 2 s2
K(2)], (10) simulate three D values: zero and half the maximum

and minimum possible values as given in (11). While
bounds of nine individual zygotic associations can bewhere s2

K(2) 5 Rm
j51(Hj 2 H 2

j ) is for case 2 of Table 2.
To estimate v from a sample of n diploid individuals computed from the single-locus genotypic frequencies

using (2a), we choose to compute only the four associa-with m polymorphic loci, one needs to estimate s2
K and

single-locus heterozygosities, {Hj}. There are several dis- tions (v11
11, v21

21, v12
12, and v22

22) since the remaining five
(v11

12, v11
21, v11

22, v12
22, and v21

22) are simply the functions ofcussions of procedure for estimating these parameters
from a sample taken from a random mating population those four associations as explained in Table 4. For

simplicity, a further assumption in our simulation is thator haploid population (e.g., Brown et al. 1980; Brown
and Burdon 1983; Chakraborty 1984). Essentially the only one zygotic association is present in the population

TABLE 3

Frequencies of homozygotes and heterozygotes in terms of frequencies of 10 possible
genotypes at two loci ( j and l)

Locus l

Locus j Homozygosity Heterozygosity Total

Homozygosity f00 5 P 11
11 1 P 12

12 1 P 21
21 1 P 22

22 f01 5 P 11
12 1 P 21

22 f0. 5 P 1.
1. 1 P 2.

2.

Heterozygosity f10 5 P 11
21 1 P 12

22 f11 5 P 11
22 1 P 12

21 f1. 5 P 1.
2.

Total f.0 5 P .1
.1 1 P .2

.2 f.1 5 P .1
.2 1
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and the other three are zero. Under this assumption,
s2

K(2) 5 o
m

j51

s2
j 5 o

m

j51
31no

n

t51

(X̃tj 2 X̃j)24, (13b)the bounds of these four zygotic associations are

2min(P 1.
1.P .1

.1, P 1.
2.P .1

.2) # v11
11 # min(P 1.

1.P .1
.2, P 1.

2.P .1
.1) where X̃j 5 Rn

t51X̃tj/n. While the estimator s2
K(2) in (13b)

is slightly biased for the same reason as in computing2min(P 1.
1.P .2

.2, P 1.
2.P.1

.2) # v12
12 # min(P 1.

1.P .1
.2, P 1.

2.P .2
.2) s2

K, its expectation and sampling variance can be readily
2min(P 2.

2.P .1
.1, P 1.

2.P .1
.2) # v21

21 # min(P 2.
2.P .1

.2, P 1.
2.P .1

.1) calculated by inserting the appropriate results in (7)
under interlocus independence (see also Equations 3–52min(P 2.

2.P .2
.2, P 1.

2.P .1
.2) # v22

22 # min(P 2.
2.P .1

.2, P 1.
2.P .2

.2).
of Brown et al. 1980) into the well-known formulas of
Kendall and Stuart (1977, Equations 10.8 and 10.9),(12)

E(s2
K|H0) 5 o

j
Hj 2 o

j
H 2

j (14a)We simulate three values of zygotic association: zero
and half the maximum and minimum possible values

andas given in (12).
From each of 27 constructed populations [3 gene

frequencies (p 5 0.1, 0.3, and 0.5) 3 3 values of Hardy- Var(s2
K|H0) 5

1
n



oj

Hj 2 7o
j
H 2

j 1 12o
j
H 3

j 2 6o
j
H 4

j

Weinberg disequilibrium 3 3 values of zygotic associa-
tion], 10,000 replicate samples of size n 5 30 or n 5

1 23o
j
Hj 2 o

j
Hj4

2


. (14b)100 are drawn. For a sample of n diploid individuals,

let X̃tj be 1 or 0 according to whether the tth individual
Two one-tailed tests are used to determine if the sam-in the sample is heterozygous or homozygous at the jth

ple variance s2
K is significantly greater than its expecta-locus. Then the number of heterozygous loci for this

tion under zero zygotic association s2
K(2). In the firstindividual is K̃t 5 Rm

j51X̃tj. We compute the sample mean
test, assuming that the distribution of K under H0 ap-as K̃ 5 Rn

t51K̃t/n and the sample variance as
proximates a normal distribution, the statistic

s2
K 5

1
no

n

t51

(K̃t 2 K̃)2 . (13a) X 2
s2
K

5 ns2
K/s2

K(2) (15)

has a x2 distribution with n d.f., where n is the numberUsing various expectations of indicators defined for the
of diploid individuals in the sample and s2

K(2) is esti-sample (Weir et al. 1990; Weir 1996, pp. 142–144), it
mated using (13b) [The chi-square test (15) would haveis easily seen that while the sample mean is an unbiased
d.f. 5 (n 2 1) if the customary (n 2 1) is used toestimator of K, [E(K̃) 5 K], the sample variance (13a)
compute s2

K]. The null hypothesis (H0) is rejected ifis not an unbiased estimator of s2
K, i.e., E(s2

K) 5 [(n 2
X 2

s2
K

exceeds 43.77 or 124.34, the upper-tailed 5% critical1)/n]s2
K, because we have divided by n rather than the

customary (n 2 1) in computing (13a). Clearly, the bias value of x2 distribution with d.f. 5 30 or d.f. 5 100,
respectively. Manly (1985, p. 331) defined a similarshould be negligible unless the sample size is very small.

Under the null hypothesis of no zygotic association statistic for haploid data, but because s2
K was computed

from a sample of n2 “dependent” gamete pairs (compari-(H0), we estimate s2
K(2) by computing the sample vari-

ance, s2
K(2), as the sum of sample variances for m loci sons) for n haplotypes (Brown et al. 1980), the appro-

priate degrees of freedom for the chi-square test are yet{s2
j },

TABLE 4

Joint frequencies of nine genotypes at loci j and l in terms of their single-locus
genotypic frequencies and zygotic associations

Locus l

Locus j l1 l1 l1 l2 l2 l2 Total

j1j1 P 11
11 5 P 1.

1.P .1
.1 1 v11

11 P 11
12 5 P 1.

1.P .1
.2 1 v11

12 P 12
12 5 P 1.

1.P .2
.2 1 v12

12 P 1.
1.

j1 j2 P 11
21 5 P 1.

2.P .1
.1 1 v11

21 P 11
22 1 P 12

21 5 P 1.
2.P .1

.2 1 v11
22 P 12

22 5 P 1.
2.P .2

.2 1 v12
22 P 1.

2.

j2 j2 P 21
21 5 P 2.

2.P .1
.1 1 v21

21 P 21
22 5 P 2.

2.P .1
.2 1 v21

22 P 22
22 5 P 2.

2.P .2
.2 1 v22

22 P 2.
2.

Total P .1
.1 P .1

.2 P .2
.2 1

The zygotic associations are constrained by the single-locus frequencies such that only four of the nine
zygotic associations need to be defined and the remaining five are entirely expressed in terms of the four
defined zygotic associations. For example, if v11

11, v21
21, v12

12, and v22
22 are defined, then the remaining five are

expressed as follows: v11
12 5 2(v11

11 1 v12
12), v11

21 5 2(v11
11 1 v21

21), v12
22 5 2(v12

12 1 v22
22), v21

22 5 2(v21
21 1 v22

22),
and v11

22 5 v11
11 1 v12

12 1 v21
21 1 v22

22.
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TABLE 5

Mean, standard deviation, skewness, and kurtosis of s2
K under zero zygotic association for two gene

frequencies (p) and three Hardy-Weinberg disequilibria (D)

Zygotic association Mean of s2
K SD of s2

K
Skewness Kurtosis

p D Mean SD Obs. Exp. Obs. Exp. (g1) (g2)

0.1 20.005 0.0004 0.027 0.30 0.31 0.08 0.08 0.43 0.03
0.1 0.000 20.0002 0.026 0.29 0.30 0.08 0.08 0.46 0.14
0.1 0.045 20.0002 0.015 0.16 0.16 0.07 0.07 0.58 0.51
0.5 20.125 0.0001 0.034 0.36 0.38 0.09 0.09 0.33 20.19
0.5 0.000 20.0005 0.045 0.48 0.50 0.09 0.09 0.03 20.11
0.5 0.125 0.0004 0.034 0.36 0.38 0.09 0.09 0.36 20.08

Expected mean and standard deviation of s2
K are computed using (14a) and (14b). Skewness (g1) 5

m3/m2√m2 and kurtosis (g2) 5 (m4/m2
2) 2 3, where m2, m 3, and m4 are the second, third, and fourth central

moments of s2
K computed from 10,000 samples of n 5 30. Obs., observed; Exp., expected.

to be determined. Furthermore, Haubold et al. (1998) The means of ṽ11
11 are close to their respective theoreti-

cal values and the sampling variances of ṽ11
11 increaserecently provided a more appropriate formula to esti-

mate s2
K(2) for haploid data with an account of the with increasing gene frequencies at n 5 30 (Table 6).

The increase of sample sizes from 30 to 100 reducesinterdependence between the gamete pairs. In the sec-
ond test, assuming that the sampling distribution of s2

K the sampling variances and downward bias of estimated
s2

K (results not presented for n 5 100). The X 2
s2
K

testapproximates normality, Brown et al. (1980) suggested
a test criterion of rejecting H0 if s2

K . L, the upper-tailed statistics are close to their expected values of 30.0 for
5% critical value for s2

K. In our simulation, L is estimated n 5 30 and 100.0 for n 5 100 when zygotic association
by is small at low gene frequencies, but fluctuate with large

positive or negative zygotic associations at more interme-
L > s2

K(2) 1 1.645√Var(s2
K|H0) . (16)

diate gene frequencies. The standard deviations of the
chi-square statistics are also close to their expectationsStatistical properties of sample zygotic association
of 7.75 for n 5 30 and 14.14 for n 5 100 in most cases,and s2

K are examined for the simulated samples of sizes
but sizable discrepancies occur in the cases of largen 5 30 and n 5 100. Despite the slight downward bias
positive or negative zygotic associations. Similar patternsin the mean values of s2

K(2) by a factor of (n 2 1)/n,
of sampling behaviors and properties are revealed forits observed standard deviations are very close to their
v12

12 5 v21
21 and v22

22.expected values even for n 5 30 (Table 5), suggesting
Judging from the estimated powers of the two testthat (14b) is an adequate approximation to the sam-

statistics, the zygotic associations are detectable onlypling variance of s2
K(2). Table 5 also shows that Hardy-

when they are positive and when the gene frequenciesWeinberg disequilibrium (D) affects s2
K(2) in an interest-

are close to 0.5 (Table 6). Figure 2 further shows thating way. Avoidance of mating between relatives (D ,
the powers increase with the large, positive zygotic asso-0) increases heterozygosity whereas inbreeding (D . 0)
ciations and that zero powers are obtained for the large,decreases it. Thus, s2

K(2) is expected to be greater for
negative zygotic associations when p 5 0.5 and D 5D , 0 or smaller for D . 0 than that for the equilibrium
0.125. Similar patterns are observed for other values ofpopulation (D 5 0). However, this is not true when the

gene frequency approaches p 5 0.5. At p 5 0.5, the p and D. It is of interest to note that, unlike the nonlinear
relationship in Figure 2, a linear relationship of zygoticmaximum s2

K(2) is obtained only when the population
is in the Hardy-Weinberg equilibrium (D 5 0) and any associations with the variances of K or with chi-square

values is observed (results not shown). The powerchange in heterozygosity either due to avoidance of
mating between relatives or to inbreeding would result should be 0.05 for the cases of no zygotic associations

as a 5% significance level is used to reject these nullin a smaller s2
K(2). Negligible skewness and kurtosis

suggest that the normality of the sampling distribution hypotheses. According to this criterion, both tests per-
form reasonably well. While test (16) is slightly moreof s2

K(2) required for the test criterion (16) is probably
adequate even though our simulation results are limited powerful than test (15) in most cases, the two tests essen-

tially provide the same amount of power across theto the two loci only. As expected, the estimates of zygotic
association in all simulated populations are zero or very range of zygotic associations. The increase of sample

size from 30 to 100 results in an increase in the powerclose to zero. The increase of sample size from n 5 30
to n 5 100 (not presented) has improved the results of detecting the zygotic associations. Hardy-Weinberg

disequilibrium (D) has little effect on the detection. Foronly slightly.
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TABLE 6

Properties of sample variance of K, s2
K, and its use to detect zygotic association v11

11 with two gene
frequencies (p), three Hardy-Weinberg disequilibria (D), and three zygotic associations (v11

11),
as estimated from 10,000 samples of size n 5 30

X 2
s2
Kṽ11

11 s2
K

p D v11
11 Mean SD Mean SD Mean SD P(C) P(B)

0.1 20.005 0.000 0.000 0.028 0.30 0.08 29.9 7.6 0.05 0.06
0.1 20.005 0.000 0.000 0.028 0.30 0.08 30.0 7.6 0.05 0.06
0.1 20.005 0.001 0.001 0.028 0.30 0.09 30.3 7.8 0.06 0.06
0.1 0.000 0.000 0.000 0.026 0.29 0.08 30.0 7.6 0.05 0.05
0.1 0.000 0.000 0.000 0.026 0.28 0.08 30.0 7.6 0.05 0.05
0.1 0.000 0.002 0.002 0.027 0.29 0.08 30.4 7.8 0.06 0.06
0.1 0.045 20.003 20.003 0.012 0.15 0.06 28.7 5.8 0.04 0.01
0.1 0.045 0.000 0.000 0.015 0.16 0.07 30.0 7.1 0.08 0.03
0.1 0.045 0.005 0.005 0.018 0.17 0.08 32.3 8.6 0.14 0.05
0.5 20.125 20.016 20.015 0.032 0.33 0.08 26.5 7.2 0.02 0.03
0.5 20.125 0.000 0.001 0.034 0.36 0.09 30.1 7.7 0.05 0.09
0.5 20.125 0.094 0.091 0.040 0.54 0.13 50.9 8.0 0.81 0.85
0.5 0.000 20.063 20.061 0.043 0.36 0.09 19.3 7.6 0.00 0.00
0.5 0.000 0.000 20.001 0.045 0.48 0.09 29.9 7.9 0.04 0.12
0.5 0.000 0.125 0.121 0.039 0.73 0.08 51.2 6.8 0.87 0.95
0.5 0.125 20.063 20.061 0.023 0.24 0.01 16.2 3.7 0.00 0.00
0.5 0.125 0.000 20.001 0.033 0.36 0.09 29.8 7.7 0.04 0.07
0.5 0.125 0.094 0.091 0.040 0.54 0.13 51.0 8.1 0.82 0.86

P(C) is the proportion of time that chi square exceeds 43.8 or 124.3, the upper-tailed 5% critical value of
v2

d.f.530 or v2
d.f.5100, respectively (cf. Equation 15). P(B) is the proportion of time that the sample variance of K,

s2
K, exceeds the upper-tailed 5% critical value as given in (16). ṽ11

11 is a sample estimate of v11
11.

example, with p 5 0.5, v11
11 5 0.0938 for both D 5 20.125 for population genetic analysis. The average heterozy-

and D 5 0.125. The power estimates with n 530 are gosity across all the loci scored has been routinely used
0.810 for D 5 20.125 and 0.816 for D 5 0.125, according to summarize the molecular data at hand. In the pres-
to the chi-square test criteria (15). ence of nonrandom associations within and among loci,

there is a need to characterize various genic disequilib-
ria (e.g., Cockerham and Weir 1973; Weir 1979; Weir

DISCUSSION
and Cockerham 1989), but the number of disequilibria

A wide range of molecular data, from isozymes to for multiple alleles and many loci quickly increases be-
newly developed microsatellite markers, is now available yond comprehension. This article has expanded the

earlier concept of zygotic associations to effectively sum-
marize those disequilibria within and between pairs of
loci [cf. (9a) and (9b)]. The measure of zygotic associa-
tions shares most of the properties by gametic disequilib-
rium, but at the zygote level (Table 4). Further, we
have developed a method to compute a set of summary
statistics that are used to characterize and estimate the
multilocus associations in the nonequilibrium popula-
tion. This development substantiates and complements
the earlier development of Brown et al. (1980) for a
Hardy-Weinberg equilibrium population in which the
multilocus associations are the function of only one type
of two-locus disequilibria, gametic disequilibria. For the
equilibrium population, our method reduces to that of
Brown et al. (1980) because, in this case, the gametic

Figure 2.—The relationships between zygotic associations frequencies can be inferred from the zygotic frequen-
and the estimated powers of two tests as given in Equation cies at individual loci. However, our method should15 (dashed lines) and Equation 16 (solid lines). Each point

be of more general use in elucidating the multilocusrepresents the power estimated from 10,000 simulated samples
of sizes n 5 30 (d) and n 5 100 (m). organizations in nonequilibrium and equilibrium dip-
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loid populations. For haploid data such as those from assertion that the multilocus statistics can be used with
relatively small samples (in the order of 30). The in-genetic assessment of bacterial or inbred plant popula-

tions, the procedures of Brown et al. (1980) and Hau- crease in the sample size to n 5 100 results only in slight
to moderate reduction in the sampling variance of s2

Kbold et al. (1998) should be used to construct the distri-
bution of K through comparing all possible pairs of and an increase in the powers of detecting the multilo-

cus associations (Figure 2). We have not simulated sam-gametes in a population and to estimate different mo-
ments of K with an account of the interdependence ples of very small sizes that may occur in practice. With

small sample sizes, the validity of the assumed distribu-between the gamete pairs for detecting multilocus asso-
ciations. tions for the sample variance of K as required by tests

(15) and (16) may not be warranted. In this case, theOur method may be particularly useful for character-
izing and estimating the multilocus associations in hy- recently developed permutation test (Guo and Thomp-

son 1992) may be a preferred alternative to detect zy-brid populations. Because these populations arise from
the mixing of two or more distinct gene pools, strong gotic associations because it requires no assumptions

about the distributions of multilocus statistics. In theWahlund effect and selection against heterozygotes may
frequently occur, thereby maintaining Hardy-Weinberg permutation test, the null distribution [i.e., the distribu-

tion of s2
K(2)] is generated by randomly shuffling thedisequilibrium and zygotic associations for a long time.

Given that alleles derived from the same parental popu- single-locus zygotes among individuals in the sample.
This is very similar to the randomization scheme de-lations or species tend to cluster together in the same

individuals, the majority of pairwise zygotic associations scribed by Haubold et al. (1998) for haploid data, but
it retains Hardy-Weinberg disequilibrium in the zygotes.should be positive, leading to an easier detection of

the multilocus associations from our summary statistics. However, the permutation test can be computationally
intensive, particularly when the sample size is large.Barton and Gale (1993) have recently proposed a

somewhat different method of estimating the multilocus Thus, tests (15) and (16) should be useful for analyzing
samples of moderate to large sizes.associations from the variance of hybrid index for a

hybrid population arising from the mixing of two paren- I thank three reviewers for comments and constructive criticisms on
tal gene pools. While their method is based on essen- earlier versions of the manuscript. This research has been supported in

part by the Natural Sciences and Engineering Research Council oftially the same strategy to summarize the multilocus
Canada grant OGP0183983.data, it is of limited value in (i) detecting multilocus

associations for hybrid populations arising from the mix-
ing of more than two parental gene pools; (ii) using
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