Skip to main content
Genetics logoLink to Genetics
. 2000 Aug;155(4):1725–1740. doi: 10.1093/genetics/155.4.1725

A screen for mutations that suppress the phenotype of Drosophila armadillo, the beta-catenin homolog.

R T Cox 1, D G McEwen 1, D L Myster 1, R J Duronio 1, J Loureiro 1, M Peifer 1
PMCID: PMC1461219  PMID: 10924470

Abstract

During development signaling pathways coordinate cell fates and regulate the choice between cell survival or programmed cell death. The well-conserved Wingless/Wnt pathway is required for many developmental decisions in all animals. One transducer of the Wingless/Wnt signal is Armadillo/beta-catenin. Drosophila Armadillo not only transduces Wingless signal, but also acts in cell-cell adhesion via its role in the epithelial adherens junction. While many components of both the Wingless/Wnt signaling pathway and adherens junctions are known, both processes are complex, suggesting that unknown components influence signaling and junctions. We carried out a genetic modifier screen to identify some of these components by screening for mutations that can suppress the armadillo mutant phenotype. We identified 12 regions of the genome that have this property. From these regions and from additional candidate genes tested we identified four genes that suppress arm: dTCF, puckered, head involution defective (hid), and Dpresenilin. We further investigated the interaction with hid, a known regulator of programmed cell death. Our data suggest that Wg signaling modulates Hid activity and that Hid regulates programmed cell death in a dose-sensitive fashion.

Full Text

The Full Text of this article is available as a PDF (751.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott M. K., Lengyel J. A. Embryonic head involution and rotation of male terminalia require the Drosophila locus head involution defective. Genetics. 1991 Nov;129(3):783–789. doi: 10.1093/genetics/129.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergmann A., Agapite J., McCall K., Steller H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell. 1998 Oct 30;95(3):331–341. doi: 10.1016/s0092-8674(00)81765-1. [DOI] [PubMed] [Google Scholar]
  3. Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
  4. Cavallo R. A., Cox R. T., Moline M. M., Roose J., Polevoy G. A., Clevers H., Peifer M., Bejsovec A. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature. 1998 Oct 8;395(6702):604–608. doi: 10.1038/26982. [DOI] [PubMed] [Google Scholar]
  5. Cox R. T., Kirkpatrick C., Peifer M. Armadillo is required for adherens junction assembly, cell polarity, and morphogenesis during Drosophila embryogenesis. J Cell Biol. 1996 Jul;134(1):133–148. doi: 10.1083/jcb.134.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dickinson M. E., Krumlauf R., McMahon A. P. Evidence for a mitogenic effect of Wnt-1 in the developing mammalian central nervous system. Development. 1994 Jun;120(6):1453–1471. doi: 10.1242/dev.120.6.1453. [DOI] [PubMed] [Google Scholar]
  7. Edgar B. A., O'Farrell P. H. Genetic control of cell division patterns in the Drosophila embryo. Cell. 1989 Apr 7;57(1):177–187. doi: 10.1016/0092-8674(89)90183-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eldon E., Kooyer S., D'Evelyn D., Duman M., Lawinger P., Botas J., Bellen H. The Drosophila 18 wheeler is required for morphogenesis and has striking similarities to Toll. Development. 1994 Apr;120(4):885–899. doi: 10.1242/dev.120.4.885. [DOI] [PubMed] [Google Scholar]
  9. Gallet A., Erkner A., Charroux B., Fasano L., Kerridge S. Trunk-specific modulation of wingless signalling in Drosophila by teashirt binding to armadillo. 1998 Jul 30-Aug 13Curr Biol. 8(16):893–902. doi: 10.1016/s0960-9822(07)00369-7. [DOI] [PubMed] [Google Scholar]
  10. Georgakopoulos A., Marambaud P., Efthimiopoulos S., Shioi J., Cui W., Li H. C., Schütte M., Gordon R., Holstein G. R., Martinelli G. Presenilin-1 forms complexes with the cadherin/catenin cell-cell adhesion system and is recruited to intercellular and synaptic contacts. Mol Cell. 1999 Dec;4(6):893–902. doi: 10.1016/s1097-2765(00)80219-1. [DOI] [PubMed] [Google Scholar]
  11. Gertler F. B., Comer A. R., Juang J. L., Ahern S. M., Clark M. J., Liebl E. C., Hoffmann F. M. enabled, a dosage-sensitive suppressor of mutations in the Drosophila Abl tyrosine kinase, encodes an Abl substrate with SH3 domain-binding properties. Genes Dev. 1995 Mar 1;9(5):521–533. doi: 10.1101/gad.9.5.521. [DOI] [PubMed] [Google Scholar]
  12. Graba Y., Gieseler K., Aragnol D., Laurenti P., Mariol M. C., Berenger H., Sagnier T., Pradel J. DWnt-4, a novel Drosophila Wnt gene acts downstream of homeotic complex genes in the visceral mesoderm. Development. 1995 Jan;121(1):209–218. doi: 10.1242/dev.121.1.209. [DOI] [PubMed] [Google Scholar]
  13. Greaves S., Sanson B., White P., Vincent J. P. A screen for identifying genes interacting with armadillo, the Drosophila homolog of beta-catenin. Genetics. 1999 Dec;153(4):1753–1766. doi: 10.1093/genetics/153.4.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grether M. E., Abrams J. M., Agapite J., White K., Steller H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 1995 Jul 15;9(14):1694–1708. doi: 10.1101/gad.9.14.1694. [DOI] [PubMed] [Google Scholar]
  15. Haass C., De Strooper B. The presenilins in Alzheimer's disease--proteolysis holds the key. Science. 1999 Oct 29;286(5441):916–919. doi: 10.1126/science.286.5441.916. [DOI] [PubMed] [Google Scholar]
  16. Haining W. N., Carboy-Newcomb C., Wei C. L., Steller H. The proapoptotic function of Drosophila Hid is conserved in mammalian cells. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4936–4941. doi: 10.1073/pnas.96.9.4936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hay B. A., Wolff T., Rubin G. M. Expression of baculovirus P35 prevents cell death in Drosophila. Development. 1994 Aug;120(8):2121–2129. doi: 10.1242/dev.120.8.2121. [DOI] [PubMed] [Google Scholar]
  18. Hoschuetzky H., Aberle H., Kemler R. Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol. 1994 Dec;127(5):1375–1380. doi: 10.1083/jcb.127.5.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hudson J. B., Podos S. D., Keith K., Simpson S. L., Ferguson E. L. The Drosophila Medea gene is required downstream of dpp and encodes a functional homolog of human Smad4. Development. 1998 Apr;125(8):1407–1420. doi: 10.1242/dev.125.8.1407. [DOI] [PubMed] [Google Scholar]
  20. Kang D. E., Soriano S., Frosch M. P., Collins T., Naruse S., Sisodia S. S., Leibowitz G., Levine F., Koo E. H. Presenilin 1 facilitates the constitutive turnover of beta-catenin: differential activity of Alzheimer's disease-linked PS1 mutants in the beta-catenin-signaling pathway. J Neurosci. 1999 Jun 1;19(11):4229–4237. doi: 10.1523/JNEUROSCI.19-11-04229.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Klingensmith J., Noll E., Perrimon N. The segment polarity phenotype of Drosophila involves differential tendencies toward transformation and cell death. Dev Biol. 1989 Jul;134(1):130–145. doi: 10.1016/0012-1606(89)90084-5. [DOI] [PubMed] [Google Scholar]
  22. Kurada P., White K. Ras promotes cell survival in Drosophila by downregulating hid expression. Cell. 1998 Oct 30;95(3):319–329. doi: 10.1016/s0092-8674(00)81764-x. [DOI] [PubMed] [Google Scholar]
  23. Levesque G., Yu G., Nishimura M., Zhang D. M., Levesque L., Yu H., Xu D., Liang Y., Rogaeva E., Ikeda M. Presenilins interact with armadillo proteins including neural-specific plakophilin-related protein and beta-catenin. J Neurochem. 1999 Mar;72(3):999–1008. doi: 10.1046/j.1471-4159.1999.0720999.x. [DOI] [PubMed] [Google Scholar]
  24. Mahajan-Miklos S., Cooley L. The villin-like protein encoded by the Drosophila quail gene is required for actin bundle assembly during oogenesis. Cell. 1994 Jul 29;78(2):291–301. doi: 10.1016/0092-8674(94)90298-4. [DOI] [PubMed] [Google Scholar]
  25. Martinez-Arias A. The development of fused- embryos of Drosophila melanogaster. J Embryol Exp Morphol. 1985 Jun;87:99–114. [PubMed] [Google Scholar]
  26. Martín-Blanco E., Gampel A., Ring J., Virdee K., Kirov N., Tolkovsky A. M., Martinez-Arias A. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev. 1998 Feb 15;12(4):557–570. doi: 10.1101/gad.12.4.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Murayama M., Tanaka S., Palacino J., Murayama O., Honda T., Sun X., Yasutake K., Nihonmatsu N., Wolozin B., Takashima A. Direct association of presenilin-1 with beta-catenin. FEBS Lett. 1998 Aug 14;433(1-2):73–77. doi: 10.1016/s0014-5793(98)00886-2. [DOI] [PubMed] [Google Scholar]
  28. Müller H. A., Wieschaus E. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J Cell Biol. 1996 Jul;134(1):149–163. doi: 10.1083/jcb.134.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Neumann C. J., Cohen S. M. Distinct mitogenic and cell fate specification functions of wingless in different regions of the wing. Development. 1996 Jun;122(6):1781–1789. doi: 10.1242/dev.122.6.1781. [DOI] [PubMed] [Google Scholar]
  30. Nishimura M., Yu G., Levesque G., Zhang D. M., Ruel L., Chen F., Milman P., Holmes E., Liang Y., Kawarai T. Presenilin mutations associated with Alzheimer disease cause defective intracellular trafficking of beta-catenin, a component of the presenilin protein complex. Nat Med. 1999 Feb;5(2):164–169. doi: 10.1038/5526. [DOI] [PubMed] [Google Scholar]
  31. Nüsslein-Volhard C., Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980 Oct 30;287(5785):795–801. doi: 10.1038/287795a0. [DOI] [PubMed] [Google Scholar]
  32. Pazdera T. M., Janardhan P., Minden J. S. Patterned epidermal cell death in wild-type and segment polarity mutant Drosophila embryos. Development. 1998 Sep;125(17):3427–3436. doi: 10.1242/dev.125.17.3427. [DOI] [PubMed] [Google Scholar]
  33. Peifer M., Sweeton D., Casey M., Wieschaus E. wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo. Development. 1994 Feb;120(2):369–380. doi: 10.1242/dev.120.2.369. [DOI] [PubMed] [Google Scholar]
  34. Provost E., Rimm D. L. Controversies at the cytoplasmic face of the cadherin-based adhesion complex. Curr Opin Cell Biol. 1999 Oct;11(5):567–572. doi: 10.1016/s0955-0674(99)00015-0. [DOI] [PubMed] [Google Scholar]
  35. Raftery L. A., Twombly V., Wharton K., Gelbart W. M. Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics. 1995 Jan;139(1):241–254. doi: 10.1093/genetics/139.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sanson B., White P., Vincent J. P. Uncoupling cadherin-based adhesion from wingless signalling in Drosophila. Nature. 1996 Oct 17;383(6601):627–630. doi: 10.1038/383627a0. [DOI] [PubMed] [Google Scholar]
  37. Schüpbach T., Wieschaus E. Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations. Genetics. 1989 Jan;121(1):101–117. doi: 10.1093/genetics/121.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Spradling A. C., Stern D., Beaton A., Rhem E. J., Laverty T., Mozden N., Misra S., Rubin G. M. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics. 1999 Sep;153(1):135–177. doi: 10.1093/genetics/153.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Su T. T., Sprenger F., DiGregorio P. J., Campbell S. D., O'Farrell P. H. Exit from mitosis in Drosophila syncytial embryos requires proteolysis and cyclin degradation, and is associated with localized dephosphorylation. Genes Dev. 1998 May 15;12(10):1495–1503. doi: 10.1101/gad.12.10.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tao Y. S., Edwards R. A., Tubb B., Wang S., Bryan J., McCrea P. D. beta-Catenin associates with the actin-bundling protein fascin in a noncadherin complex. J Cell Biol. 1996 Sep;134(5):1271–1281. doi: 10.1083/jcb.134.5.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Uemura T., Oda H., Kraut R., Hayashi S., Kotaoka Y., Takeichi M. Zygotic Drosophila E-cadherin expression is required for processes of dynamic epithelial cell rearrangement in the Drosophila embryo. Genes Dev. 1996 Mar 15;10(6):659–671. doi: 10.1101/gad.10.6.659. [DOI] [PubMed] [Google Scholar]
  42. Vucic D., Kaiser W. J., Miller L. K. Inhibitor of apoptosis proteins physically interact with and block apoptosis induced by Drosophila proteins HID and GRIM. Mol Cell Biol. 1998 Jun;18(6):3300–3309. doi: 10.1128/mcb.18.6.3300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wang S. L., Hawkins C. J., Yoo S. J., Müller H. A., Hay B. A. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell. 1999 Aug 20;98(4):453–463. doi: 10.1016/s0092-8674(00)81974-1. [DOI] [PubMed] [Google Scholar]
  44. White K., Grether M. E., Abrams J. M., Young L., Farrell K., Steller H. Genetic control of programmed cell death in Drosophila. Science. 1994 Apr 29;264(5159):677–683. doi: 10.1126/science.8171319. [DOI] [PubMed] [Google Scholar]
  45. Yu G., Chen F., Levesque G., Nishimura M., Zhang D. M., Levesque L., Rogaeva E., Xu D., Liang Y., Duthie M. The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains beta-catenin. J Biol Chem. 1998 Jun 26;273(26):16470–16475. doi: 10.1074/jbc.273.26.16470. [DOI] [PubMed] [Google Scholar]
  46. Zhang Z., Hartmann H., Do V. M., Abramowski D., Sturchler-Pierrat C., Staufenbiel M., Sommer B., van de Wetering M., Clevers H., Saftig P. Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature. 1998 Oct 15;395(6703):698–702. doi: 10.1038/27208. [DOI] [PubMed] [Google Scholar]
  47. Zhou J., Liyanage U., Medina M., Ho C., Simmons A. D., Lovett M., Kosik K. S. Presenilin 1 interaction in the brain with a novel member of the Armadillo family. Neuroreport. 1997 Apr 14;8(6):1489–1494. doi: 10.1097/00001756-199704140-00033. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES