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ABSTRACT
The homozygous effects of ethylmethane sulfonate (EMS)-induced mutations in Caenorhabditis elegans

are compared across life-history traits. Mutagenesis has a greater effect on early than late reproductive
output, since EMS-induced mutations tend to cause delayed reproduction. Mutagenesis changes the mean
and variance of longevity much less than reproductive output traits. Mutations that increase total or early
productivity are not detected, but the net effect of mutations is to increase and decrease late productivity
to approximately equal extents. Although most mutations decrease longevity, a mutant line with increased
longevity was found. A flattening of mortality curves with age is noted, particularly in EMS lines. We infer
that less than one-tenth of mutations that have fitness effects in natural conditions are detected in the
laboratory, and such mutations have moderately large effects (z20% of the mean). Mutational correlations
for life-history traits are strong and positive. Correlations between early or late productivity and longevity
are of similar magnitude. We develop a maximum-likelihood procedure to infer bivariate distributions of
mutation effects. We show that strong mutation-induced genetic correlations do not necessarily imply
strong directional correlations between mutational effects, since correlation is also generated by lines
carrying different numbers of mutations.

MUTATIONS provide the source of all genetic vari- Furthermore, if a single mutation has pleiotropic effects
ation among individuals and the basis for evolu- on two or more traits, the overall effect of that mutation

tionary change. Yet, relatively little is known about the on fitness may be underestimated if only one of the
distribution of effects and properties of new mutations traits is measured. Thus, for a fuller picture of the effects
for fitness-related traits. One method of studying the of mutations on fitness, multiple life-history traits and
fitness effects of new mutations involves the accumula- the correlations between them should be measured.
tion of spontaneous mutations in inbred sublines under Correlated effects of mutations are of interest in a
conditions of minimal selection, followed by measure- broader sense as well: genetic correlations are important
ment of the distribution of life-history traits in these in the context of correlated responses to selection and
mutation-accumulation lines and controls. Such experi- may act as constraints on evolutionary change (Fal-
ments, the largest body of work by Mukai and associates coner and Mackay 1996).
in the 1960s and 1970s (Mukai 1964; Mukai et al. 1972; Estimates of mutational correlations have previously
Ohnishi 1977), have recently proliferated in number been obtained from two mutation-accumulation experi-
(for recent reviews, see Charlesworth and Charles- ments, both in Drosophila. Houle et al. (1994) mea-
worth 1998; Garcia-Dorado et al. 1999; Keightley sured a series of life-history traits in chromosome bal-
and Eyre-Walker 1999; Lynch et al. 1999), partly due ancer-derived lines, including competitive fitness, total,
to a renewed interest in genome-wide mutation rates early, and late productivity, and longevity, and reported
and the potential implications of recurrent spontaneous strong positive genetic correlations in all cases. In con-
mutations for the evolution of sex and genetic load. trast, Fernandez and Lopez-Fanjul (1996) reported

Fitness, however, is a complex trait. Inferring the ef- low values (maximum 0.25) for genetic correlations be-
fects of mutation on life-history traits is clearly valuable, tween viability traits and fecundity.
but only gives a part of the picture. The total number Mutational effects on multiple traits and some muta-
of mutations affecting overall fitness may be underesti- tional correlations have particular relevance to specific
mated if only one component of fitness is measured. evolutionary models. In particular, the effects of muta-

tions on early and late reproduction are important in
the context of models of senescence. Senescence, the
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tionary biologists: if organisms can function well in on the traits measured, in particular the joint effects
of mutations on longevity and the other major fitnessyouth, why should they not continue to do so? An answer

to this is provided by evolutionary theories of aging, components. We develop a maximum-likelihood proce-
dure to estimate properties of the bivariate distributionwhich state that natural selection will tend to put a

greater relative weight on mutations that affect survival of mutation effects. One advantage of using C. elegans
as a model system is the ease with which a highly inbred,and other components of fitness that act early in life

than those that affect later stages, because, by the time genetically homogeneous population may be obtained
and studied. Because the lines are highly inbred, there isalleles with influences later in life take effect, more of

the original carriers will have died or become infertile expected to be no genetic variance between individuals
within a line, and thus the residual component of vari-for other reasons (Medawar 1946, 1952; Williams

1957; Hamilton 1966). This process will lead to the ance must be purely environmental. By inducing large
numbers of mutations, we can increase the likelihoodevolution of a life history in which fertility and survival

chances decrease with increasing age. of finding mutations with pleiotropic effects, although
distinguishing between individual mutations with effectsTheoretical work has identified two possible paths by

which this age-specific selection pressure can lead to on more than one trait and associations between muta-
tions that affect different traits becomes more chal-the evolution of aging. The first suggests that it may

be caused by the accumulation of mutations that have lenging.
deleterious effects on fitness late in life (the mutation-
accumulation model; Edney and Gill 1968; Partridge

MATERIALS AND METHODSand Barton 1993; Charlesworth 1994). The second
states that those alleles with beneficial effects early in Mutagenesis and generation of C. elegans lines: The EMS

mutagenesis procedure and the derivation of the C. eleganslife, but that can have harmful effects later, will be fa-
EMS and control lines used in this study have been describedvored over those that produce beneficial effects later,
in detail elsewhere (Davies et al. 1999). Briefly, the wild-typeand so the optimal life history will include decline in strain N2 was mutagenized with 50 mm EMS for 4 hr at 208

fitness later in life (the optimality or antagonistic pleio- according to the protocol of Anderson (1995). This is ex-
tropy model; Williams 1966; Rose 1982; Partridge pected to generate z220 G/C → A/T transition mutations per

haploid genome, z50 of which cause amino acid mutations inand Barton 1993). This model assumes a negative cor-
protein coding genes (Anderson 1995; Davies et al. 1999).relation between early and late fitness components, such
From the mutagenized worms, 60 lines were inbred underas early productivity and lifespan. To date, experimental minimal selection by the transfer of single hermaphrodite

studies of the relationship between fitness components larvae, chosen at random each generation, to randomly fix
and longevity have focused on standing variation in induced mutations. Unmutagenized control lines (40) were

treated in an identical manner. Backup cultures were em-populations (Hughes and Charlesworth 1994; Pro-
ployed for cases in which a worm failed to reproduce. By themislow et al. 1996), differences between selection lines
10th transfer, there were 56 surviving EMS lines and 40 control(reviewed by Zwaan 1999), specific mutants of large lines.

effect (reviewed by Kenyon 1997), and quantitative trait Life-history trait assays: Daily reproductive output and life-
loci (Shook et al. 1996; Nuzhdin et al. 1997). As noted span of individual worms were recorded. Individual replicates

of each line were maintained for three generations prior toby Charlesworth (1993), “further information on the
each assay to remove the influence of maternal effects. Traitsproperties of mutational variation is badly needed.”
were measured contemporaneously for all EMS and controlPreviously (Davies et al. 1999), we reported an EMS lines. Each of three people assayed one worm from each line,

mutagenesis experiment in Caenorhabditis elegans in and the entire assay was repeated three times, giving a total
which we studied the effects of induced mutations on of nine worms assayed per line. The numbers of progeny

surviving to the L3 stage that were produced by individualreproductive output. The mutagenesis was carried out
worms during the first 6 days of their reproductive periodusing a standard dosage (50 mm EMS for 4 hr), for
were counted (reproduction starts on day 4). A combinedwhich the number of point mutations (predominantly progeny count was carried out for the last 2 days of reproduc-

G/C to A/T transitions) induced in the DNA has been tion, since almost all progeny are produced in the first 5 days
calibrated (Anderson 1995; Davies et al. 1999). The of the reproductive period. The day on which the parental

worm died was recorded. A worm was scored as dead if itlines were then inbred for 10 generations in conditions
ceased to respond to light touch with a platinum pick anddesigned to minimize selection, to fix the new muta-
showed a loss of turgor, or showed visible signs of decay. Wetions, and life-history assays were carried out. Here, we concentrated our analysis on five traits: total productivity, early

extend the analysis of the EMS lines to a suite of life- productivity (offspring produced during the first 2 days of
history traits: various measures of productivity (total, the reproductive period), late productivity (offspring pro-

duced during the remaining 4 days), longevity, and relativeearly, and late), lifespan, and “relative fitness,” a fitness
fitness, a measure related to intrinsic population growthmeasure appropriate for an age-structured population
rate (Charlesworth 1994). To calculate values for relativeat equilibrium. We compare the effects of EMS treat- fitness, the intrinsic growth rate, ri, of each control line was

ment on these traits in terms of changes of mean and computed by solving
variance and estimated numbers of mutations induced.

o
x

e2rixli(x)mi(x) 5 1 (1)We focus on the joint distributions of mutational effects
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using Newton-Raphson iteration, where li(x) and mi(x) are line data. Standard errors for correlation coefficient estimates
were obtained by carrying out the above analysis on boot-proportions of worms surviving to day x and fecundities at

day x, respectively, for line i. The relative fitness, wij, of each strapped data (by line) 100 times.
Likelihood approach to infer bivariate mutation distribu-EMS or control individual was computed from

tions: We assumed that mutations had unidirectional effects
wij 5 o

x
e2rcxlij(x)mij(x) (2) on traits X and Y, that all mutations had some effect on both

traits, and, for the purposes of the analysis described below,
that the correlation between mutational effects was positive.(Charlesworth 1994, p. 120), where rc is the average intrinsic
The number of mutations fixed per line was assumed to begrowth rate for the control lines, and lij(x) and mij(x) are
a random variable from a Poisson distribution with parametersurvival probabilities and fecundities, respectively, to day x for
UI, and the mutation effects were assumed to follow a bivariateworm j of line i. Evaluation of (2) gave a mean relative fitness
gamma distribution with correlation between mutational ef-for the control lines very close to 1. The above fitness measure
fects r, scale parameters aX and aY, and the same shape parame-is appropriate for a population whose age structure is at equi-
ter, b, for each trait. The same b is not a requirement, butlibrium (Charlesworth 1994) and is preferable to using r
was assumed to reduce the computational complexity anditself (Vassilieva and Lynch 1999; Keightley and Batail-
to reduce the dimensionality of the parameter space to belon 2000).
searched. The environmental deviates were assumed to followComparison of effects of mutagenesis: An aim of the experi-
a bivariate normal distribution with variances V X

E and V Y
E andment was to compare the effects of EMS mutagenesis on a

covariance covE. To speed up the computations, the likelihoodrange of life-history traits. We employed three measures of
calculations were set up as appropriate for line mean values.“mutational target” size to make such comparisons. One mea-
Under the above assumptions, the likelihood associated withsure is the scaled change in mean trait value, M, between the
line i with phenotypic values ZX

i , ZY
i is the bivariate analog ofEMS and control (CON) lines, DM/M 5 (MCON 2 MEMS)/

the likelihood Equation 2 of Keightley and Ohnishi (1998),MCON. Two other measures are based on the EMS-induced
genetic variance, VG, which was obtained as the difference

L(ZX
i , ZY

i |aX, aY, b, r, UI, MX, MY, V X
E, V Y

E, covE)between genetic variance components of the EMS and control
lines, from analysis of variance (ANOVA). The two measures 5 p(0|UI) f(ZX

i , ZY
i |MX, MY, V X

E, V Y
E, covE)

based on variance are the mutational “heritability,” h2
M 5 VM/

1 p(1|UI)eef(ZX
i 1 a, ZY

i 1 b|MX, MY, V X
E, V Y

E, covE)VE, where VM 5 VG/2 and VE is the environmental variance of
the controls, and the mutational coefficient of variation,

3 h(a, b|aX, aY, b, r)dadb
CVM 5 V 1/2

M /MCON. Variances attributable to the factors in the
experiment were inferred from ANOVAs, in which effects were 1 p(2|UI)eef(ZX

i 1 a, ZY
i 1 b|MX, MY, V X

E, V Y
E, covE)

fitted for measurer and assay number and their interaction,
3 h(a, b|aX, aY, 2b, r)dadb 1 . . . , (3)and, where significant, line–measurer–assay number interac-

tion. Standard errors for h2
M and CVM were obtained by boot- where p(x|UI) is the Poisson distribution function for x muta-

strapping the data by line, 100 times. tion events, f() is the bivariate normal density function, and
Univariate estimation of mutation numbers and effects: We h() is the bivariate gamma distribution function. Equation 3

estimated mutational parameters using the Bateman-Mukai makes use of the fact that the sum of n pairs of gamma deviates
(BM) approach (Bateman 1959; Mukai 1964; see also Lynch with parameters r, aX, aY, b is also bivariate gamma distributed
and Walsh 1998) and by maximum likelihood (ML; see with parameters r, aX, aY, nb. The overall likelihood of the
Keightley and Ohnishi 1998 for details). The BM approach data was the product of likelihoods for each line, and control
assumes equal mutation effects and uses the change of mean line data were included with UI set to zero.
between the treated and untreated lines and the genetic vari- Equation 3 was evaluated numerically in a way similar to that
ance of the treated lines to estimate an “effective” number described by Keightley and Ohnishi (1998). The double
of mutations per haploid, UI, along with a mutational effect integrals were evaluated using precomputed tables of bivariate
parameter, s. Under ML, the same equal-effects model as gamma frequency distributions of mean 1 and a large range
under BM can be assumed, or mutation effects can be assumed of b values. These tables were generated by the “GTVR” algo-
to come from a chosen family of distributions. The fit of rithm of Schmeiser and Lal (1982). The b values were multi-
different distributions to the data is compared via the likeli- ples of 0.25, allowing evaluation of the overall likelihood for
hood. Under the gamma distribution model assumed here, b values that are a multiple of 0.25. Sets of tables were gener-
the distribution parameters estimated are shape b, and mean ated for 11 values of r: 0, 0.1, 0.2, . . . 1. Each table was
mutational effect s 5 b/a, where a is a scale parameter. To subdivided into subranges to improve the spread of the distri-
keep the computations manageable, we assume unidirectional bution of frequencies and hence increase the accuracy. Tables
(i.e., unreflected) gamma distributions. The likelihood calcu- of dimension 20 3 20 were used in an initial grid search
lations used line means, whose distributions for the controls (see below), and then 50 3 50 tables were used in a “final”
are close to normal. Estimates based on line means were very likelihood maximization. The precision obtained for tables of
similar to those based on individual worms. different dimension was compared by analysis of simulated

Estimation of genetic correlations between life-history data sets; it was found that 100 3 100 tables gave the same
traits: Estimates of genetic and environmental correlation co- likelihood to the first decimal place as 50 3 50 tables and
efficients between the life-history traits were obtained by re- profile likelihoods that were indistinguishable. The 20 3 20
stricted maximum likelihood using the average information tables were used to speed up the initial grid searches. These
algorithm implemented in the ASREML package (Gilmour tables also gave similar-shaped profile likelihoods, but likeli-
et al. 1995). This analysis fully accounts for the slight imbalance hood values differed in the first decimal place.
that was present in the data. Effects were fitted for line, mea- Likelihood maximization: A combination of grid searches
surer, and replicate, plus measurer-by-replicate interaction. and the simplex method (Nelder and Mead 1965) was used
The genetic (co)variance is computed as the difference be- to maximize likelihood. Likelihood was separately maximized
tween EMS and control line genetic (co)variance estimates, for the 11 fixed values of r (0, 0.1, etc.) and a series of fixed
and the genetic correlation, rG, computed directly from these. values of b (note that b and r were not varied within likelihood

maximizations). Likelihood was maximized with respect toThe environmental correlation is computed from the control
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the remaining parameters using the simplex algorithm, but In terms of mutational heritability, however, total pro-
to reduce the dimensionality, initial searches with five fixed ductivity is a larger target than early productivity, pre-
values of UI, varying by a factor of four, were carried out. To

sumably reflecting a higher environmental variance forverify the ML procedure, we analyzed sets of simulated data
early productivity. Longevity is a substantially smallerthat conformed to the analysis model assumed. In these analy-

ses, the middle value of UI in the initial search was the simu- mutational target that any other trait measured by any
lated value. In the analysis of C. elegans life-history trait data, of the criteria. Late productivity seems to be influenced
the middle value was similar to the univariate estimate of UI more or less equally by mutations that increase or de-
for one of the two traits. Starting values for the remaining

crease the trait (Figure 1); increases presumably are theparameters were computed from the data. Starting values for
result of delayed development. In the case of longevity,aX and aY were functions of UI, b, and the change of mean,

DM, between the control and mutated lines, e.g., aX 5 Ub/ the distribution of EMS line means is skewed downward,
DMX. Starting values for MX, MY, V X

E, V Y
E, and covE were com- but there is also an indication that one or two lines have

puted from means and (co)variances of the control line higher longevity than the controls. One EMS line has
means. The final simplex (using the 50 3 50 bivariate gamma

a mean longevity of 16.0 days, which is 2.6 phenotypictables) involved maximization for UI, aX, aY, MX, MY, V X
E, V Y

E,
standard deviations (z25%) above the control mean.and covE and used starting values that had given the highest

likelihood in the initial search over UI values. After each max- The increased life span of this line was found to be
imization had converged, including the initial searches, the replicable (C. Greer, unpublished data). Of the re-
simplex was restarted from the point of initial convergence maining 55 lines, 5 had longevity significantly lower than
to check that convergence was genuine, as recommended by

the control mean, but none had significantly increasedPress et al. (1992).
longevity (after Bonferroni correction). For traits other
than longevity and late productivity, there is no evidence

RESULTS in this experiment of mutations that increase the trait
value.EMS-induced variation for life-history traits: A sum-

Mutational target sizes—mutation rates and effects:mary of results from ANOVA of control and EMS line
Changes of means and variances (Table 2) dependdata is shown in Table 1. Variation among control lines
jointly on the numbers of mutations induced and theiris nonsignificant for all traits, but it is highly significant
distributions of effects. We investigated the underlyingamong EMS lines in all cases. There are significant assay
mutational parameters by applying the BM method ofnumber effects for each trait and both treatments, re-
moments and ML to all traits except late productivity.flecting unexplained environmental differences be-
In both analyses, we assumed that mutations uncondi-tween the three assays; such effects on life-history traits
tionally reduce the trait value. Under the BM analysis,have previously been noted in C. elegans (Johnson and
the results suggest that each line is affected by only aHutchinson 1993). For this reason, each measurer as-
few mutations, or in the case of longevity, less than onesayed each EMS and control line in each assay. Measurer
mutation on average (Table 3). The estimated valueseffects and assay–measurer interactions are significant
for UI (per haploid) closely reflect the changes of meanin several cases, probably reflecting changing relative
and variances, with, for example, early productivity andlevels of experience in carrying out worm assays among
relative fitness showing significantly higher rates for de-the three measurers. For two traits, early productivity
tectable mutations than the other life-history traits. Theand relative fitness, there are significant assay–line and
average effects for these detectable mutations are rela-measurer–line interactions, implying that specific lines
tively large, in the range of 15–24%.reacted differently to different environments (assays),

Under the ML analysis with the assumption of equaland that specific lines were treated or measured differ-
mutation effects, estimates of UI (s) for total productivityently by different measurers, although this must have
and longevity are somewhat higher (lower) than underbeen inadvertent since plates were randomized.
BM, but are lower (higher) for early productivity. UnderMutational target sizes—changes of means and vari-
ML, higher estimates for numbers of mutations withances: The effects of EMS mutagenesis on the means
correspondingly lower estimates for average effects tendand variances for life-history traits are compared in Ta-
to occur if there is variability among mutation effectsble 2, and the distributions of line means are shown in
(Keightley 1998). To further investigate properties ofFigure 1. Comparison of the scaled change in mean,
the distribution of mutational effects, univariate MLDM/M, shows that the EMS mutagenesis had the great-
analyses were carried out under the assumption thatest effects on early (days 1–2 of reproduction) productiv-
mutation effects are gamma distributed (Table 4). Pro-ity and relative fitness. As shown later, the genetic corre-
file likelihoods were computed as functions of the distri-lation of these traits is close to 1. Reduced early
bution parameters (b and s) and UI. For all traits, thereproduction seems to be brought about partly by de-
best-fitting gamma distribution is the limiting case oflayed reproduction, presumably due to an increase in
equal effects (b → ∞), and strongly leptokurtic distribu-mean development time, and this also resulted in an
tions (b → 0) are excluded for total and early productiv-increase in mean late (days 3–6 of reproduction) repro-
ity and relative fitness. Any gamma distribution is plausi-ductive output. The effect of EMS in delaying reproduc-

tion can be seen in more detail in Figure 2. ble for longevity, since the trait is highly environmentally
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TABLE 1

ANOVA for control and EMS lines

Trait Treatment Source of Variation d.f. MS F-ratio

Productivity CON Assay 2 61537 25.37***
Measurer 2 359 0.15
Assay–measurer 4 7393 3.05*
Line 39 2044 0.84
Residual 309 2426

EMS Assay 2 25096 7.29***
Measurer 2 972 0.28
Assay–measurer 4 7956 2.31
Line 55 47713 13.87***
Residual 431 3440

Early productivity CON Assay 2 124193 63.37***
Measurer 2 4202 2.14
Assay–measurer 4 10042 5.12***
Line 39 1593 0.81
Residual 309 1960

EMS Assay 2 35963 34.37***
Measurer 2 1947 1.86
Assay–measurer 4 6110 5.84**
Assay–line 110 2342 2.24*
Measurer–line 110 2352 2.25*
Assay–measurer–line 193 1689 1.61
Line 55 25692 24.55***
Residual 18 1046

Late productivity CON Assay 2 11133 10.95***
Measurer 2 4224 4.16*
Assay–measurer 4 7484 7.36***
Line 39 807 0.79
Residual 309 1017

EMS Assay 2 1513 1.08
Measurer 2 1898 1.36
Assay–measurer 4 2121 1.52
Line 55 10792 7.73***
Residual 431 1397

Longevity CON Assay 2 147.4 18.93***
Measurer 2 56.17 7.21***
Assay–measurer 4 21.33 2.74*
Line 39 9.01 1.16
Residual 309 7.79

EMS Assay 2 102.5 7.50***
Measurer 2 9.45 0.69
Assay–measurer 4 38.78 2.84*
Line 55 42.01 3.07***
Residual 422 13.67

Relative fitness CON Assay 2 5.693 63.29***
Measurer 2 0.641 7.13***
Assay–measurer 4 0.698 7.75***
Line 39 0.0745 0.83
Residual 309 0.0900

EMS Assay 2 1.363 52.60***
Measurer 2 0.172 6.65**
Assay–measurer 4 0.322 12.43***
Assay–line 110 0.0825 3.18**
Measurer–line 110 0.0747 2.88**
Assay–measurer–line 193 0.0608 2.34*
Line 55 0.733 28.27***
Residual 18 0.0259

MS, mean square. *P , 0.05; **P , 0.01; ***P , 0.001.
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TABLE 2

Means and variances for the life-history traits in control and EMS lines and scaled effects
of the EMS treatment, along with their standard errors

Trait MCON MEMS DM/M h2
M CVM

Total productivity (worms) 248 6 2.5 163 6 9.9 0.34 6 0.039 1.04 6 0.22 0.20 6 0.018
Early productivity (worms) 192 6 2.2 97.5 6 7.2 0.49 6 0.042 0.72 6 0.13 0.20 6 0.016
Late productivity (worms) 56.6 6 1.5 65.7 6 4.7 20.16 6 0.089 0.53 6 0.13 0.41 6 0.052
Longevity (days) 13.4 6 0.16 12.2 6 0.29 0.090 6 0.023 0.20 6 0.10 0.093 6 0.023
Relative fitness 1.00 0.46 6 0.039 0.54 6 0.039 0.45 6 0.092 0.20 6 0.018

sensitive, and there is consequently little information Genetic correlations among line means: Estimates of
genetic correlation coefficients along with bootstrapon shape. In the cases of productivity and longevity, the

combination of higher UI estimates under ML than BM standard errors are shown in Table 5. The estimated
genetic correlation between early productivity and rela-and a better fit for the equal-effects model than the

gamma distribution suggests that there may be disconti- tive fitness is close to 1. Mutational correlations are
strong and positive; the weakest is between relative fit-nuities in the distribution of mutational effects that are

not well captured by assuming a gamma distribution of ness and late productivity. There is no appreciable dif-
ference between the early productivity:longevity geneticmutation effects in the analysis. However, it is difficult

to extract a great deal of information on shape, even correlation and the late-productivity:longevity correla-
tion, so at this coarse level there is no evidence for ain experiments more highly replicated than the present

one, since there is a strong tendency toward high sam- trade-off. Bivariate plots of line means for longevity with
early and late productivity reveal interesting patternspling covariances between the parameters (Keightley

1998). (Figure 3). There is no evidence for lines that have

Figure 1.—Distributions of con-
trol and EMS line means for the life-
history traits.
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in both cases, although this is the best-fitting univariate
distribution (Table 4). The best estimates for r are z0.1
(productivity:longevity) and 0.2 (productivity:relative
fitness), but confidence limits on r within b models are
extremely wide. Interestingly, mutational distributions
with zero correlation fit the data nearly as well as the
best-fitting distribution; the reasons for this are ex-
plained in the next section. ML estimates for UI with
the bivariate model are ÛI 5 2.6 (productivity:relative
fitness) and ÛI 5 2.2 (productivity:longevity); compare
Table 3. The bivariate estimates probably underestimate

Figure 2.—Daily mean reproductive output for control and the rate for mutations that are deleterious in natural
EMS lines during the reproductive period. conditions by at least 20-fold (Davies et al. 1999).

Relationship between genetic correlation and correla-
tion of mutational effects: The bivariate ML analysis of

decreased longevity and increased early productivity, as the C. elegans life-history traits gave estimates for r that
might be expected under the pleiotropic theory for the are lower than the genetic correlation parameter, rG.
evolution of aging (Figure 3A; in fact, there are no lines The traits are strongly and significantly genetically corre-
with significantly increased early productivity). Other lated (Table 5), but profile likelihoods also imply that
lines show evidence of trade-offs: there are many lines a zero value for r can plausibly explain the data (Table
with reduced longevity and increased late productivity 7). Paradoxically, it seems that the correlation of the
(Figure 3B). There is one line with significantly in- “underlying” mutational distribution can be very differ-
creased longevity and increased late productivity (see ent from the genetic correlation of line means: a high
below). This line also has significantly reduced early genetic correlation does not necessarily imply a high
productivity. underlying mutational distribution correlation. The ex-

Bivariate analysis—simulation results: To verify the planation seems to be that genetic correlation is gener-
bivariate ML computer program, simulations were car- ated because different lines carry different numbers of
ried out to estimate parameter values for cases in which mutations; lines that carry the highest numbers of muta-
the simulated values were known. To simplify the inter- tions tend to be extreme for both traits, even if the
pretation of the results and to reduce the dimensionality mutational effects are uncorrelated. This is analogous
of the parameter space that needed to be searched, the to the “apparent” (i.e., correlated) stabilizing selection
shape parameter of the bivariate distribution that was that can be generated with a pleiotropic model of muta-
assumed in the analysis was the same as that simulated. tion effects on a quantitative trait and fitness (Barton
Thee parameters to be estimated were U, r, the mean 1990; Keightley and Hill 1990; see also Robertson
mutational effects for the traits, and the residual envi- 1967). This is illustrated graphically in Figure 4.
ronmental variances and covariance. Means and stan- As long as all mutations reduce each trait, the actual
dard deviations of estimates of U and r from a limited relationship between rG and r turns out to be a simple
number of these computer-intensive simulations are function of the gamma distribution shape parameter
shown in Table 6. The mean estimates do not differ and r. As long as r . 0, rG will always be .r. The genetic
significantly from simulated values, implying that the variance of trait X as a function of U, aX, and bX is
estimation procedure is behaving reasonably well. How-
ever, although the “correct” bivariate distribution is as- var(X) 5

UbX(bX 1 1)
a2

X

, (4)
sumed, it is notable that sampling variances of r are
relatively high. the mean is

Bivariate analysis—C. elegans life-history traits: We
carried out the bivariate ML analysis to infer properties E(X) 5

UbX

aX

, (5)
of the bivariate distribution of mutation effects for two
pairs of traits: total productivity and longevity, and total

and the expected cross product isproductivity and relative fitness (Table 7). Likelihood
was evaluated for a series of models with different

E(XY) 5
Ub1/2

X b1/2
Y r 1 bXbY(U 1 U2)

aXaY

. (6)gamma distribution shape parameters (b). The main
parameter of interest was r, the mutational correlation.

The genetic correlation isThe best-fitting bivariate gamma distributions have b .
1.5 in the case of productivity:longevity and z8 in the

rG 5
r 1 (bXbY)1/2

[(bX 1 1)(bY 1 1)]1/2
, (7)case of productivity:relative fitness, but likelihood sur-

faces as a function of b are very flat. Likelihood drops
sufficiently to reject the equal-effects model (b → ∞) so the relationship between rG and r depends on the
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TABLE 3

BM and ML estimates of UI per haploid and s from univariate analysis,
under a model of equal mutation effects

BM ML

Trait ÛI ŝ ÛI ŝ

Total productivity 1.40 6 0.35 0.24 6 0.037 1.61 6 0.30 0.22 6 0.028
Early productivity 3.11 6 0.88 0.16 6 0.027 2.06 6 1.06 0.23 6 0.058
Longevity 0.50 6 0.62 0.19 6 0.10 0.80 6 0.46 0.13 6 0.045
Relative fitness 3.55 6 1.07 0.15 6 0.031 3.60 6 1.31 0.15 6 0.053

The trait late productivity was not analyzed, since there is evidence that mutations increase and decrease
the trait with nearly equal probability (Figure 1).

relative magnitude of the b’s. However, rG will always pared in a number of different ways. In terms of scaled
changes of mean phenotype, early productivity and rela-be .r.

Under the assumption that the b’s are the same for tive fitness are substantially larger mutational targets
than total or late productivity. Our results strongly sug-each trait (as assumed in the bivariate analysis), the

genetic correlation is gest that longevity is much less affected by mutation
accumulation than the productivity traits or relative fit-
ness. Most other published data also suggest that longev-rG 5

r 1 b

b 1 1
. (8)

ity is a small mutational target in relation to other life-
history traits, since directional effects on mean longevityThis shows that if b @ 1, the genetic correlation tends
in mutation-accumulation experiments have been diffi-toward 1 for any value of r, because the correlation is
cult to detect. In a spontaneous mutation-accumulationwholly induced by different individuals having different
experiment in C. elegans (Vassilieva and Lynch 1999),numbers of mutations. If the distribution is leptokurtic
there is little indication of a mutational decay for longev-(b → 0), r and rG become the same, since the genetic
ity after .200 generations (M. Lynch and L. Vassi-correlation is generated by a few individuals carrying
lieva, personal communication). In addition, a muta-mutations of very large effect. If the mutational distribu-
tion-accumulation experiment over 60 generations withtion has moderate kurtosis (for example, the bivariate
the same C. elegans strain did not reveal a significantexponential distribution, b 5 1), the genetic correlation
directional change (Keightley and Caballero 1997).is 0.5 even if there is zero correlation between mutation
In Drosophila melanogaster, there is also information oneffects. Note that these results depend on the assump-
the effects of spontaneous mutation accumulation ontion of unidirectional mutational effects: if the distribu-
longevity (Pletcher et al. 1999). After 47 generationstions are symmetrical about zero, the genetic correlation
of mutation accumulation, there was significant muta-would be zero irrespective of the values of r and b.
tional variation for longevity in both sexes, but little
sign of directional mutational bias. An EMS mutagenesis

DISCUSSION experiment in D. melanogaster in which life-history traits
were assayed has also been reported (Keightley andEffects of EMS on life-history traits: The effects of

mutagenesis on the different life-history traits were com- Ohnishi 1998). For the composite trait, fertility 3

TABLE 4

ML estimates and support limits for UI, s, and b obtained by univariate analysis
under a model of gamma-distributed mutation effects

UI s b

Trait MLE Lower Upper MLE Lower Upper MLE Lower Upper

Total productivity 1.6 1.3 3.3 0.22 0.10 0.23 →∞ 0.7 →∞
Early productivity 2.1 1.7 4.3 0.23 0.11 0.24 →∞ 3.3 →∞
Longevity 0.80 0.34 →∞ 0.13 →0 0.22 →∞ →0 →∞
Relative fitness 3.6 2.3 7.4 0.15 0.075 0.23 →∞ 1.2 →∞

Support limits are parameter values that give a drop in natural log-likelihood of 2 from the ML, while
likelihood with respect to all the other parameters in the model is maximized. MLE, ML estimate.
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TABLE 5

ASREML estimates of genetic and environmental correlation coefficients

Total Early Late Relative
productivity productivity productivity Longevity fitness

Total productivity 0.90 (0.030) 0.74 (0.072) 0.58 (0.16) 0.87 (0.033)
Early productivity 0.77 (0.035) 0.38 (0.16) 0.49 (0.13) 0.99 (0.006)
Late productivity 0.47 (0.045) 20.00 (0.099) 0.47 (0.21) 0.32 (0.14)
Longevity 0.15 (0.073) 0.07 (0.076) 0.14 (0.060) 0.52 (0.14)
Relative fitness 0.59 (0.074) 0.88 (0.016) 20.32 (0.048) 0.047 (0.072)

Genetic (environmental) correlations are above (below) the diagonal. Standard errors (in parentheses) were
obtained by bootstrapping the data by line, 100 times.

hatchability, which is closest to total productivity, the evolutionarily highly constrained in C. elegans (Stenico
et al. 1994; Shabalina and Kondrashov 1999); thescaled change in mean between controls and treated

lines was z25%, compared to a 17% change for longev- majority of amino acid changes are therefore deleteri-
ous in natural conditions. Furthermore, there may beity. The effect of EMS on mean longevity in the flies

was therefore larger, in comparison to other life-history as many selectively constrained sites outside of genes
as there are within coding sequences (Shabalina andtraits, than we have observed in C. elegans.

Alternative measures of mutational target size are the Kondrashov 1999). Therefore, the estimates for num-
bers of mutations we obtained from the analyses of theestimated numbers of mutations affecting the traits, ob-

tained by BM or ML methods. BM estimates are effective phenotypic distributions may be .10 times too low
(Davies et al. 1999). It is perhaps most logical to regardnumbers of major effect mutations and are biased down-

ward if there is variability among mutational effects. all traits as having been affected by the same number
of mutations, as the bivariate analysis does, but thereMaximum likelihood can partly overcome this bias by

assuming that mutations follow some distribution whose were different marginal distributions of mutational ef-
fects. Comparing mutational target sizes of life-historyshape can be estimated, but estimates of numbers of

mutations are often unbounded (Keightley 1998). For traits solely on the basis of estimated numbers of muta-
tions from phenotypic assays is therefore problematical.C. elegans, there are independent estimates of the num-

ber of mutations induced by EMS mutagenesis (Ander- The analyses to infer mutation rates and effects as-
sumes Poisson-distributed mutation numbers amongson 1995). A 50 mm treatment generates z200 point

mutations per genome, of which z50 change an amino lines. If dosage variation leads to clustering of muta-
acid in a protein-coding gene. Protein-coding genes are tions, then this will lead to underestimation of U and

overestimation of s (Keightley and Ohnishi 1998).
However, this is probably unimportant in the present
case for the following reasons: first, mutagenized worms
were from a synchronous culture and were at the same
stage of development. Second, there was one mutagene-
sis treatment, and all progenitor worms were exposed
in the same vial for identical periods of time. And third,
the estimates of average mutation effects and distribu-

TABLE 6

Simulation results from bivariate ML analysis

Simulated
values Estimates

U r Û (SD) r̂ (SD)

0.5 0.5 0.50 (0.12) 0.48 (0.20)
1.0 0.3 1.03 (0.21) 0.34 (0.17)
1.0 0.7 1.03 (0.20) 0.71 (0.10)

The simulations involved 100 MA and 100 control lines, with
the ratio VG/VE 5 5 or 10, and zero environmental covariance.Figure 3.—Line means for longevity plotted against line

means for early (A) and late (B) productivity. There were 40 replicates per parameter set combination.
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TABLE 7

Estimates of the mutational correlation parameter r from
bivariate ML analysis of C. elegans EMS lines data,

assuming a range of shape parameters, b

2 Log L support
limits for r

b r̂ Lower Upper Log L difference

Total productivity: longevity
0.25 0.51 0.07 0.84 21.0
0.5 0.44 0 0.81 20.5
1 0.27 0 0.75 20.1
1.5 0.11 0 0.70 0
2 0 0 0.64 20.0
3 0 0 0.61 20.5
4 0 0 0.61 21.0
8 0 0 0.86 22.5
→∞ Undefined — — 23.8

Figure 4.—Extreme case of strong apparent genetic corre-Total productivity: relative fitness
lation generated in the absence of correlation between muta-0.25 0.71 0.51 0.85 22.8
tional effects. There are 1000 individuals having 0.5 mutations,0.5 0.68 0.46 0.84 21.6
on average, drawn from a bivariate gamma distribution with1 0.61 0.32 0.81 20.6
shape parameter 8 and mean 1 for each trait. The genetic1.5 0.55 0.18 0.78 20.2
correlation is 0.89.2 0.47 0.025 0.74 20.0

4 0.32 0 0.68 20.0
8 0.17 0 0.60 0
12 0 0 0.39 21.9 the univariate estimates of b do not rule out the possibil-
→∞ Undefined — — 27.5 ity that the detectable mutations for life-history traits in

C. elegans have a platykurtic distribution (Table 4), it is
therefore possible that the mutational correlations are
small, in spite of the strong genetic correlations. A moretion parameters are similar to those estimated in a spon-

taneous mutation accumulation (MA) carried out under direct approach to infer the underlying mutational cor-
relation is to explicitly estimate a mutational correlationsimilar conditions (Keightley and Bataillon 2000);

spontaneous mutations are usually assumed to occur as parameter (r) by a bivariate analysis. We have developed
a procedure to carry out such an analysis. The analysisa Poisson process.

Correlations between traits: The genetic correlation is difficult to carry out because a large number of param-
eters need to be estimated simultaneously, and likeli-estimates between life-history traits are strong and esti-

mated relatively precisely (Table 5), but what does this hood maximization can present problems. However, the
results of ML analyses of simulated data suggest thattell us about the underlying genetics of the traits? Ge-

netic correlations can be induced either by linkage dis- the procedure functions correctly. The results from bi-
variate analysis of the C. elegans EMS data are disappoint-equilibrium or pleiotropy (Falconer and Mackay

1996). In mutation-accumulation lines, a linkage effect ing in that the plausible range for r is very large. For
example, in the case of longevity:productivity, the bestalso occurs because different lines carry different sets

of mutations whose effects may differ. This can generate estimate for r is z0.1 (i.e., smaller than the genetic
correlation, as expected), but the upper limit is .0.8genetic correlations between traits in the absence of any

correlation due to pleiotropy. We show that under an (Table 7). Thus, the empirical analyses suggest that the
mutational correlation parameter is extremely difficultadditive model with unidirectional mutational effects,

the genetic correlation is a function of the parameters to estimate with any precision from a mutation-accumu-
lation experiment even if the genetic correlation is pre-of the joint distribution of effects of mutations on the

two traits, but is independent of the mean number of cisely estimated. Estimates of the correlation parameter
are correlated with b (see Equation 8), which itself ismutations per line (Equation 8). Genetic correlations

are therefore not expected to change in a mutation- strongly correlated with the estimated number of muta-
tions and their mean effect (Keightley 1998). Theaccumulation experiment as additional mutations accu-

mulate over time if mutational effects are additive. If confounding effect may be partly overcome if the num-
ber of mutation events each line carries is known ormutational effects follow a bivariate distribution in

which the coefficients of kurtosis for the marginal distri- can be directly estimated, as can be the case with trans-
posable element insertional mutagenesis (Hill 1992;butions are small (e.g., a bivariate gamma distribution

with large b), the genetic correlation is induced solely Mackay et al. 1992).
Mutational effects on longevity: It is surprising thatby lines carrying different numbers of mutations. Since
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