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ABSTRACT
Studies that examine both the frequency of gene mutation and the pattern or spectrum of mutational

changes can be used to identify chemical mutagens and to explore the molecular mechanisms of mutagene-
sis. In this article, we propose a Bayesian hierarchical modeling approach for the analysis of mutational
spectra. We assume that the total number of independent mutations and the numbers of mutations falling
into different response categories, defined by location within a gene and/or type of alteration, follow
binomial and multinomial sampling distributions, respectively. We use prior distributions to summarize
past information about the overall mutation frequency and the probabilities corresponding to the different
mutational categories. These priors can be chosen on the basis of data from previous studies using an
approach that accounts for heterogeneity among studies. Inferences about the overall mutation frequency,
the proportions of mutations in each response category, and the category-specific mutation frequencies
can be based on posterior distributions, which incorporate past and current data on the mutant frequency
and on DNA sequence alterations. Methods are described for comparing groups and for assessing dose-
related trends. We illustrate our approach using data from the literature.

STUDIES of the frequencies at which DNA alterations accurately determined by removing identical mutations
that were recovered from the same tissue of the sameof different types occur within a gene have improved

our understanding of both spontaneous and induced animal. While there is a small probability that these
mutations were of independent origin, it is much moremutagenesis. Current approaches for the analysis of mu-

tational spectra test for differences between groups in likely that these identical mutations represent the clonal
expansion of a single mutant. This conservative ap-the mutant frequency (Carr and Gorelick 1994, 1995;

Fung et al. 1994, 1998) or in the proportions of muta- proach to scoring mutations guarantees that all muta-
tions reported were of independent origin. A limitationtions falling into different response categories (Adams

and Skopek 1987; Roff and Bentzen 1989; Piegorsch to this approach is that the site-specific mutational fre-
quency may be slightly underestimated at mutationaland Bailer 1994). New analytic methods are needed for

(1) better characterizing changes in mutational spectra; hotspots. However, hotspots can still be identified using
this approach, and future studies can then be designed(2) assessing differences in the frequencies at which

mutations of various types occur within a gene; (3) iden- to assess the mechanistic origin of a mutational hotspot.
tifying dose-related trends in spectra; and (4) account- We assume that the total number of independent mu-
ing for heterogeneity among studies when incorporat- tants and the numbers of mutations falling into the
ing data from previous studies. As we describe in this different response categories follow binomial and
article, each of these analytic goals can be addressed by multinomial sampling distributions, respectively. Nish-
using a Bayesian hierarchical modeling approach. ino et al. (1996) demonstrate that it is often reasonable

In a standard mutational spectra study, a subset of to assume a Poisson distribution for the number of inde-
the mutants are genotyped, usually by DNA sequence pendent mutants. Since the mutation frequency is ex-
analysis, and these mutants are then assigned to specific tremely small, the Poisson is an excellent approximation
response categories. Categories can be defined by the of the binomial distribution. We use the binomial, since
type of DNA alteration and/or the position of the mu- it results in simplified implementation and interpreta-
tated base pair. Since a single “jackpot” mutation that tion of our Bayesian model. The assumption of a
occurs early in the replication of a population can result multinomial sampling distribution for the counts in the
in a large pool of mutants carrying the same mutation different mutational categories is standard in muta-
(Nishino et al. 1996), mutation frequencies are most tional spectra analysis (Piegorsch and Bailer 1994)

and is a requirement of the widely used Monte Carlo
hypergeometric test (Agresti et al. 1979; Adams and
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the overall mutation frequency and the proportions of proach through application to data from a study of
mutation induction in lacI transgenic mice after ex-mutations in each response category, respectively. As is

well known in the Bayesian literature, the Beta and posure to the flame retardant tris(2,3-dibromopropyl)
phosphate (TDBP; De Boer et al. 1996).Dirichlet distributions have advantageous computa-

tional properties (e.g., conjugacy) and the parameters
have appealing interpretations as prior sample sizes

THE STATISTICAL MODEL(Gelman et al. 1996). The prior parameters can be elic-
ited on the basis of data from previous studies, using Modeling the mutation frequency: Consider an exper-
an approach we propose that adjusts for heterogeneity iment involving s mutational classes (i 5 1, . . . , s) and
among studies, or a noninformative prior can be chosen. t treatments or groups under study ( j 5 1, . . . , t). For
Our prior elicitation procedure advances the statistical group j, let vj be the number of tissues or cell cultures
literature on methods for incorporating historical data that are examined for mutations, let mjk be the number
into the analysis of a current study (e.g., Tarone 1982; of cells (or plaques) in tissue k that have detectable
Prentice et al. 1992; Ibrahim et al. 1998). mutations, and let cjk be the number of cells in tissue k

Inferences about the overall mutation frequency, the that are screened for mutations ( j 5 1, . . . , t; k 5
proportions of mutations in each response category, 1, . . . , vj). The standard estimate of the mutant fre-
and the category-specific mutation frequencies can be quency in group j is the mutant fraction,
based on Bayesian posterior distributions, which synthe- R

vj
k51mjk/R

vj
k51cjk.size information in the prior and in the likelihood. Our For group j and tissue k, let zjk denote the number of

Bayesian approach has several important advantages mutants that are sequenced out of mjk, and let njk denote
over current standard methods (e.g., Adams and Skopek the number of mutants out of zjk that remain after remov-
1987; Carr and Gorelick 1994). First, in addition to ing all recurrent mutations. An estimate of the mutation
testing for significant differences between groups, we frequency in group j, which was originally proposed by
can easily obtain point and interval estimates for any Carr and Gorelick (1996), is the number of indepen-
function of the mutation parameters. For example, in dent mutations (nj 5 Rvj

k51njk) divided by the effective
studies with multiple dose groups, we can estimate slope

number of cells at risk (rj 5 Rvj
k51cjkzjk/mjk).parameters that characterize the category-specific

We assume that the number of independent mutantschanges in the mutation frequency with increasing dose.
follows a binomial distribution,Such estimates can be extremely useful in interpreting

study results. Second, we can incorporate DNA se-
Pr(Nj 5 nj | rj, φj) 5 1 rj

nj
2φnj

j (1 2 φj)rj2nj, for nj 5 0, 1, 2, . . . , rj,quence information into tests for overall differences (or
trends) in the mutation frequency. Such information

where φj is the mutation frequency in group j. For rea-can potentially improve power to detect an effect rela-
sons that will become clear, rj does not need to be antive to tests based on the mutant fraction. With the
integer. To represent the uncertainty in φj before con-exception of the approach of Carr and Gorelick
ducting the current study, we assign φj a Beta prior(1996), procedures that incorporate information on
distribution with parameters gj and bj (Gelman et al.DNA sequence alterations have based inference on the
1996). The resulting posterior distribution for φj is equiv-proportions of mutations within different response cate-
alent to the posterior that would have been obtainedgories (i.e., the category probabilities). In most cases,
had we chosen a noninformative Beta(0, 0) prior for φjdifferences in the category-specific mutation frequen-
and then added an additional gj independent mutantscies are more interpretable and biologically relevant
and bj normal cells to the group j data; that is, thethan differences in the category probabilities. Third,
Beta(gj, bj) prior contains equivalent information to gjour procedure can be used to assess dose-related trends,
independent mutants out of gj 1 bj cells. Therefore,while the Monte Carlo hypergeometric test applied by
gj 1 bj can be considered the prior sample size.Adams and Skopek (1987) and others is not designed

The prior parameters can be chosen on the basis ofto be sensitive to trends. Fourth, our approach allows for
data from previous studies, as we illustrate later in thethe natural incorporation of data from previous studies
article. Alternatively, a subjective prior can be chosenthrough elicited prior distributions. For commonly stud-
by setting the prior mean gj/(gj 1 bj) equal to theied genes, mutational spectra databases containing
investigator’s best guess for φj and choosing the priorthousands of mutations have been established and can
variance (or sample size) to reflect the uncertainty inbe accessed through the internet (Cariello et al. 1997;
this choice. If relevant historical data or substantive in-Hutchison and Donnelan 1997). Such information can
formation are not available, then a noninformative priorpotentially enhance the sensitivity of statistical analyses.
can be specified by setting gj and bj equal to very smallIn what follows, we describe the Bayesian hierarchical
positive numbers. On the basis of exploratory analyses,model, we outline tests for differences in the category
we recommend using gj 5 bj 5 0.001, though settingprobabilities and in the category-specific mutation fre-
gj and bj to slightly lower or higher values should havequencies, and we propose methods for incorporating

historical data into the analysis. We illustrate our ap- no noticeable effect on analyses. Traditional noninfor-
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mative priors, such as the Bayes-Laplace uniform prior a Dirichlet prior distribution with parameters m1j, . . . ,
msj (Gelman et al. 1996). The resulting posterior distri-(g 5 b 5 1) or Jeffrey’s prior (g 5 b 5 0.5; Gelman

et al. 1996), can result in noticeable bias in estimates of bution for pj is equivalent to the posterior that would
have been obtained had we chosen a noninformativethe mutation frequency when the number of indepen-

dent mutants is small. Dirichlet (0, . . . , 0) prior for pj and then added an
additional m1j, . . . , msj mutations to categories i 5Conditional on the prior and on the data from the

current study, the posterior distribution of the mutation 1, . . . , s of the group j data. Therefore, the prior
contains equivalent information to mj 5 Rs

i51mij muta-frequency φj is Beta with parameters gj 1 nj and bj 1
rj 2 nj: tions in group j with mij of type i (i 5 1, . . . , s).

The prior parameters can be chosen on the basis of
data from previous studies, as we illustrate in this article.f(φj|nj, rj, gj, bj) 5

G(gj 1 bj 1 rj)
G(gj 1 nj)G(bj 1 rj 2 nj) Alternatively, a subjective prior can be chosen by setting

each mij/mj equal to the investigator’s best guess at the3 φgj1nj21
j (1 2 φj)bj1rj2nj21. (1)

proportion of mutations falling into category i in group
This posterior distribution quantifies the current infor- j. The prior sample size mj can then be chosen to reflect
mation about the mutation frequency in group j. Point uncertainty in this choice. In the absence of historical
and interval estimates can easily be calculated to summa- or substantive information, a noninformative prior can
rize this posterior. In the case where a completely nonin- be chosen by setting the prior parameters equal to small
formative prior is chosen, the posterior mean φ̂j 5 (gj 1 positive numbers. On the basis of exploratory analyses,
nj)/(gj 1 bj 1 rj) will equal the maximum-likelihood we recommend using m1j 5 . . . 5 msj 5 0.01. However,
estimate nj/rj. Otherwise, the posterior mean will equal using slightly higher or lower values should have no
a weighted average of the prior mean gj/(gj 1 bj) and noticeable effect on the analytic results, and the sensitiv-
the maximum-likelihood estimate. Tests can be formu- ity to the specified values drops off rapidly as the number
lated on the basis of the posterior distributions for the of sequenced mutants increases.
mutation frequencies within the different groups, as we Conditional on the prior and on the data from the
illustrate in this article. current study, the posterior distribution of the category

Modeling the category probabilities: The mutants that probabilities in group j is Dirichlet with parameters m1j 1
are sequenced can be classified according to position y1j, m2j 1 y2j, . . . , msj 1 ysj:
within the gene and/or type of genetic damage. The
counts of the number of independent mutants falling f(p1j, . . . , psj | yj, nj, m1j, . . . , msj) 5

G(mj 1 nj)
Ps

i51G(mij 1 yij)
p

s

i51

pmij1yij21
ij .

into each category within each group form an s 3 t
(2)contingency table, with the rows representing mutation

categories i 5 1, . . . , s and the columns representing This posterior distribution quantifies the current infor-
groups j 5 1, . . . , t. We let yij denote the number of mation about the category probabilities in group j. Point
mutants that are in category i out of the nj independent and interval estimates can easily be calculated to summa-
mutants that are sequenced in group j (i 5 1, . . . , s; rize this posterior. In the case where a completely nonin-
j 5 1, . . . , t). We make the standard assumption that formative prior is chosen, the posterior mean p̂ij 5 (mij 1
the jth column of the contingency table yj 5 (y1j, . . . , yij)/(mj 1 nj) equals the maximum-likelihood estimate
ysj) has a multinomial sampling distribution with param- yij/nj. Otherwise, the posterior means for the category
eters nj and pj 5 (p1j, . . . , psj). The probability that a probabilities will equal a weighted average of the prior
mutation in group j falls into category i is pij. means and the maximum-likelihood estimates. The pos-

Since the overall mutation frequency is extremely terior distributions described in expressions (1) and (2)
small, the sampling distribution of the total number of can be used for statistical inference about the category
independent mutants (nj) is approximately Poisson with probabilities and the category-specific mutation fre-
mean rj φj under expression (1). Under the multinomial quencies, as we illustrate in the next section. They can
conditional distribution for the numbers of mutations also be used to obtain point and interval estimates of
in each category (yj), the unconditional distribution for any function of the mutational parameters. Such esti-
the number of mutations in category i (yij) is approxi- mates do not rely on large sample approximations and
mately Poisson with mean rjlij, where lij 5 φjpij is the can be extremely useful in characterizing differences
mutation frequency corresponding to category i (i 5 between spectra.
1, . . . , s). Thus, our hierarchical model provides a
unified framework for incorporating mutant fraction
and DNA sequence information into analyses of the

STATISTICAL TESTS
overall mutation frequency (φj), the category probabili-

Tests of homogeneity in the category probabilities:ties (pj), and the category-specific mutation frequencies
(l1j, . . . , lsj). Tests for differences in mutational spectra between

groups can be based on either the category probabilitiesTo represent the uncertainty in the category probabil-
ities before conducting the current study, we assign pj p1j, . . . , psj or the category-specific mutation frequencies
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l1j, . . . , lsj. The hypothesis of homogeneity in the metric test and the unconditional test we just described,
may fail to detect important effects. Suppose that thecategory probabilities can be expressed as
category-specific mutation frequencies increase with

H01: pi1 5 pi2 5 . . . 5 pit (for all i). dose and that the rate of increase is category dependent.
This scenario will result in an increasing trend in theA natural measure of deviation from H01 is the Pearson
proportion of mutations in categories with a relativelychi-square goodness-of-fit statistic,
high rate of increase and a decreasing trend in catego-
ries with a relatively low rate of increase. We expect that

X2 5 d(y) 5 o
s

i51
o

t

j51

(yij 2 njp̂i)2

njp̂i

, (3) this scenario is quite common, since the mutability of
DNA can vary substantially across sites in a genome

where y 5 (y1, . . . , yt) denotes the observed mutation (Foster et al. 1982). The following measure of deviation
counts and from H01 is sensitive to trends in the category probabili-

ties,
p̂i 5 o

t

j51

(mij 1 yij)/o
t

j51

(mj 1 nj)

d(y) 5 o
s

i51
3{Rt

j51(xj 2 x)(yij 2 njp̂i)}2

p̂i(1 2 p̂i)Rt
j51nj(xj 2 x)24 , (4)

denotes the estimated probability that a randomly se-
lected mutant falls in category i under H01. Classical where x1, . . . , xt are the dose levels for treatment groups
tests compare X2 to a x2 reference distribution, which j 5 1, . . . , t and x 5 Rjxjnj/Rjnj. This measure of deviation
approximates the posterior of X2 under the null hypoth- is the sum across mutational categories of the category-
esis in large samples. The large sample approximation specific Cochran-Armitage score test statistics (Coch-
can perform poorly with mutational spectrum data sets, ran 1954; Armitage 1955). By using deviation measure
since the expected number of mutations is often low (4) instead of measure (3) when implementing steps 1
within some of the categories (Adams and Skopek and 2 of the Monte Carlo procedure described above,
1987). a P value can be estimated for testing H01 against the

Alternatively, exact P values can be calculated using alternative hypothesis of a trend in the category proba-
either a conditional approach (Agresti 1992) or an bilities with dose.
unconditional approach (Bayarri and Berger 1999). Tests of homogeneity in the category-specific muta-
The most common example of the conditional ap- tion frequencies: As an alternative to hypothesis H01, we
proach is Fisher’s exact test, which conditions on the row could test the following hypothesis of homogeneity in
and column totals. We use the following unconditional P the category-specific mutation frequencies:
value here,

H02: li1 5 li2 5 . . . 5 lit (for all i).
P 5 Pr{d(Y) $ d(y)},

The Pearson goodness-of-fit statistic can be used as a
where Y denotes the mutation counts that would have measure of deviation from H02,
been observed had H01 been true and had the experi-
ment been replicated under the same conditions. d(y) 5 o

s

i51
o

t

j51

(yij 2 rjl̂i)2

rjl̂i

, (5)
A simple Monte Carlo procedure can be used to estimate
P :

where l̂i 5 p̂i Rt
j51 (gj 1 nj)/Rt

j51 (gj 1 bj 1 rj) for i 5
1, . . . , s. This measure is not sensitive to trends in1. Sample Yj from a multinomial distribution with pa-
the mutation frequencies. An alternative measure oframeters nj and p̂1, . . . , p̂s for groups j 5 1, . . . , t
deviation from H02 that is sensitive to increasing dose-and calculate d(Y).
related trends is2. Repeat 1 for a large number of iterations, and let P

equal the proportion of samples where d(Y) $ d(y).
d(y) 5 o

s

i51
3 Rt

j51 xj(yij 2 rjl̂i)
{l̂iRt

j51rj(xj 2 x)2}1/24 . (6)
When a noninformative prior is specified for the cate-

gory probabilities, this procedure is similar to the Monte This measure of deviation is the sum across mutational
Carlo hypergeometric test with one distinction: we do categories of the category-specific Armitage (1955)
not condition upon the number of mutants per category score test statistics. The P value for testing H02 can be
(row totals). Since the number of mutants per category estimated as follows:
is not fixed by design, allowing the row totals to vary
better represents the true sampling distribution of the 1. Sample Yij from a Poisson distribution with mean rjl̂i

data and can potentially result in an increase in power for categories i 5 1, . . . , s and groups j 5 1, . . . ,
(Agresti 1990). t, and calculate d(Y).

Tests that use measures of deviation that are not de- 2. Repeat 1 for a large number of iterations. The esti-
signed to be sensitive to dose-related trends, including mated P value is the proportion of samples where

d(Y) $ d(y).the Adams and Skopek (1987) Monte Carlo hypergeo-



1415Analysis of Mutational Spectra

TABLE 1When using measure of deviation (5), this procedure
estimates a P value for testing the null hypothesis of Mutational spectra of independently recovered lacI
homogeneity in the category-specific mutation frequen- mutations in the kidney of Big Blue mice
cies (H02) against the unordered alternative hypothesis exposed to TDBP
of any difference between groups. When using measure

Control 2 3 150 4 3 300 4 3 600of deviation (6), this procedure estimates a P value for
60a 79a 92a 89atesting H02 against the alternative hypothesis of an over-

Class (81)b (86)b (100)b (96)b
all increase in the mutation frequencies with dose.

G:C → A:T 33 39 40 31
A:T → G:C 1 3 5 4

EXAMPLE G:C → T:A 12 21 14 14
G:C → C:G 4 4 8 5We illustrate the proposed approach through applica-
A:T → T:A 2 2 4 5tion to data from a study of the flame-retardant TDBP
A:T → C:G 1 2 4 1

(De Boer et al. 1996). In this study, lacI transgenic male Frameshift 21 2 7 9 13
B6C3F1 mice (Big Blue) were used to examine mutation Frameshift 11 1 0 2 4
induction in the kidney, liver, and stomach after expo- Othersc 4 1 7 12
sure to 0 mg/kg, 150 mg/kg (2 days), 300 mg/kg (4

Data from De Boer et al. (1996).days), or 600 mg/kg (4 days) of TDBP. There were six a The number of independent mutants after correction for
mice in the control group and five mice in each of the possible clonal expansion.
exposure groups. Animals were sacrificed 14 days after b The number of mutants sequenced.

c Includes deletions, insertions, and complex changes.the last dose of TDBP. Tissues were removed from the
animals and were later examined for mutations. The
authors concluded that exposure to TDBP induced tis-

related trend in the category probabilities. This effectsue-specific mutations in the kidney that were distinct
was not apparent based on the conventional Montefrom spontaneous mutations.
Carlo hypergeometric test.These data were later reanalyzed by Brackley et al.

Differences in the category probabilities can be diffi-(1999) to explore the use of log-linear models for analyz-
cult to interpret due to the constraint that the probabili-ing mutational spectra data. On the basis of a Cochran-
ties must sum to one in each dose group. Therefore,Mantel-Haenszel test (CMH; Agresti 1990) they con-
we reanalyzed the TDBP data to assess trends in thecluded that there was an ordinal effect of TDBP dose
category-specific mutation frequencies. The estimatedon the mutational spectra (P 5 0.021). The CMH test
P value from our proposed trend test was P 5 0.0004has similar drawbacks to the Pearson goodness-of-fit test
(99% confidence interval, 0.000 , P , 0.001), sug-in that it can perform poorly when data are sparse. In
gesting that treatment with TDBP causes a highly sig-the TDBP study, a relatively large number of mutants
nificant increase in the frequency of one or more typeswere sequenced in each group. However, many of the
of lacI mutations. To identify differences in the ratecategories had fewer than five mutations, a commonly
of increase between mutational classes, we estimatedused cutoff for chi-square tests (Agresti 1990), raising
posterior summaries of the slope parameters character-concern about the validity of the CMH test.
izing the change in the class-specific mutation frequen-We reanalyze the kidney data here. The estimated
cies with dose (Table 2). These posterior summariesmutation frequencies for the control, low, medium, and
were estimated from repeated samples, which were ob-high dose groups were, respectively,
tained by first sampling from the posterior distribution

2.8 3 1025, 3.4 3 1025, 5.5 3 1025, 4.9 3 1025, of the mutation frequencies (li1, li2, li3, li4) and then
calculating the slope. The estimated slopes are positiveafter correction for potential clonal expansion. Table
for each mutational class, and treatment with TDBP1 lists the DNA alterations by class. We compared the
causes significant increases in the frequency of A:T →category probabilities in each dose group with the con-
G:C transitions, A:T → T:A transitions, frameshifts (bothtrol group using both a Monte Carlo hypergeometric
11 and 21), and mutations in the category includingtest and our proposed test with a noninformative prior.
deletions, insertions, and complex changes.The P values from the Monte Carlo hypergeometric test

were 0.526, 0.671, and 0.135 for the 150, 300, and 600
mg/kg dose groups, respectively. The comparable P

EXTENSION: INCORPORATING HISTORICAL DATA
values based on our procedure were 0.461, 0.676, and
0.129, respectively. We also tested for a dose response Choosing the prior for the mutation frequency: We

have described statistical models that quantify prior un-trend in the category probabilities using our proposed
trend test. The estimated P value based on 5000 Monte certainty in the mutation frequency and in the category

probabilities using probability distributions. For com-Carlo samples was P 5 0.011 (99% confidence interval,
0.007 , P , 0.015), suggesting a highly significant dose- monly studied genes, mutational spectrum databases
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TABLE 2

Posterior summaries of the slope parameters characterizing the change in the class-specific mutation
frequencies with dose of TDBP (mg/kg)

Estimated
Class slopea SD 90% interval P valueb

G:C → A:T 4.424 6.598 (26.431, 15.491) 0.250
A:T → G:C 2.970 2.056 (0.040, 6.675) 0.047
G:C → T:A 2.277 4.348 (24.570, 9.596) 0.305
G:C → C:G 2.262 2.565 (21.562, 6.739) 0.181
A:T → T:A 3.486 2.339 (0.047, 7.582) 0.047
A:T → C:G 0.284 1.19 (21.456, 2.453) 0.419
Frameshift 21 10.484 3.605 (5.087, 16.764) 0.000
Frameshift 11 3.435 2.023 (0.618, 7.096) 0.021
Othersc 9.443 3.498 (4.229, 15.465) 0.001

Data from De Boer et al. (1996).
a Expressed as 1029 per plaque per unit increase in dose.
b Represents posterior probabilities of a negative slope.
c Includes deletions, insertions, and complex changes.

containing thousands of mutations are available (Cari- between studies, data from a past experiment do not
contain as much information about the current muta-ello et al. 1997; Hutchison and Donnelan 1997).

These data can be used to choose prior distributions, tion frequency as data from the current experiment.
In choosing the prior for φ1, we weight experiment land thus information from previous studies can be in-

corporated into analyses of data from a current study. according to the ratio of estimated mean square errors,
Suppose that data are available from h previous stud-

ies that involve similar experimental conditions to group ul 5
φ1

φ1l 1 r1l(φ1l 2 φ1)2
, (7)

1 of the current study, where group 1 is a reference or
control group. For study l, let n1l be the number of which represents the information about φ1 in experi-
independent mutations, and let r1l be the effective num- ment l relative to the information that would have been
ber of cells at risk (l 5 1, . . . , h). If we could assume available had r1l cells been added to the current study
that the mutation frequency (i.e., the mutant frequency that would have been sequenced had they contained
corrected for clonal expansion) in each historical study detectable mutations in the gene of interest. Our pro-
is identical to φ1, the mutation frequency in group 1 of posed prior for φ1 is given by
the current experiment, then we could set g1 5 Rh

l51 n1l

and b1 5 Rh
l51 (r1l 2 n1l). This approach is equivalent to φ1 z Beta(g1 5 o

h

l51

uln1l, b1 5 o
h

l51

ul(r1l 2 n1l)). (8)
pooling the data from all the studies. Such an approach
can produce misleading results in the presence of vari-

This prior assigns each historical study a weight betweenability between studies.
0 and 1, where 0 indicates that the data from a particularWe instead assume that the mutation frequency in
past study are completely noninformative about the cur-each previous study is a random variable from a distribu-
rent mutation frequency and 1 indicates that data fromtion centered on the mutation frequency in group 1 of
the past and current studies can be pooled. The overallthe current study. Prentice et al. (1992) made a similar
weight assigned to the historical data is inversely propor-assumption in developing statistical methods for incor-
tional to the magnitude of variability between studies.porating historical control data into trend tests for di-

To incorporate prior (8) into the Monte Carlo analy-chotomous data. This formulation enables borrowing
ses described earlier in the article, two alternative meth-of information across studies and accounts for heteroge-
ods can be used: (1) a plug-in approach or (2) a fullyneity among studies in the mutation frequency.
hierarchical approach. To implement the plug-in ap-Let φ1l denote the mutation frequency in study l, and
proach, simply plug inlet φ1 5 Rh

l51r1l φ1l/Rh
l51r1l denote the pooled mutation fre-

quency. We assign the study-specific mutation frequen-
φ̂1l 5

a 1 n1l

a 1 b 1 r1l

and φ̂1 5
Rh

l51(a 1 n1l)
Rh

l51(a 1 b 1 r1l)
cies a Beta(a, b) prior density. As described earlier in
the article, a noninformative prior can be chosen by
setting a and b close to 0. The prior for φ1, the mutation for φ1l and φ1, respectively, in expression (7) and use

the resulting weights to estimate g1 and b1. This plug-frequency in the current study, is chosen on the basis
of the posterior densities for the study-specific mutation in approach is simple to implement but does not ac-

count for error in estimating the weights. To insteadfrequencies φ11, . . . , φ1h. In the presence of variability
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use the fully hierarchical approach, add the following for pi1l and pi1, respectively, in expression (9) and use
the resulting weights in estimating the prior parameterssteps to the Monte Carlo sampling procedure (before

step 1): m11, . . . , ms1. To instead follow a fully hierarchical
approach, which accounts for error in estimating the

i. Sample φ1l from Beta(a 1 n1l, b 1 r1l 2 n1l) for l 5 prior parameters, add the following steps to the Monte
1, . . . , h, and then calculate φ1. Carlo sampling procedure (before step 1):

ii. Calculate ul, l 5 1, . . . , h, and then g1 and b1

conditional on the sampled φ1l’s. i. Sample p1l from Dirichlet (c1 1 y11l, . . . , cs 1 ys1l) for
l 5 1, . . . , h.

This approach accounts for uncertainty in estimation ii. Calculate wl, l 5 1, . . . , h, and then m11, . . . , ms1of g1 and b1. conditional on the sampled p1l’s.Choosing the prior for the category probabilities: We
follow a similar approach to choose the prior for the
category probabilities. We let yi1l denote the number of DISCUSSION
mutations of type i out of the n1l independent mutants

We have proposed a new Bayesian framework for thein study l (l 5 1, . . . , h). We assume that the category
analysis of data from mutational spectra experiments.probabilities in study l are random variables from a
Our approach allows for the incorporation of data fromdistribution centered on the category probabilities in
previous studies without requiring restrictive assump-group 1 of the current study. The probability that a
tions of homogeneity across studies. The inclusion ofmutation in experiment l is of type i is pi1l, and the
historical data can potentially result in substantial im-pooled probability that a mutation is of type i is pi1 5
provements in the sensitivity of statistical tests, particu-Rh

l51 n1l pi1l/Rh
l51 n1l. We assign the study-specific cate-

larly when the data are sparse (Tarone 1982; Hasemangory probabilities p1l 5 (p11l, p21l, . . . , ps1l) a Dirichlet
et al. 1984; Fung et al. 1996). As mutations are extremely(c1, . . . , cs) prior density, where c1, . . . , cs can be set
rare, data from several previous studies may be neededclose to 0 to specify a noninformative prior. The prior
to detect a difference between groups in the frequencyfor the category probabilities in group 1 of the current
of mutation at a particular site within a gene. For exam-study (p1) is chosen on the basis of the posterior densi-
ple, without information from past studies, an increaseties for the study-specific category probabilities. In for-
from 0 mutants of a given type to 1 or 2 mutants of amulating this prior, we weight experiment l according
given type will typically be judged to be nonsignificant.to the ratio of estimated mean square errors,
However, if no mutants of this type have been observed
in any of several previous studies, 1 or 2 mutants maywl 5

Rs
i51pi1(1 2 pi1)

Rs
i51{pi1l(1 2 pi1l) 1 n1l(pi1l 2 pi1)2}

, (9)
represent a true (and possibly biologically important)
increase. Though including historical data can enablewhich represents the information about p1 in experi-
the detection of small absolute differences in mutationment i relative to the information that would have been
frequency, it may also lead to an inflation of the type Iavailable had n1l additional independent mutants been
error rate if proper correction is not made for the vari-sequenced in the current study. Our proposed prior for
ability between studies. We have described such a correc-

p1 is given by
tion in this article, and in future work we plan to fully
evaluate the operating characteristics of this approach.p1 z Dirichlet(m11 5 o

h

l51

wly11l, m21 5 o
h

l51

wly21l, . . . , ms1 5 o
h

l51

wlys1l).
Within our modeling framework, we have described

(10) easy-to-implement Monte Carlo test procedures for as-
sessing differences between groups in the frequenciesThis prior assigns each historical study a weight be-
of mutation within categories defined by type of DNAtween 0 and 1, where 0 indicates that the mutations
alteration and/or position of the mutated base pair andfrom a particular past study provide no information
in the proportions of mutants that fall within each ofabout the current category probabilities and 1 indicates
these categories. These tests are an alternative to thethat the past mutations are as informative as mutations
widely used Adams and Skopek (1987) analysis. Whenin the current study. The overall weight assigned to the
historical data are not available and interest focuses onhistorical data is inversely proportional to the magni-
differences between two groups in the category proba-tude of variability between historical studies in the cate-
bilities, our method should have modestly increasedgory probabilities. To incorporate the historical data
power relative to the Adams and Skopek test, since we dointo the Monte Carlo analyses described earlier in the
not condition on the number of mutants per category.article, we can use a plug-in or fully hierarchical ap-
However, simulation studies are needed to assess theproach. To implement the plug-in approach, simply
magnitude of the difference in power under a varietyplug in
of scenarios. In addition to allowing for the incorpora-
tion of historical data, our method can be expected top̂i1l 5

ci 1 yi1l

n1l 1 Rs
m51cm

and p̂i1 5
Rh

l51(ci 1 yi1l)
Rh

l51(n1l 1 Rs
m51cm) have substantially increased power relative to the Adams
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and AFB1-induced mutation spectra in lacI transgenic animals.and Skopek method in two common situations. First,
Mutat. Res. 425: 55–69.

when mutational spectra data are collected for several Cariello, N. F., G. R. Douglas, M. J. Dycaico, N. J. Gorelick, G. S.
Provost et al., 1997 Databases and software for the analysis ofdose groups, our procedure allows testing for a dose-
mutations in the human p53 gene, the human hprt gene andrelated trend in the category probabilities. As we have
both the lacI and the lacZ gene in transgenic rodents. Nucleic

illustrated, a trend test can be much more sensitive than Acids Res. 25: 136–137.
Carr, G. J., and N. J. Gorelick, 1994 Statistical tests of significancethe conventional approach of separately comparing

in transgenic mutation assays: considerations on the experimentaleach dose group to the control group. Second, when
unit. Environ. Mol. Mutagen. 24: 276–283.

interest focuses on assessing differences in the mutation Carr, G. J., and N. J. Gorelick, 1995 Statistical design and analysis
of mutation studies in transgenic mice. Environ. Mol. Mutagen.frequency between groups and there is variability be-
25: 246–255.tween the frequency of mutations at specific sites within

Carr, G. J., and N. J. Gorelick, 1996 Mutational spectra in trans-
a target gene, our procedure for testing for overall dif- genic animal research: data analysis and study design based upon

the mutant or mutation frequency. Environ. Mol. Mutagen. 28:ferences in the category-specific mutation frequencies
405–413.should have improved power relative to methods based Chib, S., and E. Greenberg, 1998 Analysis of multivariate probit

on the overall mutant frequency (e.g., Carr and Gore- models. Biometrika 85: 347–361.
Cochran, W. G., 1954 Some methods of strengthening the commonlick 1994) or on the category probabilities (e.g., Adams

x2 tests. Biometrics 10: 417–451.and Skopek 1987). Assessing the magnitude of this dif- De Boer, J. G., J. C. Mirsalis, G. S. Provost, K. R. Tindall and
ference under a variety of scenarios is an area for future B. W. Glickman, 1996 Spectrum of mutations in kidney, stom-

ach, and liver from lacI transgenic mice recovered after treatmentresearch.
with tris(2,3-dibromopropyl)phosphate. Environ. Mol. Mutagen.A distinguishing feature of our approach is that exact 28: 418–423.

estimates can be obtained for any function of the muta- Dunson, D. B., 2000 Bayesian latent trait models for clustered mixed
outcomes. J. R. Stat. Soc. B 62: 355–366.tional parameters. As we illustrate in the example, such

Foster, P. L., E. Eisenstadt and J. Cairns, 1982 Random compo-
estimates can be extremely useful in characterizing dif- nents in mutagenesis. Nature 299: 365–367.

Fung, K. Y., D. Krewski, J. N. K. Rao and A. J. Scott, 1994 Testsferences between spectra and between mutational cate-
for trend in developmental toxicity experiments with correlatedgories. For simplicity in presentation of the modeling
binary data. Risk Anal. 14: 639–648.

framework, this article has not considered the incorpo- Fung, K. Y., D. Krewski and R. T. Smythe, 1996 A comparison of
tests for trend with historical control in carcinogen bioassay. Can.ration of covariates, such as sex, age, tissue type, and
J. Stat. 24: 431–454.species, into models for the mutation frequency and the

Fung, K. Y., X. Lin and D. Krewski, 1998 Use of generalized linear
category probabilities. However, covariates can easily mixed models in analyzing mutant frequency data from the trans-

genic mouse assay. Environ. Mol. Mutagen. 31: 48–54.be incorporated using dichotomous and multinomial
Gelman, A., J. B. Carlin, H. S. Stern and D. B. Rubin, 1996 Bayesianresponse models, such as the logistic and the probit Data Analysis. Chapman & Hall, London.

(see, for example, Chib and Greenberg 1998; Dunson Haseman, J. K., J. Huff and G. A. Boorman, 1984 Use of historical
control data in carcinogenicity studies in rodents. Toxicol. Pathol.2000). Extended models that accommodate covariates
12: 126–135.and extrabinomial (see Piegorsch et al. 1994, 1997) or Hutchison, F., and J. E. Donellan, Jr., 1997 A mutation spectra

multinomial variation can be fit using BUGS (Best et al. database for bacterial and mammalian genes. Nucleic Acids Res.
25: 192–195.1996), a freely available program for Bayesian inference.

Ibrahim, J. G., L. M. Ryan and M.-H. Chen, 1998 Using historical
controls to adjust for covariates in trend tests for binary data. J.We thank David Umbach, Norman Kaplan, Joseph Haseman, and
Am. Stat. Assoc. 93: 1282–1293.three anonymous reviewers for their many helpful suggestions.

Nishino, H., D. J. Schaid, V. L. Buettner, J. Haavik and S. S.
Sommer, 1996 Mutation frequencies but not mutant frequen-
cies in Big Blue mice fit a Poisson distribution. Environ. Mol.
Mutagen. 28: 414–417.
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