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ABSTRACT
Genetic interference means that the occurrence of one crossover affects the occurrence and/or location

of other crossovers in its neighborhood. Of the three components of genetic interference, two are well
modeled: the distribution of the number and the locations of chiasmata. For the third component,
chromatid interference, there exists only one model. Its application to real data has not yet been published.
A further, new model for chromatid interference is presented here. In contrast to the existing model, it
is assumed that chromatid interference acts only in the neighborhood of a chiasma. The appropriateness
of this model is demonstrated by its application to three sets of recombination data. Both models for
chromatid interference increased fit significantly compared to assuming no chromatid interference, at
least for parts of the chromosomes. Interference does not necessarily act homogeneously. After extending
both models to allow for heterogeneity of chromatid interference, a further improvement in fit was
achieved.

DURING meiotic prophase 1 in diploid individuals, involved in a crossover depend in some way on those
each chromosome is paired with its homologue. strands involved in neighboring crossovers.

Each homologue is duplicated, producing two identical
Substantial progress has been made in investigatingchromatids, the sister strands. A crossover represents an

and modeling the first two components. For these casesevent where two nonsister chromatids form chiasmata,
we use the term suppression interference (SI). For SIbreak, and reunite, enforced by the tight contact and
models, no chromatid interference (NCI) is assumed.the twisting between the chromatids and the subsequent
For recent reviews see Karlin and Liberman (1994)repair mechanism. After meiosis, one of the four re-
and McPeek and Speed (1995). The x2-model of recom-sulting gametes is randomly chosen for further inheri-
bination (Foss et al. 1993; Zhao et al. 1995a) is acceptedtance. For clarity we use the term chiasma at the four-
as a satisfying model for positive SI. Negative SI, i.e.,strand stage, while the term crossover is used with single
one chiasma enforcing the occurrence of another one,strands or gametes. Hence, from one nonsister strand
can be described, for example, by a negative binomialchiasma, two crossovers result. An example of a meiosis
count distribution for the number of chiasmata.at the four-strand stage is given in Figure 1. It has often

The investigation of CI has not reached the same levelbeen proven that chiasma or crossover events are not
yet. It started in the 1930s when recombination fractionsindependent. The notion of genetic interference de-
.0.5 had been observed. This phenomenon was termedscribes the effect on crossovers of neighboring cross-
pseudolinkage. Models have been developed for dataovers. The components of interference are as follows:
exhibiting pseudolinkage (Winge 1935; Mather 1938).

i. Non(complete)randomness in the number of cross- Particularly, Mather found that this phenomenon could
overs: The no-interference model applies if the cross- result only from CI. However, little evidence was found
over numbers are Poisson distributed. All other for it in diploid organisms. For a review and a test proce-
count distributions yield deviations from no interfer- dure, see Zhao et al. (1995b). Recently, Zhao and Speed
ence. (1998, 1999) developed a model for CI. To our knowl-

ii. Non(complete)randomness in crossover locations: edge, an application has not been published so far.
The suppression of nearby crossovers has been mod- Summarizing the literature, the general view is that CI
eled by nonuniformly distributed locations and by is not evident. This is reflected by widely distributed
nonexponentially distributed intercrossover distances mapping software (e.g., CRIMAP) that reduce recombi-
with renewal point processes. nation fractions .0.5 to 0.5. Yet, recombination frac-

iii. Chromatid interference (CI): The strands actually tions u . 0.5 are accepted in tetraploids. Recombination
fractions of up to 0.8 have been found in tetraploid fish
(Wright et al. 1983). Since u # 0.5 is valid even for
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Figure 1.—Example of a four-
strand-stage meiosis with four chi-
asmata and resulting gametes. A
pair of vertically linked, solid
circles indicates a chiasma: two
nonsister strands break and re-
combine. Shaded circles denote
resulting crossovers on the ga-
metes. Open circles define loci
with observable genotypes. Two-
neighbored chiasmata are called
complementary if they have no
strand in common, reciprocal if
they have two strands, and diago-
nal if they have one strand in
common.

Hence, CI cannot be excluded, either from a theoreti- To develop a CI model that takes this into account
and gives additional information compared to the CI(h)cal point of view, or from empirical evidence. It there-

fore appears to be helpful to derive alternative models model, we assume here that CI acts only in the neighbor-
hood of a chiasma. Then a complementary chiasma pairto the existing model of Zhao and Speed (1998), either

to increase the evidence for CI in diploids or to strengthen is modeled by a parallel nonsister strand pair; i.e., two
complementary chiasmata occur close to one site. Asthe conviction that there is none. The objective of the

present study was to develop a model allowing parallel mentioned above, this would lead to the phenomenon
of double crossovers. On the other hand, nearby recip-nonsister strand chiasmata, which could not arise under

high SI if one assumes suppression on all four strands, rocal chiasmata would look like sister strand chiasmata
since they would seldom lead to observable recombina-and sister strand chiasmata, which also have not been

modeled so far but could play a role at high SI. In tions. Thus we also allow sister strand chiasmata.
Let us again consider the question whether suppres-analyzing a number of recombination data sets we found

evidence for SI and CI. Until now heterogeneity of inter- sion of nearby chiasmata acts on all four strands or only
on those involved in the chiasma. So far an answer toference has not been investigated. We incorporated CI

heterogeneity into both CI models and obtained further this question is not known. If we assume the highest
amount of suppression in the first case, then the maxi-improvement in fit.
mum average suppression distance is 0.5 M since within
this distance the next chiasma must appear. In the latter

METHODS
case, the maximum average suppression distance is 1 M,
since a chiasma on the complementary strands couldThe CI(h) model of Zhao and Speed (1998): Zhao

and Speed (1998) treated Weinstein’s (1936) and Math- restore the needed expected number of chiasmata. In
this way, complementary pairs are enforced, which caner’s (1938) approach of modeling CI by introducing a

parameter h that defines the probability that a strand be considered to be parallel from a model point of view.
Additionally, sister strand chiasmata have been observedinvolved in a chiasma is also involved in the following

chiasma. From this, the probabilities for complemen- repeatedly. Although they are invisible to the observer
of recombinations, they influence the location of neigh-tary, diagonal, and reciprocal chiasma pairs (cf. Figure

1) are (1 2 h)2, 2h(1 2 h), and h2, respectively. Under bored nonsister strand chiasmata if suppression is a
property of nonsister as well as sister strand chiasmata.NCI these are 1⁄4, 1⁄2, and 1⁄4. Thus h . 0.5 indicates an

increased and h , 0.5 a reduced amount of reciprocal Therefore, they must be taken into account.
Assume the four-strand stage of meiosis of diploids.chiasma pairs compared to complementary pairs. The

force of CI is assumed to be independent of the distance We define a chiasma site to be a location on a chromo-
some, where strands break and reunite. Let P be thebetween the neighbored chiasmata. For the underlying

SI process the x2-model of recombination was chosen; probability that exactly two nonsister strand chiasmata
occur at a chiasma site and S that one or two sisteri.e., suppression of nearby chiasmata is working on all

four strands. This model here is called CI(h). strand chiasmata occur. Consequently, 1 2 P 2 S is the
probability that exactly one nonsister chiasma appearsThe CI(Q) model allowing sister strand and parallel

nonsister strand chiasmata: Jarrell et al. (1995) found at the chiasma site. The chance of a chiasma site produc-
ing a crossover on a gamete is then Q 5 (1 1 P 2 S)/2.an increased occurrence of four-strand double cross-

overs at the centromere of bovine chromosome 23. For We assumed that there are no dependencies between
different chiasma sites; i.e., for this, NCI is assumed.all models of SI derived for the four-strand bundle, such

a finding can occur only if suppression is absent, since Consider two loci on a random gamete with map
distance x; i.e., the expected number of crossovers isotherwise SI would act on all four strands.
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x and an appropriate recombination fraction u. The will result from a chiasma on a random gamete with
probability Q 5 2/a. Therefore, for Q 5 1, (5) coincidesrelationship between x and u is given by the map func-

tion u(x). Let c9i (x) be the probability that i crossovers with the map function of the two-strand stage,
appear between the loci on the gamete. Then for the
expected number of crossovers u(x) 5 o

∞

i50

c 92i11(x) 5
1
251 2 o

∞

i50

(21)ici(x)6; (8)

x 5 o
∞

i51

ic9i (x) (1)
cf. Bailey (1961). For Q 5 0.5, with the four-strand
stage of diploids,must be valid. A crossover results from a chiasmata site

with probability Q. Under the given assumptions, with u(x) 5 {1 2 c 0(x)}/2 (9)
ci(x) being the probability that the interval carries i

found by Mather (1938), and for Q 5 0.25 with thechiasma sites, we determine
eight-strand stage of tetraploids.

The map function for CI(Q): Recall the x2-modelc9i (x) 5 o
∞

j5i

P(i crossovers |j chiasma sites)cj(x)
of recombination. The chiasma formation process is
described by a stationary renewal process, where the

5 Qio
∞

j5i
1ji2(1 2 Q)j2icj(x). (2) intercrossover distances follow a x2-distribution with

2(m 1 1) d.f. For the theory derived by Zhao et al.
From the expectation condition (1) at the gamete level (1995a) the model of Foss et al. (1993) of the same
we obtain the requirement process is helpful. In this model the locations C of so-

called gene conversions are assumed to be uniformly
x 5 o

∞

j50
o

j

i50
1ji2iQ i(1 2 Q)j2icj(x) 5 Q o

∞

j51

jcj(x) (3) and independently distributed on a scale y. Their values
follow a Poisson distribution. By this, not every gene
conversion C leads to a nonsister strand chiasma Cx.at the four-strand stage. An obvious consequence is the
One realized Cx is followed by m gene conversions Co,limitation of the distance given as
from which no crossovers result. Afterward the next Cx

x # nQ (4) is produced. Parameter m is the interference parameter,
m 5 0 indicates no interference. The probability of noif n is the maximum number of chiasmata. From the
crossovers was determined to befact that a recombination results from an odd number

of crossovers,
c 0(x) 5 o

m

i50
11 2

i
m 1 12hi(y), (10)

u(x) 5
1
251 2 o

∞

i50

(1 2 2Q)ici(x)6
with hi(y) 5 e2y yi/i!. The relationship between the scale
y with the genetic scale x is y 5 2(m 1 1)x under NCI.

5
1
25o

∞

i50

(1 2 (1 2 2Q)i)ci(x)6 (5) The application of the CI(Q) model is based on the
assumption that an event Cx represents a chiasma site

can be evaluated for the recombination fraction. Its now, which leads to a crossover on a gamete with proba-
upper bounds are bility Q. The relation between the model scale y and

the genetic scale x then changes to y 5 (m 1 1)x/Q.u(x) # 0.5 for Q # 0.5, (6)
The probability of the crossover number i 5 0 is given

and by (10) and those for i 5 1, 2, . . . are found to be

u(x) # Q for Q . 0.5. (7) ci(x) 5 hi(m11)(y)1 o
m

j51

j
m 1 1

{h(i21)(m11)1j(y) 1 h(i 1 1)(m11)2j(y)}
Remember that Q , 0.5 indicates the preference of (11)
reciprocal pairs and Q . 0.5 the preference of comple-
mentary chiasma pairs. By this we have a CI model that for m $ 1 and ci(x) 5 hi(y) for m 5 0. The map function

can be evaluated via (5) now. As for the map functionis in concordance with the finding of Mather (1938)
that a recombination fraction exceeding a half may only of the CI(h) model of Zhao and Speed (1998), recombi-

nation fractions .0.5, monotone decreasing parts, andbe the result of an enlarged number of complementary
chiasmata. even wave shapes may arise. For m → ∞ and Q 5 1, the

map function converges to the periodic map functionBefore we can apply the model we have to define the
chiasma site distribution {ci(x)}. As done by Zhao and of complete interference investigated by Teuscher

(1997).Speed (1998), we use the x2-model of recombination.
The combined model is denoted with CI(Q). Note that for m 5 0 (Haldane’s model) the CI parame-

ter Q does not influence the map function if 0 , Q #Note that (5) can be viewed as a general formula
for an arbitrary strand stage of meiosis under NCI. A 1 holds. This can be proved by solving (3) and (5) with

{ci(x)} following the Poisson distribution.chiasma is involved in two of, say, a strands. A crossover
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The distribution of recombination patterns for CI(Q): fit the data, the models for heterogeneous CI are used.
If these models are significantly better than the homoge-To find the theoretical distribution {g(i)} of the multilo-

cus recombination pattern i 5 (i1, i 2, · · · , ir) for the neous CI models, one source of the heterogeneity is
gametes, where ik 5 1 indicates a recombination and ik 5 proved. If the data still do not fit satisfactorily, heteroge-
0 indicates absence of recombination between markers k neous SI appears to act and is subject to further investi-
and k 1 1 on a randomly chosen gamete, we can follow gations: We divide the chromosome and start with the
the Appendix of Zhao et al. (1995a). Besides y 5 (m 1 analysis of all pairs of adjacent intervals. For each pair
1)x/Q, a difference is the chance of s chiasmata in an there are four possible recombination patterns, (0, 0),
interval to produce a recombination, which is (1 2 (1 2 (1, 0), (0, 1), and (1, 1), to which we have to fit the
2Q)s)/2 now, derived from (5). Thus we obtain observations. Since the sample size is known, three equa-

tions have to be solved. Practice shows that this can be
realized by the two genetic distances to be estimatedg(i) 5

1
m 1 1

19M1M2 · · · Mr1 (12)
and by the introduction of one parameter to estimate SI.
Following this, we analyze all triples of adjacent intervals,with Mj 5 R∞

k50(1 1 (21)ij(1 2 2Q)k)Dk(yj)/2 and yj 5
then the quadruples, etc.(m 1 1)xj/Q. Dk(y) is the (m 1 1) 3 (m 1 1) matrix

The test criterion for the fit of the models to realwhose i, jth entry is e2y y(m11)k1j2i/((m 1 1)k 1 j 2 i)!.
data: Commonly, the multilocus concept of Weeks etDefinition of models CI(Qi) and CI(hi) for the investi-
al. (1993) is used to analyze recombination data. For agation of heterogeneity of interference: Assume the fre-
directly observable multilocus recombination pattern,quent case that a model of a crossover formation process
the criterion of fit is the log-likelihooddoes not fit recombination data. Two reasons might

explain this. The data set may be too small or unreliable,
ln L 5 max 1o

i
n(i)ln(g(i))2, (13)or the model might not be appropriate. For the latter

case we have to check the assumptions. In all models
where n(i) is the observed number and g(i) is the theo-created so far the real process is assumed to be homoge-
retical probability of recombination pattern i. The r 1neous over the whole chromosome. This is not necessar-
1 markers are assumed to be ordered, with genetic dis-ily true. We therefore investigate heterogeneous proc-
tances between each consecutive pair of markers x1, x2,esses. Our hypothesis is that when finding the same
· · · , x r . The maximum has to be determined by varyingdegree of interference for two adjacent or overlapping
the genetic distances and the parameters of the model.regions of a chromosome, the model is applicable if it

Haldane’s no-interference model is nested in thefits both parts together. On the other hand, we cannot
x2-model of recombination, representing the NCIexpect a model to fit data for a certain region if it
model. The NCI model is nested in both models foralready failed for a part of it, or if different parts of it
homogeneous CI; i.e., a likelihood-ratio test can be ap-show different characteristics of interference.
plied to test whether CI is acting or not. Also, the CI(Q)From a preliminary analysis we concluded that inter-
and CI(h) models are nested in the CI(Qi) and CI(hi)ference is likely to act heterogeneously. A generalization
models, respectively, and we can test whether CI hetero-of the CI models to regard heterogeneous SI appears

to be difficult. We propose the incorporation of CI het- geneity is significant. To compare two nested models, a
erogeneity. We therefore introduce CI parameters into likelihood-ratio test is applied. Following the asymptotic
the models that may vary between different parts of theory, twice the difference of the two log-likelihoods
the chromosome. For the CI(Q) model, like the CI(h) of the models is x2-distributed with the difference of the
model of Zhao and Speed (1998), we assign CI parame- number of parameters being the degrees of freedom.
ters Qi and hi to intervals i, which does not change the In the application of the models for heterogeneous
theory in any significant way. These models are denoted CI, the interval-wise CI parameters Q̂i and ĥi, i 5 1, · · ·, r,
by CI(Qi) and CI(hi), respectively. However, the two- have to be estimated. To obtain a statement for interval i,

whether deviations from NCI are significant, we com-locus recombination fractions then are not only a
pare the complete models for each i with the modelfunction of the distance between the loci but of their
restricted by Qi 5 0.5 or hi 5 0.5, respectively.locations. To ensure 0 # Qi, hi # 1 during numerical

We evaluate the quality of a fitted model by compar-calculations, we fit auxiliary variables zi and put Qi, hi 5
sin2(zi). ing its log-likelihood value with the ideal log-likelihood

value theoretically achievable by an unknown modelGiven a recombination data set we apply the following
procedure. First we fit Haldane’s no-interference that fits the observed gamete distribution exactly; i.e.,

for this model, g(i) 5 n(i)/N with N 5 Ri n(i) is valid. Ifmodel, then a NCI model like the x2-model of recombi-
nation for positive SI or alternatively the negative bino- twice the difference of the two log-likelihoods is smaller

than the 1 2 a-quantile of the x2-distribution with 1mial map function for negative SI. To test CI vs. no
interference, we use the model CI(h) with m 5 0. Then d.f., which is 3.841 for a 5 0.05, a model of a significantly

better fit than that of the model analyzed does not exist.the homogeneous CI models are applied. If they do not
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For this case we use the phrase that the model fits the val analysis are displayed in the appendix, Tables A4
and A5. A significant improvement over the modelsdata.
assuming homogeneous CI is observed.

Application to the data of Weinstein (1936): The
RESULTS

seven-locus Drosophila data of Weinstein (1936) have
also often been analyzed (e.g., Zhao et al. 1995a). AllApplication to the data of Morgan et al. (1935): The

nine-locus Drosophila data of Morgan et al. (1935) have models applied here yield a significant gain in fit when
compared to nested models. The log-likelihood for Hal-often been used to compare crossover formation models

(see McPeek and Speed 1995). The data have not been dane’s model is 256,394.3 and that of the CI(h) model
under absence of interference (m 5 0, ĥ 5 0) isfitted well by any model. Compared with the ideal log-

likelihood of 236,899.5, we obtained ln L 5 237,956.6 255,096.2. The results for the other models are shown
in Table 1. Again we see that the effect of SI is largerfor Haldane’s no-interference model, ln L 5 236,987.1

for the NCI model (x2-model of recombination with than that of CI. However, both effects and even the
effect of heterogeneous CI are significant. To investigatem̂ 5 4; similar to the gamma model of McPeek and

Speed 1995), and ln L 5 237,122.1 for the CI(h) model the heterogeneity of SI we analyzed adjacent intervals
by the NCI model. We obtained m̂ 5 4 for the first twounder absence of SI (m 5 0, ĥ 5 0). We find significance

for the effects of both SI and CI. Models CI(Q) and intervals and m̂ 5 5, 4, 3, and 3 for the subsequent
interval pairs. All models fitted the data. Analysis ofCI(h) are not significantly better than the NCI model,

thus proving that homogeneous CI is not evident in three neighboring intervals with the NCI, CI(Q), and
CI(h) models led to the results summarized in the ap-addition to SI. Models CI(Qi) and CI(hi) with ln L 5

236,943.0 and ln L 5 236,950.0, respectively, however, pendix, Table A6. Only the triple of intervals (4, 5, 6)
almost fitted. This was supported by the same interfer-yield a highly significant gain in fit when considering

heterogeneous CI. To investigate the heterogeneity of ence strength of m 5 3 in intervals (4, 5) and (5, 6).
Different interference strengths in neighboring inter-SI, we analyzed first pairs of adjacent intervals by the

NCI model. We obtained m̂ 5 4 for the first pair and vals led to triples not fitting. At the first, second, and
third triples we found significant improvement of them̂ 5 5, 4, 3, 4, 4, and 2 for the subsequent interval

pairs. All models fitted the data. The analysis of three NCI models by the CI models. Both models suggest an
increased occurrence of complementary chiasmata.neighboring intervals with the NCI, CI(Q), and CI(h)

models gave the results summarized in the appendix, Then we analyzed the quadruples of adjacent inter-
vals. The results are shown in the appendix, Table A7.Table A1. Only the triple of intervals (5, 6, 7) could be

fitted well. This was supported by the same interference For the first and second quadruples we again found a
highly significant improvement over the NCI model.strength m 5 4 in intervals (5, 6) and intervals (6, 7).

Different SI strengths at neighbored interval pairs led We applied the CI(Qi) and CI(hi) models to the four-
interval case and compared the results with the six-to triples not fitting. At the first and second triples we

found significant improvement of the NCI model by interval analysis (Table A8). Some significant improve-
ments over the models of homogeneous CI were found.the CI models. Both models suggest an increased occur-

rence of complementary chiasmata. Application to the data of Blank et al. (1988): The
recombination data of Blank et al. (1988) on chromo-Then we analyzed the quadruples of intervals. The

results are shown in the appendix, Table A2. For the some 12 of mice have been used repeatedly for investiga-
tions on the phenomenon of interference (Weeks et al.first quadruple, termed the “five-locus data of Morgan

et al. (1935)” in the literature, and the second and fourth 1994; Lin and Speed 1996). The analysis of the whole
data set led to results shown in Table 2. Furthermore,quadruple a highly significant improvement over the

NCI model is evident. Deviating from the former conclu- we obtained ln L 5 2564.67 for fitting Haldane’s model
and ln L 5 2547.63 for fitting CI(h) under absence ofsions, both CI models indicate a significant effect of

dominating reciprocal chiasmata at quadruple (4, 5, 6, SI (m 5 0, ĥ 5 0); i.e., the effects of SI (ln L 5 2547.12
under NCI) and CI nearly agree. Both effects are sig-7). However, from quadruples onward, no model fits

the data. The analysis of the quintuples (Table A3) nificant compared to assuming no interference. The
CI(Q) and CI(h) models are significantly better thanunderlines the tendency of the telomeric part to carry

an increased number of reciprocal chiasma pairs. The the NCI model, which was so far viewed to fit best (Lin
and Speed 1996). For the CI(Qi) model we obtaineddominance of complementary chiasma pairs at the cen-

tromere region is still visible. The analysis of six neigh- the best fit for m̂ 5 6, Q̂ 1 5 0.19, Q̂ 2 5 · · · 5 Q̂ 5 5 1,
Q̂ 6 5 0.87, and Q̂ 7 5 0.72. This model is significantlyboring intervals with the CI(Q) model indicates the

same result. There, model CI(h) showed significance better than the NCI model but not significantly better
than the model for homogeneous CI. Only Q̂1 differsonly at the telomeric part. With seven or eight intervals,

no improvements over the NCI model are found. significantly from 0.5. For the CI(hi) model we obtained
the best fit for m̂ 5 1, ĥ1 5 ĥ2 5 1, and ĥ3 5 · · · 5We applied the CI(Qi) and CI(hi) models to the four-

interval case. The results compared with the eight-inter- ĥ7 5 0. This model fits significantly better than the
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TABLE 1

Observed gamete counts of the data of Weinstein (1936) and counts expected for the x2-model
under NCI and under different models for chromatid interference

Expected

NCI: CI(Q): CI(h): CI(Qi): CI(hi):
m̂ 5 4, m̂ 5 3, m̂ 5 4, m̂ 5 3, m̂ 5 3,

Gamete Observed Q 5 h 5 0.5 Q̂ 5 0.60 ĥ 5 0.46 Q̂i (see Table 9) ĥi (see Table 9)

(0, 0, 0, 0, 0, 0) 12,776 13,054.0 12,771.5 12,759.5 12,777.5 12,774.3
(1, 0, 0, 0, 0, 0) 1,407 1,267.7 1,310.9 1,313.7 1,393.0 1,402.8
(0, 1, 0, 0, 0, 0) 2,018 1,893.7 1,964.7 1,959.7 2,072.9 2,049.6
(0, 0, 1, 0, 0, 0) 1,976 1,793.0 1,856.1 1,850.9 1,910.3 1,912.9
(0, 0, 0, 1, 0, 0) 3,378 3,324.0 3,428.3 3,426.0 3,394.1 3,416.9
(0, 0, 0, 0, 1, 0) 2,356 2,404.5 2,474.4 2,484.0 2,366.2 2,360.2
(0, 0, 0, 0, 0, 1) 2,067 2,101.8 2,179.5 2,178.1 2,053.0 2,063.5
(1, 1, 0, 0, 0, 0) 9 9.0 11.8 8.6 7.6 11.5
(1, 0, 1, 0, 0, 0) 16 44.6 45.1 42.5 29.1 21.1
(1, 0, 0, 1, 0, 0) 142 211.1 189.4 199.3 150.3 144.6
(1, 0, 0, 0, 1, 0) 198 226.2 206.0 211.7 196.6 196.9
(1, 0, 0, 0, 0, 1) 206 214.0 211.2 202.1 213.0 209.2
(0, 1, 1, 0, 0, 0) 11 13.8 18.0 13.4 9.7 9.4
(0, 1, 0, 1, 0, 0) 136 170.7 163.0 163.6 126.5 135.0
(0, 1, 0, 0, 1, 0) 261 274.7 243.7 259.0 241.4 249.2
(0, 1, 0, 0, 0, 1) 318 305.7 285.9 286.5 295.8 294.2
(0, 0, 1, 1, 0, 0) 42 47.9 54.1 46.8 47.6 48.7
(0, 0, 1, 0, 1, 0) 148 163.6 148.9 156.4 165.6 166.6
(0, 0, 1, 0, 0, 1) 212 247.6 221.9 232.6 242.2 245.0
(0, 0, 0, 1, 1, 0) 123 88.2 93.3 85.5 130.5 110.7
(0, 0, 0, 1, 0, 1) 315 270.2 247.1 256.4 298.6 291.9
(0, 0, 0, 0, 1, 1) 59 43.1 47.9 41.2 56.1 61.2
(1, 1, 0, 1, 0, 0) 3 0.7 0.8 0.6 0.4 0.7
(1, 1, 0, 0, 1, 0) 1 1.2 1.4 1.1 0.9 1.3
(1, 1, 0, 0, 0, 1) 2 1.4 1.7 1.2 1.1 1.6
(1, 0, 1, 0, 1, 0) 3 3.8 3.5 3.4 2.4 1.8
(1, 0, 1, 0, 0, 1) 3 6.0 5.3 5.2 3.6 2.7
(1, 0, 0, 1, 1, 0) 10 4.8 4.6 4.3 5.1 4.3
(1, 0, 0, 1, 0, 1) 15 16.1 12.9 14.0 12.5 11.9
(1, 0, 0, 0, 1, 1) 1 3.9 3.9 3.4 4.3 5.0
(0, 1, 1, 1, 0, 0) 1 0.3 0.4 0.3 0.2 0.2
(0, 1, 0, 1, 1, 0) 2 3.3 3.5 3.0 4.0 3.6
(0, 1, 0, 1, 0, 1) 10 12.2 10.6 10.8 10.2 10.7
(0, 1, 0, 0, 1, 1) 1 4.6 4.4 4.0 5.0 6.2
(0, 0, 1, 1, 0, 1) 5 3.0 3.2 2.7 3.6 3.6
(0, 0, 1, 0, 1, 1) 5 2.5 2.6 2.2 3.1 3.9
(0, 0, 0, 1, 1, 1) 1 1.1 1.4 1.0 1.9 2.3
(1, 1, 1, 1, 0, 0) 1 0.001 0.002 0.0005 0.0004 0.001
(1, 1, 1, 0, 0, 1) 1 0.004 0.008 0.004 0.003 0.004

ln L 254,850.1a 254,950.2 254,931.8 254,935.8 254,890.0 254,887.8

a Ideal case: theoretical and observed distributions agree.

homogeneous model CI(h). Estimates ĥ3, ĥ6, and ĥ7 Compared to the ideal log-likelihood of ln L 5 2270.96,
only the CI(hi) model fitted the data, indicating substan-differ significantly from 0.5. From the estimates of the

heterogeneity parameters we hypothesize that the prob- tial heterogeneity in the first three intervals. The results
of analyzing the first adjacent pairs with NCI modelslem is to fit the first three intervals and the last six.

Analysis of the first three intervals gave ln L 5 2277.62 are shown in the appendix, Table A9. For the first two
intervals, the result m̂ 5 0 suggests that Haldane’s modelfor the NCI model (m 5 1), ln L 5 2276.72 for the

CI(h) model (ĥ 5 0.23, m̂ 5 1), ln L 5 2276.95 for fitted best. The model fitted the data. We also applied
the negative binomial map function and fitted the datathe CI(Q) model (Q̂ 5 1, m̂ 5 1), and ln L 5 2272.28

for the CI(hi) model (ĥ1 5 ĥ2 5 1, ĥ3 5 0, and m̂ 5 1). exactly. This is a hint of the action of negative rather
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TABLE 2

Observed gamete counts of the data of Blank et al. (1988) and counts expected for the x2-model
under NCI and under different models for chromatid interference

Expected

NCI: CI(Q): CI(h): CI(Qi): CI(hi):
m̂ 5 6, m̂ 5 2, m̂ 5 2, m̂ 5 6, m̂ 5 1;

Gamete Observed Q 5 h 5 0.5 Q̂ 5 1 ĥ 5 0.15 Q̂i (see text) ĥi (see text)

(0, 0, 0, 0, 0, 0, 0) 148 159.3 148.0 148.4 149.4 146.4
(1, 0, 0, 0, 0, 0, 0) 27 30.8 32.9 31.9 26.1 31.7
(0, 1, 0, 0, 0, 0, 0) 5 6.0 6.6 6.5 6.1 5.8
(0, 0, 1, 0, 0, 0, 0) 45 36.6 41.5 41.7 43.1 43.7
(0, 0, 0, 1, 0, 0, 0) 4 3.2 3.6 3.6 3.7 3.8
(0, 0, 0, 0, 1, 0, 0) 6 4.8 5.4 5.4 5.6 5.7
(0, 0, 0, 0, 0, 1, 0) 24 20.3 22.9 23.3 24.1 24.1
(0, 0, 0, 0, 0, 0, 1) 47 39.3 44.8 46.1 46.9 46.5
(1, 1, 0, 0, 0, 0, 0) 2 0.01 0.02 0.04 0.2 0.7
(1, 0, 0, 0, 0, 1, 0) 2 2.1 1.3 1.0 1.9 0.9
(1, 0, 0, 0, 0, 0, 1) 5 7.2 4.5 3.3 5.6 3.5
(0, 0, 1, 0, 0, 0, 1) 2 3.6 2.6 2.3 1.2 2.3

ln L 2531.92a 2547.12 2543.28 2542.93 2538.60 2536.21

a Ideal case: theoretical and observed distributions agree.

than positive interference. For the second pair we found negative or absent SI at the centromere region and high
SI at the telomeric part of the chromosome for the dataln L 5 2165.52 for m̂ 5 15. Although not significant

compared to Haldane’s model, a strong positive inter- of Blank et al. (1988).
The results on CI also differ between data sets. Weference seems to act.

For intervals 2–7 the NCI model already fits the data therefore conclude that no general rules for interfer-
(m̂ 5 29). We evaluated ln L 5 2430.03, which was ence heterogeneity exist. Using the data of Morgan et
highly significantly better than Haldane’s model (ln L 5 al. (1935) and Weinstein (1936) we found an increased
2452.48). For comparison, the ideal log-likelihood was amount of complementary chiasmata at the centromere
2428.96. region. For the data of Morgan et al. (1935) we addition-

ally found an increased amount of reciprocal chiasma
pairs at the telomeric part of the chromosome. This is

DISCUSSION particularly evident from the results for the CI(Q)
model and could result from sister strand chiasmata.A long-known reason for the occurrence of chiasmata
Using the data of Blank et al. (1988) we proved anis to help organize meioses by fixing strands. On the
intensification of complementary chiasma pairs that areother hand, it turned out that molecular strategies of
concentrated mainly in the telomeric part. The findingsinheritance play an important role in the biological
for the centromere weakly indicate either an increasedprocess of evolution. It is not clear if or how chiasmata
amount of reciprocal chiasmata or simply negative SI.are involved in this process. Only trivial statements can

One should note that Morgan et al. (1935) andbe made, such as negative or absence of genetic interfer-
Weinstein (1936) examined the same chromosome ofence increases genetic variability on the gametes more
the same species. It is of particular interest that the firstthan high positive interference. The investigation of
five loci and the seventh locus were identical. Compar-meiotic processes with particular sets of recombination
ing Tables A1 and A6, A2 and A7, A4 and A8, and A5data is only one but an important step in contributing
and A8, we indeed observe a congruence of parameterknowledge in this area.
estimates and interference behavior. Both models forThe NCI models routinely used in mapping today
CI behaved similarly. Therefore it is not clear whetherreflect only SI. We have proved that, as well as SI, CI and
CI works better at small or large distances. We note thateven interference heterogeneity may play an important
numerically the CI(Q) model is about five times fasterrole in meiosis. We found evidence for heterogeneous
than the CI(h) model.SI and CI. The SI heterogeneity differed among the

We have shown that chromatid and suppression inter-three data sets considered. While we found positive,
ference are not completely separable. Especially, posi-slightly varying intermediate SI for the data of Morgan

et al. (1935) and Weinstein (1936), we found slightly tive SI may partially be compensated by a greater
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Brockmann, G. A., C. S. Haley, U. Renne, S. A. Knott and M.amount of complementary chiasma pairs and negative
Schwerin, 1998 QTLs affecting body weight and fatness from

SI by an enlarged amount of reciprocal chiasma pairs. a mouse line selected for extreme high growth. Genetics 150:
368–381.For the data of Morgan et al. (1935) and Weinstein

Foss, E., R. Lande, F. W. Stahl and C. M. Steinberg, 1993 Chiasma(1936), SI dominates CI, while for the data of Blank et
interference as a function of genetic distance. Genetics 133: 681–

al. (1988) both kinds of interference have the same 691.
Jarrell, V. L., H. A. Lewin, Y. Da and M. B. Wheeler, 1995 Gene-strength. However, separation would be easier if we were
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for depending crossover placement rules. Arch. Tierz. 40: 179–
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Wright, J. E., K. Johnson, A. Hollister and B. May, 1983 Meiotic
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APPENDIX
TABLE A1

Log-likelihoods and estimated parameters for different models of interference fitted
to three adjacent intervals of the data of Morgan et al. (1935)

Analyzed intervals

Model 1, 2, 3 2, 3, 4 3, 4, 5 4, 5, 6 5, 6, 7 6, 7, 8

Dataa 212,745.2 215,650.7 215,049.3 217,531.2 215,511.3 213,918.1
NCI 212,753.6 215,659.7 215,051.4 217,534.5 215,512.4b 213,921.9

m̂ 5 5 m̂ 5 5 m̂ 5 3 m̂ 5 3 m̂ 5 4 m̂ 5 4

CI(Q) 212,750.7 215,655.1 215,051.4 217,534.5 215,512.4b 213,920.9
m̂ 5 3 m̂ 5 3 m̂ 5 3 m̂ 5 3 m̂ 5 4 m̂ 5 3
Q̂ 5 0.87* Q̂ 5 0.73** Q̂ 5 0.50 Q̂ 5 0.50 Q̂ 5 0.50 Q̂ 5 0.60

CI(h) 212,749.5 215,654.2 215,051.4 217,534.4 215,512.4b 213,920.8
m̂ 5 2 m̂ 5 2 m̂ 5 3 m̂ 5 3 m̂ 5 4 m̂ 5 3
ĥ 5 0.09** ĥ 5 0.25** ĥ 5 0.51 ĥ 5 0.50 ĥ 5 0.50 ĥ 5 0.36

Significantly better than NCI model. *P , 0.05; **P , 0.01.
a Ideal case: theoretical and observed distributions agree.
b Model is not significantly improved.

TABLE A2

Log-likelihoods and estimated parameters for different models of interference fitted
to four adjacent intervals of the data of Morgan et al. (1935)

Analyzed intervals

1, 2, 3, 4 2, 3, 4, 5 3, 4, 5, 6 4, 5, 6, 7 5, 6, 7, 8

Dataa 218,751.3 220,099.7 221,820.1 221,655.2 218,343.3
NCI 218,776.2 220,125.1 221,827.3 221,670.9 218,348.3

m̂ 5 5 m̂ 5 4 m̂ 5 3 m̂ 5 4 m̂ 5 4

CI(Q) 218,762.0 220,120.6 221,827.2 221,667.7 218,347.1
m̂ 5 2 m̂ 5 3 m̂ 5 4 m̂ 5 4 m̂ 5 3
Q̂ 5 1.0*** Q̂ 5 0.61** Q̂ 5 0.44 Q̂ 5 0.45* Q̂ 5 0.57

CI(h) 218,761.0 220,120.5 221,827.3 221,667.3 218,347.8
m̂ 5 3 m̂ 5 3 m̂ 5 3 m̂ 5 3 m̂ 5 3
ĥ 5 0.24*** ĥ 5 0.37** ĥ 5 0.50 ĥ 5 0.58** ĥ 5 0.41

Significantly better than NCI model. *P , 0.05; **P , 0.01; ***P , 0.001.
a Ideal case: theoretical and observed distributions agree.

TABLE A3

Log-likelihoods and estimated parameters for different models of interference fitted
to five adjacent intervals of the data of Morgan et al. (1935)

Analyzed intervals

1, 2, 3, 4, 5 2, 3, 4, 5, 6 3, 4, 5, 6, 7 4, 5, 6, 7, 8

Dataa 223,196.6 226,868.9 225,943.6 224,486.8
NCI 223,243.9 226,901.4 225,963.7 224,506.5

m̂ 5 4 m̂ 5 4 m̂ 5 3 m̂ 5 3

CI(Q) 223,230.9 226,900.9 225,959.2 224,503.4
m̂ 5 3 m̂ 5 3 m̂ 5 4 m̂ 5 4
Q̂ 5 0.64*** Q̂ 5 0.56 Q̂ 5 0.46** Q̂ 5 0.46*

CI(h) 223,231.4 226,901.4 225,961.2 224,503.6
m̂ 5 3 m̂ 5 4 m̂ 5 4 m̂ 5 4
ĥ 5 0.35*** ĥ 5 0.50 ĥ 5 0.55* ĥ 5 0.56*

Significantly better than NCI model. *P , 0.05; **P , 0.01; ***P , 0.001.
a Ideal case: theoretical and observed distributions agree.
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TABLE A4

Estimated chromatid interference parameters Q̂i and obtained log-likelihoods for the five- and
nine-locus analyses of the data of Morgan et al. (1935) with model CI(Qi)

Q̂i for interval i
ln L

Analyzed intervals (m with best fit) i 5 1 i 5 2 i 5 3 i 5 4 i 5 5 i 5 6 i 5 7 i 5 8

1, 2, 3, 4 218,757.3* (3) 0.51 1a 1a 0.52
2, 3, 4, 5 220,102.2** (3) 1a 1a 0.51 0.37
3, 4, 5, 6 221,824.2 (3) 0.90a 0.46 0.40 0.70a

4, 5, 6, 7 221,662.0* (4) 0.34 0.51 0.46 0.82
5, 6, 7, 8 218,344.5 (3) 0.36 0.73 0.54 0.30

1, 2, 3, 4, 5, 6, 7, 8 236,943.0** (3) 0.52 1a 1a 0.51 0.34a 0.73a 0.49 0.34
1, 2, 3, 4, 5, 6, 7, 8 236,944.4** (4) 0.35 0.88a 0.99a 0.42 0.38 0.55 0.53 0.23

Significantly better than model for homogeneous interference. *P , 0.01; **P , 0.001.
a Estimate differs significantly from 0.5 (P , 0.05).

TABLE A5

Estimated chromatid interference parameters ĥi and obtained log-likelihoods for the five- and
nine-locus analyses of the data of Morgan et al. (1935) with model CI(hi)

ĥi for interval i
ln L

Analyzed intervals (m with best fit) i 5 1 i 5 2 i 5 3 i 5 4 i 5 5 i 5 6 i 5 7 i 5 8

1, 2, 3, 4 218,756.2* (2) 0 0.14a 0.08a 0.20a

2, 3, 4, 5 220,102.3** (2) 0 0.07a 0.19a 0.40a

3, 4, 5, 6 221,825.9 (3) 0 0.39 0.55 0.50
4, 5, 6, 7 221,661.2* (4) 1 0.98a 0.58a 0.54
5, 6, 7, 8 218,346.9 (3) 1 0.40 0.37a 0.45

1, 2, 3, 4, 5, 6, 7, 8 236,953.0** (3) 0 0.29 0.13a 0.26a 0.46 0.50 0.52 0.50

Significantly better than model for homogeneous interference. *P , 0.01; **P , 0.001.
a Estimate differs significantly from 0.5 (P , 0.05).

TABLE A6

Log-likelihoods and estimated parameters for different models of interference fitted
to three adjacent intervals of the data of Weinstein (1936)

Analyzed intervals

Model 1, 2, 3 2, 3, 4 3, 4, 5 4, 5, 6

Dataa 224,108.8 228,569.3 229,527.1 231,329.6
NCI 224,128.5 228,575.2 229,537.4 231,331.9

m̂ 5 5 m̂ 5 5 m̂ 5 4 m̂ 5 3

CI(Q) 224,120.1 228,572.5 229,534.9 231,331.9
m̂ 5 3 m̂ 5 3 m̂ 5 3 m̂ 5 3
Q̂ 5 0.80** Q̂ 5 0.69* Q̂ 5 0.57* Q̂ 5 0.50

CI(h) 224,115.6 228,572.5 229,534.7 231,331.9
m̂ 5 2 m̂ 5 4 m̂ 5 3 m̂ 5 3
ĥ 5 0.12** ĥ 5 0.38* ĥ 5 0.41* ĥ 5 0.50

Significantly better than NCI model. *P , 0.05; **P , 0.001.
a Ideal case: theoretical and observed distributions agree.
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ĥ

5
0.46*

ĥ
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TABLE A8

Estimated chromatid interference parameters Q̂i and ĥi and obtained log-likelihoods for the five- and seven-locus analyses
of the data of Weinstein (1936) with models CI(Qi) and CI(hi)

CI(Qi) CI(hi)

Q̂i for interval i ĥi for interval i
Analyzed
intervals ln L (m̂) 1 2 3 4 5 6 ln L (m̂) 1 2 3 4 5 6

1, 2, 3, 4 235,488.6 (3) 0.56 0.92a 0.78a 0.58 235,483.9**(3) 0 0.33 0.15a 0.31a

2, 3, 4, 5 238,220.6**(3) 0.58 1 0.56a 0.45a 238,221.9* (3) 0 0.20a 0.31a 0.45a

3, 4, 5, 6 239,286.6**(3) 1 0.60a 0.41 0.77a 239,289.9* (3) 0 0.28a 0.44a 0.47

1, 2, 3, 4, 5, 6 254,890.0**(3) 0.57 0.97a 0.69a 0.62a 0.38a 0.96a 254,887.8**(3) 0 0.30 0.16a 0.31a 0.45a 0.49

Significantly better than model for homogeneous interference. *P , 0.01; **P , 0.001.
a Estimate differs significantly from 0.5 (P , 0.05).
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TABLE A9

Observations of the first two interval pairs of the data of Blank et al. (1988) with expected numbers
obtained by fitting different models

Analyzed intervals

1, 2 2, 3

Gamete

Expected Expected

Observed

Negative CI(h):
binomial: ĥ 5 1, x2-model:

Haldane â 5 0.41 m̂ 5 0 Observed Haldane m̂ 5 15

(0, 0) 276 274.8 276.0 275.5 263 264.0 263.0
(1, 0) 34 35.2 34.0 34.5 7 6.0 7.0
(0, 1) 5 6.2 5.0 5.4 47 46.0 47.0
(1, 1) 2 0.8 2.0 1.6 0 1.0 0.0

ln L 2145.01a 2145.80 2145.01 2145.08 2165.52a 2166.65 2165.52

a Ideal case: theoretical and observed distributions agree.


