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ABSTRACT
Recent studies have begun to reveal the genes underlying quantitative trait differences between closely

related populations. Not all quantitative trait loci (QTL) are, however, equally likely to be detected. QTL
studies involve a limited number of crosses, individuals, and genetic markers and, as a result, often have
little power to detect genetic factors of small to moderate effects. In this article, we develop an estimator
for the total number of fixed genetic differences between two parental lines. Like the Castle-Wright
estimator, which is based on the observed segregation variance in classical crossbreeding experiments,
our QTL-based estimator requires that a distribution be specified for the expected effect sizes of the
underlying loci. We use this expected distribution and the observed mean and minimum effect size of
the detected QTL in a likelihood model to estimate the total number of loci underlying the trait difference.
We then test the QTL-based estimator and the Castle-Wright estimator in Monte Carlo simulations. When
the assumptions of the simulations match those of the model, both estimators perform well on average.
The 95% confidence limits of the Castle-Wright estimator, however, often excluded the true number of
underlying loci, while the confidence limits for the QTL-based estimator typically included the true value
z95% of the time. Furthermore, we found that the QTL-based estimator was less sensitive to dominance
and to allelic effects of opposite sign than the Castle-Wright estimator. We therefore suggest that the QTL-
based estimator be used to assess how many loci may have been missed in QTL studies.

GENETIC studies of quantitative trait loci (QTL) for by the detected QTL, this procedure overestimates
the importance of what has been detected because ofare beginning to reveal the genetic basis of pheno-

typic differences. In several cases, researchers have pin- an inherent bias in QTL analyses where the same data
are used to detect QTL and to determine their effectpointed the genetic changes that have occurred during
sizes [a bias known as the Beavis (Beavis 1994, 1998)the processes of natural selection, artificial selection,
effect]. Second, most quantitative genetics theory as-and speciation (for example, Doebley and Stec 1991;
sumes that many loci contribute to the observed pheno-Paterson et al. 1991; Mackay 1996; Laurie et al. 1997;
typic variation for a trait. Therefore, to determine theBradshaw et al. 1998). All QTL studies, however, in-
applicability of quantitative genetics theory, it is impor-volve a limited number of individuals and markers. Con-
tant to know whether there really are a large numbersequently, although QTL studies can detect loci that
of underlying loci, even if a QTL study detects only aexplain a large fraction of the phenotypic difference
small fraction of them. Third, minor effect QTL maybetween two divergent lines, they have trouble identi-
have a much larger effect when different parental linesfying loci of more subtle effect. Thus, QTL studies are
are involved or under different environmental condi-known to underestimate the total number of loci in-
tions (Leips and Mackay 2000). Given that the magni-volved.
tude of a QTL’s effect may depend on the experimentalEstimating the total number of underlying loci is valu-
crosses and conditions, we may wish to have more gen-able for several reasons. First, given that the detected
eral information about how many genes make someQTL generally represent only a fraction of the total set
contribution to the observed phenotypic difference. Forof QTL, it is worth obtaining accurate estimates of the
example, we predict that different studies of the samenumber and average effect size of the undetected QTL
populations would be more likely to detect a differentbefore embarking upon further studies. Although it is
set of QTL when there are many undetected QTL thantempting to consider simply the fraction of the total
when there are few.parental difference (or segregation variance) accounted

In this study, we investigate the relationship between
the detected number of QTL (nd) and the total number
of genetic differences underlying a trait difference be-
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based estimator (nQTL) for the total number of loci un- the same distribution at each locus, which is unlikely
given functional differences among genes.derlying an observed trait difference between parental

lines. More recently, Orr (1998) studied the process of
adaptation in a geometrical model first proposed byTo evaluate our estimator, we performed hundreds
Fisher (1958). In this model, a fitness landscape inof simulated QTL experiments. For each “experiment,”
multiple dimensions has a single fitness optimum. Ini-we generated parental genomes carrying a specified
tially, the population is displaced from this optimum,number of QTL (n) with effects drawn at random from
perhaps because of a recent shift in the environment.a gamma distribution. We then simulated crosses to
Each new mutation that occurs affects a number of traitsgenerate an F1 and an F2 population. A QTL analysis
but does so to varying degrees. Whether the mutationwas then conducted on the basis of the marker geno-
is beneficial or deleterious depends on the currenttypes and phenotypes of these F2 individuals. We could
state of the population and on whether the mutationthus compare our estimated number of underlying loci
brings the population closer to the fitness optimum.(nQTL) to the true number (n). We also assessed the
Orr tracked the series of mutations that were incorpo-performance of the classical Castle-Wright estimator
rated into the population as it approached the adaptive(nCW), which is based on the segregation variance ob-
optimum. In general, adaptation toward a peak in theserved among hybrids (reviewed by Lynch and Walsh
fitness landscape produced a series of genetic changes1998, pp. 233–243).
whose effects on phenotype followed an approximatelyFor both our QTL-based estimator and the Castle-
exponential distribution, a result that held under aWright estimator, the expected distribution of allelic
broad variety of plausible distributions for the effectseffects must be specified. We begin, therefore, with a
of mutations (Orr 1998, 1999).discussion of this distribution and its shape. Second, we

Finally, an exponential distribution of fitness effectsdiscuss the Castle-Wright and related estimators. Third,
may also be a reasonable outcome of selection with awe develop our QTL-based estimator under the assump-
moving optimum. To show this, we assume that thetion of an exponential and a gamma distribution of
fitness effects of new beneficial mutations follow aallelic effect sizes. Finally, we present results from our
gamma distribution with mean, m, and coefficient ofsimulated QTL experiments.
variation, C. The shape of the gamma distribution de-
pends on the coefficient of variation (Figure 1). When
C 5 1, the gamma is equivalent to an exponential dis-DISTRIBUTION OF EFFECT SIZES
tribution. For C . 1, the distribution becomes more

Surprisingly, there is little theory about the suite of L-shaped, while for C , 1, the distribution approaches
genetic differences that are likely to be observed among a bell shape. We also assume that the distribution of
recently diverged taxa. While we have long known how newly arising beneficial mutations remains approxi-
to calculate the probability of fixation of a single muta- mately constant throughout the adaptive process, which
tion and how this depends on its effect on fitness, few
studies have examined the entire set of substitutions
likely to result from a period of adaptation.

Using an argument presented by Gillespie (1991, p.
266), we might expect an exponential distribution of
selection coefficients among alleles that have fixed
within a population. Gillespie noted that if all possible
alleles at a locus were ordered in terms of absolute
fitness from lowest to highest, then the selection coeffi-
cient of the second most fit allele relative to the most
fit allele would follow an exponential distribution when
measured across all loci. (His proof is based on extreme
value theory.) Therefore, if the previously most fit al-
lele at a locus falls only to second place in the fitness
ordering when the environment (internal or external)
changes, then the selection coefficients of substituted Figure 1.—Potential distributions of allelic effects. Each
alleles should follow an exponential distribution. That curve describes a gamma distribution with mean m 5 1 but with
is, we might expect an exponential distribution of selec- different coefficients of variation (C). The QTL underlying a

particular phenotypic difference represent draws from thetion coefficients among alleles that have fixed within
appropriate distribution, as illustrated by the circles undera population if evolutionary change is accomplished
the x-axis. Only those QTL above the threshold of detectionprimarily by the successive replacement of the two most (u 5 0.8, thin vertical line) are likely to be detected (solid

fit alleles. The proof assumes, however, that genetic circles). Those below the threshold are likely to remain unde-
tected (open circles).interactions are absent and that allelic fitnesses follow
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is plausible if a population lags steadily behind a moving difference between two lines was developed by Castle
(1921) and Wright (1968). Their method is based onoptimum or fitness threshold. The distribution of fitness

effects among those beneficial mutations that fix within the amount of segregation variance observed in con-
trolled crosses. Intuitively, if there is one or very fewa population can be calculated by weighting the original

gamma distribution by each allele’s probability of fixa- Mendelian factors underlying a trait, then some F2 indi-
viduals will have the same genotypes as the parents, andtion, which, in populations of large size, is approxi-

mately twice the allele’s selective advantage. It can be the phenotypic range observed among the F2’s should
span the entire range of the parental lines, P1 and P2.shown that the distribution of beneficial alleles, condi-

tioned on their fixation, is also gamma, but with mean As the number of loci contributing to the trait increases,
however, F2 individuals will more often fall near them(1 1 C 2) and coefficient of variation √C 2/(1 1 C 2).
average of the parental lines as a result of the centralInterestingly, this conditional distribution always has a
limit theorem. Thus the amount of segregation vari-coefficient of variation ,1. Hence, it is either exponen-
ance, Var(S), estimated from hybrid (F2, F3, etc.) andtial or bell shaped, even if newly arising beneficial muta-
backcross generations, contains information regardingtions have a very L-shaped distribution. Unfortunately,
the number of alleles underlying the phenotypic dif-we know little about the distribution of fitness effects
ference between two parental lines. If Dz is the differ-of mutations in general and of beneficial mutations in
ence between parental lines in the trait of interest, theparticular. The distribution of spontaneous deleterious
Castle-Wright estimator for the number of underlyingmutations is thought to be roughly L-shaped, with esti-
loci ismates of C ranging from 2 to 5 (Keightley 1994; Lynch

et al. 1999). If newly arising beneficial mutations follow
a distribution of similar shape, then those beneficial n̂CW 5

(Dz)2

8 Var(S)
. (1)

mutations that fix will follow a gamma distribution that
is nearly exponential in shape, with a coefficient of Equation 1 assumes that the underlying loci are un-
variation between 0.9 and 1. linked and that they have equal effects. Consequently,

The above arguments suggest that an exponential (1) is said to estimate the “effective” number of underly-
distribution might often describe the distribution of ing loci, equivalent to the number that there would
effect sizes among alleles that arise and fix during adap- be if all QTL were unlinked and had effects of equal
tive divergence. There may, however, be circumstances magnitude.
under which alternative distributions are plausible. For Numerous improvements and extensions have been
example, one might be examining a trait that has di- made to the Castle-Wright estimator (summarized in
verged as a pleiotropic response to selection on other Lynch and Walsh 1998, chapter 9). In particular, Zeng
traits or through neutral drift. In these cases, the distri- (1992) analyzed a generalized model that allowed for
bution should more closely reflect the distribution of linkage among loci and variation in their effects. He
effect sizes among new mutations. On the other hand, estimated the number of underlying loci to be
if one of the parental lines has been subject to rapid
and strong selection over a very short period of time,

n̂CWZ 5
2c n̂CW 1 C 2(n̂CW 2 1)

1 2 n̂CW(1 2 2c )
, (2)

then only large-effect mutations will have had enough
time to fix. In this case the distribution of fixed effects

where c is the average recombination rate between loci,may be more normal in shape with a mean offset from
and C is the coefficient of variation for the distributionzero. Similarly, the fact that researchers choose traits
describing the additive effects. Given that allelic effectsand parental lines that are particularly divergent may
are likely to vary from locus to locus, Equation 2 shouldbias the distribution of effect sizes such that a greater
more closely estimate the true number of underlyingproportion of allelic effects are large. The gamma distri-
loci than does the effective number presented in (1).bution is a natural choice to describe these various alter-
Equation 2 requires, however, that the distribution ofnatives, because its shape is so flexible. Here, we focus
effects be specified. Fortunately, it can be used with aon the exponential distribution, both because it has
variety of distributions describing the additive effectstheoretical support and because the results are simpler
of the QTL, including an exponential and a gammato understand. We also provide a more general deriva-
distribution.tion that uses a gamma distribution to describe the

Sampling variances for n̂CW and n̂CWZ have been deter-underlying effects of alleles on the trait of interest and
mined by Lande (1981) and Zeng (1992). Rather thanthat may allow a more flexible approach to fitting real
reiterate their general findings, we focus here on thedata.
sampling variance relevant to our simulation study. We
assume that the parental-line means are known with

THE CASTLE-WRIGHT ESTIMATOR negligible error and that the trait has been measured
under controlled environmental conditions (i.e., theHistorically, one of the most widely used methods

for estimating the number of loci underlying a trait parental difference is attributable to genetic differ-
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ences). In this case, the segregation variance reduces knowledge of the form of the power curve in a typical
QTL study with multiple markers, we approximate theto the variance among F2 individuals, and the variance

of the Castle-Wright-Zeng estimator becomes power curve with a threshold function, rising from 0 to
1 at a threshold u. This approximation should be most
accurate when many F2 individuals are scored. OtherVar(nCWZ) 5 2

(2c (1 1 C 2)n̂CW)2

(NF2 1 2)(1 2 n̂CW(1 2 2c ))4
, (3)

power functions can be explored, at least numerically,
using the approach developed below, although simula-where NF2

is the number of F2 individuals measured.
tions indicate that the estimator developed using thisEquation 3 can be used to construct confidence limits
approximation is reasonably accurate as long as therefor n̂CWZ under the assumption that the error in the
are enough detected QTL (more than two) to provideestimator is normally distributed.
a good estimate for the threshold.

We assume that the phenotypic difference between
A QTL-BASED ESTIMATOR the parental lines, Dz , is primarily caused by fixed allelic

differences at underlying QTL. We define the additiveIn light of the growing number of QTL studies, we
(a) and dominance (d) effects of each allele accordingdevelop an alternate method, based on data generated
to Zeng (1992),in a QTL mapping study, to estimate the total number

of loci underlying a trait difference. In a typical QTL
analysis, a handful of the loci that contribute to the trait

Population: P1 F1 P2

Genotype: A1 A1 A1 A2 A2 A2

Average phenotype: a d 2a,difference are detected, each with an estimated additive
and dominance effect and position. Our method takes
advantage of the fact that the power to detect a QTL where we refer to a as the effect size or additive effect
depends on the size of its effect. Given an expected of an allele. Here, we assume that each allele contributes
distribution of effects, we can estimate the number of to the parental difference in the same direction, that
loci whose effects were too small to be detected (see is, a is always positive or always negative. This assumption
Figure 1). is reasonable if divergence is primarily a product of

We first need to determine how the probability of selection acting in different directions within the two
detecting a QTL depends on its effect size. This power populations or in a novel direction in one population.
curve is approximately logistic in shape for a simple (In a later section, we explore the effect of relaxing this
QTL study with one marker linked to one QTL (Figure assumption through simulations.) We let D denote the
2). With NF2

individuals scored in the F2 generation, the sum of the additive effects across all QTL. Under the
probability of detecting a QTL rises at some point from above assumptions, D also equals half the phenotypic
near 0 to near 1. The more F2 individuals are examined, difference between parental lines (Dz/2). We first derive
the more steeply the curve rises. With multiple markers, an estimator for the number of loci underlying the trait
however, significance is usually assessed using a permu- difference assuming an exponential distribution of al-
tation test (Churchill and Doerge 1994). Without lelic effects and given an estimate of u (the minimum

threshold of detection). We then discuss how to obtain
confidence limits for this estimator and how to estimate
u from QTL data. Finally, we repeat these steps assuming
allelic effects follow the more general gamma distribu-
tion.

Exponentially distributed effect sizes: As argued
above, we might expect alleles underlying phenotypic
divergence to be exponentially distributed. To begin,
we proceed under the assumption that the additive ef-
fect sizes (a) represent draws from an exponential distri-
bution with mean, m, and probability density function

f[x, m] 5
Exp[2 x/m]

m
. (4)

If there are a total of n underlying QTL, then the mean
effect size will be m 5 D/n. Using (4), we can determineFigure 2.—The power to detect a completely linked QTL

with one marker (solid curves), based on equations 15.36b the probability density function for detectable QTL, i.e.,
and 15.37 of Lynch and Walsh (1998). The QTL was assumed those that lie above the threshold u,
to be completely additive with effect a, such that the expected
difference between homozygotes at this locus was 2a. The type

fd[x, m] 5
f[x, m]

#
∞

u
f[x, m]dx

5
Exp[2(x 2 u)/m]

m
, (5)I error rate, a, was set to 0.05, and the phenotypic variance

among F2’s was scaled to 1.
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which is simply the same exponential distribution with importance of the undetected QTL. Specifically, we esti-
mate the expected effect size of the undetected QTL,an origin shifted to the right by an amount, u. The mean

additive effect size among detected QTL is therefore Mundetected, by averaging the exponential distribution
within the range, 0 to u. Recalling that the mean effectexpected to equal m 1 u 5 D/n 1 u. If the number of

QTL actually detected is nd and their average effect size of all QTL (m) is estimated by M 2 u, we obtain the
estimateis M, we can estimate the total number of loci by setting

M to its expectation, D/n 1 u. Rearranging this equa-
tion, the estimated number of underlying loci is Mundetected 5

#
u

0
xf[x, m]dx

#u

0
f[x, m]dx

n̂QTL 5
D

M 2 u
. (6)

5 M 11 2
1 2 t

1 2 Exp[2(1 2 t)/t]2 ,
Equation 6 can also be derived using a likelihood

(10)approach, which will enable us to calculate confidence
limits for the number of loci underlying a trait differ- where t 5 (M 2 u)/M. t is a measure of the power
ence. From the probability density function for observ- of a QTL experiment. It ranges from 0 for very weak
able QTL, (5), the likelihood of observing a set of QTL experiments with a threshold near the mean detected
whose additive effect sizes are ai (i 5 1 . . . nd) is propor- effect to 1 for a very powerful experiment with a thresh-
tional to old near 0. Equation 10 indicates that the average effect

among the undetected QTL reaches a maximum of 23%
L[n] 5 p

nd

i 5 1

fd[ai, m] 5
Exp[2nd(M 2 u)/m]

mnd
. (7) M when t 5 0.36. For experiments with little power (t

near 0), the relative size of the undetected QTL de-
creases toward zero because any QTL that are detectedSubstituting in m 5 D/n and solving for the maximum,
are likely to have effects well above the average. Simi-the most likely value for the true number of underlying
larly, for powerful experiments (t near 1), most QTLloci is again given by (6).
will have been detected, and the remaining ones willConfidence limits: Confidence limits for n̂QTL can be
have a relatively small effect. For the simulation experi-obtained using the likelihood-ratio test, which holds
ments described below, the average power ranged fromthat the values of n whose log likelihoods lie within
0.27 to 0.61 (see Table 1), where the experiments withx2

1[a]/2 of the maximum log likelihood comprise an ap-
500 F2’s were more powerful. Over this range, the ex-proximate 1 2 a confidence region. This amounts to
pected effect of the undetected QTL is 17–23% of thesolving the equation
average effect of the detected QTL (M).

As an example, in the simulation study described be-(ln L[n̂QTL] 2 ln L[n]) 5
x2

1[a]

2
(8)

low with 20 underlying QTL and 500 F2’s (see Table 1),
the detected QTL appeared to explain just over 100%

for n. From (7), the confidence limits for n equal the of the parental difference, on average, even though less
two roots (found by numerical solution or plotting) to than half of the underlying QTL were detected. In fact,
the equation the undetected QTL accounted for z20% of the paren-

tal difference. Thus, the effects of undetected QTL can
2nd 1

(M 2 u)nnd

D
2 nd ln3(M 2 u)n

D 4 2
x2

1[a]

2
5 0, be substantial even when a QTL study indicates that

the entire difference between parental lines has been
(9) explained.

One can also determine the expected fraction of seg-where x2
1[0.05] 5 3.841 is used to obtain 95% confidence

regation variance accounted for by the undetected QTL.limits. More exact confidence limits can be found using
From Lynch and Walsh (1998) Equation 9.26a, thethe methods described for exponential distributions in
segregation variance for unlinked loci equals 1⁄2 timesLarsen and Marx (1985, p. 313), but numerical exam-
the sum of the squared average effects of all the QTL.ples suggest that the two limits are similar. Note that
The expected fraction of the segregation variance con-this approach does not constrain estimates for n to be
tributed by loci whose effects lie below the threshold ofgreater than the number of detected loci; if desired, a
detection, u, can be shown to equalconstrained likelihood surface can be examined (with

n $ nd), and the confidence limits can be adjusted
1 2

1
2

Exp321 2 t

t 4 11 1
1
t22.accordingly.

Average effect of the undetected QTL: Because of the
Beavis effect, the effects of the detected QTL are inflated For example, in the simulation experiments, where the

average power (t) ranged from 0.27 to 0.61 (see Tableand may appear to explain more of the trait difference
between two parental lines than is the case. Here, we 1), the fraction of the segregation variance that we ex-

pect to be accounted for by undetected QTL rangesuse the exponential distribution to estimate the relative
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from 51 to 3%, decreasing rapidly as the power of the arranges to give (11). With few detected QTL, however,
Equation 12 is subject to substantial sampling error andexperiment increases. Although one could simply calcu-

late the total segregation variance contributed by the can become negative, which is biologically unrealistic.
Equation 11, however, is always bounded between 0 andobserved QTL, this procedure would overestimate the

importance of the detected QTL because of the Beavis amin.
One potential problem with using amin and M in oureffect, which causes an especially large bias in variance

calculations where the effect sizes of detected QTL are estimators is that they will be overestimated in QTL
studies as a result of the Beavis effect. This occurs be-squared.

Estimating the threshold of detection: We have not yet cause the effect sizes of the QTL are estimated from
the same data used to detect the QTL. Those QTL that,addressed how to estimate the unknown threshold, u.

Ideally, one would compute the power curve for the by chance, happen to have a larger effect than expected
are more likely to be detected and so lead to inflatedprobability of detecting a QTL. For example, one could

perform Monte Carlo simulations, placing QTL of estimates of ai. There is currently no analytical method
to correct for the Beavis effect, so its impact was testedknown effects on simulated genomes using the same

number of markers and individuals as in the planned through simulation (described below). The simulations
indicate that the Beavis effect did not cause a large biasexperiment. Alternatively, one can use the observed

QTL data to estimate u, as follows. If there are several in our QTL-based estimators. We suspect that n̂QTL is
detected QTL, then the magnitude of the smallest ob- not extremely sensitive to the Beavis effect because both
served additive effect size (amin) will often be near the M and u tend to be inflated, but the estimator depends
threshold and can be used as an approximation for u. primarily on their difference [see (6) and (9)], which
Indeed, amin is the maximum-likelihood estimator for u may not be as strongly biased.
because the shape of the exponential distribution is Gamma-distributed effect sizes: We now describe
such that the most probable value for the smallest ob- more general results that apply when allelic effects fol-
served QTL is at the origin of the distribution (i.e., at low a gamma distribution with mean, m, and coefficient
u). This is clearly a biased estimate for the threshold, of variation, C. The probability density function of a
because the smallest observed QTL will not lie below gamma distribution is
the minimum detectable size and will generally lie above
u. To obtain a less biased estimate for u, we use a Bayes- g[x, m, C] 5

Exp[2 x/(C 2m)]x(12C 2)/C 2(C 2m)21/C 2

G[1/C 2]
, (13)

ian approach. We assume that the threshold lies some-
where between 0 and amin but that every point within where G[x] is the gamma function (Abromowitz and
this range is equally plausible (u has a uniform prior Stegun 1972). Using the same methods as were used
distribution). We then weight the prior distribution for to derive (6), we can show that the estimated number
u by the probability that the smallest detected QTL has of underlying loci, n̂QTL, equals CD/(M 2 u), where C
additive effect size amin. Noting that the minimum of nd solves
draws from an exponential distribution with mean m is
itself exponential with mean m/nd (Feller 1971, p. 18)

CG3 1
C 2

,
(1 2 t)C

t C 2 4 5 tC 2G31 1
1

C 2
,

(1 2 t)C

t C 2 4 . (14)
and recalling that detectable loci follow an exponential
distribution shifted to the right by u, the probability

Here, t 5 (M 2 u)/M, and G[x, y] is the digammadensity function for amin 2 u is exponential with mean
function (Abromowitz and Stegun 1972). C is essen-m/nd. This gives us a posterior distribution for u, whose
tially a correction factor for (6) that must be appliedaverage value is our estimated threshold (û), which can
when the expected distribution of underlying effect sizesbe found to solve
is gamma. If C 5 1, the gamma distribution reduces to
the exponential distribution, and C becomes one. For0 5 amin 2 û 2

M 2 û

nd

1
aminExp[2aminnd/(M 2 û)]

1 2 Exp[2aminnd/(M 2 û)]
.

other values of C, the correction term depends only on
C and t and is illustrated in Figure 3. When C . 1, the(11)
gamma distribution is L shaped, and more loci have

If several QTL are detected, the last term becomes negli- very small effect. These small-effect loci are missed if
gible, and the estimate for u from (11) approaches one mistakenly assumed an exponential distribution

and used Equation 6. Therefore, (6) underestimates
û ≈ aminnd 2 M

nd 2 1
. (12) the number of underlying loci (C . 1). The converse

is true when C , 1, and the gamma distribution is bell
shaped. In this case, fewer loci have small effect, andEquation 12 makes sense: we would expect the smallest

observed QTL to lie above u by m/nd (because the dis- fewer loci fall below the threshold of detection. Conse-
quently, (6) overestimates the number of underlyingtribution of the smallest QTL is an exponential with

parameter m/nd shifted to the right by u). Hence, loci (C , 1). The sensitivity of the estimator to the shape
of the distribution of allelic effects depends strongly onE[amin] 5 u 1 m/nd 5 u 1 (E[M] 2 u)/nd, which re-
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assumptions were made: (1) alleles were additive; (2)
all allelic effects, a, had the same sign (i.e., each QTL
acted in the direction of the observed parental differ-
ence); and (3) the QTL effects were drawn from an
exponential distribution with a mean of 1/4. These as-
sumptions were then relaxed in turn. To assess the ef-
fects of dominance, we used Rqtl to produce QTL with
additive effects drawn from an exponential distribution
with mean 1/4 and dominance effects drawn from a
Beta distribution with shape parameter set to 1 (see
Basten et al. 1996). This routine produced a dominance
term that ranged from 2a to a, with mean equal to 0.
That is, alleles from P1 ranged from recessive to domi-
nant. To assess the effects of having some QTL act in

Figure 3.—The correction factor, C, as a function of the the opposite direction to the observed parental differ-coefficient of variation of the gamma distribution, C. The
ence, we let the additive effect of a QTL be positivecorrection factor when multiplied by (6) gives the estimated
with probability 0.85 and negative with probability 0.15.number of underlying loci when the distribution of allelic

effects follows a gamma distribution. It depends only on C Finally, to assess the effect of the underlying distribution
and on t 5 (M 2 u)/M, which varies from zero for an experi- of effect sizes, we drew effect sizes from a gamma distri-
ment with little power to detect a QTL to one for an experi- bution with a coefficient of variation of 0.5 or 2.0 insteadment with high power.

of an exponential distribution (see Figure 1). For these
extensions, the number of underlying QTL was set to
20, but otherwise the experimental design was the same

the power of the experiment (t). When the threshold as for the basic simulations. In all cases, environmental
of detection is high and t is near 0, the estimator is very variation was assumed to be negligible.
sensitive to the shape of the distribution. Conversely, For each experimental genome generated, Rcross was
when the threshold of detection is low and t is near 1, used to simulate the production of 200 and then 500
the correction term approaches 1, because most alleles F2 individuals. This F2 sampling procedure was repeated
are detectable regardless of the shape of the distribu- 10 times. This design allowed us to assess whether the
tion. estimators were more sensitive to the realized distribu-

Again, amin can be used as an upwardly biased estima- tion of QTL within the genome (variation among “ex-
tor for u. Alternatively, one can correct u using a Bayes- perimental genomes”) or to the specific set of F2 individ-
ian approach that takes into account the probability uals analyzed (variation among sampled individuals).
that amin is the smallest detectable QTL when effect sizes For each set of F2 individuals, the QTL were mapped
follow a gamma distribution. This leads to an expression using Zmapqtl’s interval mapping routine (model 3).
involving u that must be numerically evaluated simulta- A single permutation test was used to determine an
neously with (14): approximate significance threshold for each number of

QTL and F2 sample size (5% genome-wide significance
level). In general, there was not much variation in sig-û ≈

#
amin

0
xG[1/C 2, xC/C 2(M 2 û)]2nddx

#amin

0
G[1/C 2, xC/C 2(M 2 û)]2nddx

. (15)
nificance thresholds (data not shown). This threshold
was then used in conjunction with Eqtl to estimate the

When C 5 1, (15) reduces to (11). location and effects of the QTL (Basten et al. 1996).
Eqtl identifies putative QTL by scanning through the
output of Zmapqtl and noting all intervals with a likeli-

SIMULATIONS
hood peak that exceeds the significance threshold.

Unfortunately, interval mapping methods systemati-To assess the accuracy of our estimator and the Castle-
Wright-Zeng estimator, QTL analyses were simulated cally bias the effects of chromosome regions linked to

QTL (Lynch and Walsh 1998, pp. 457–458). Put sim-using the QTLcartographer package (version 1.13a;
Basten et al. 1996). Using the Rmap program, we cre- ply, an interval not containing a QTL but adjacent to

one containing a QTL may exceed the significanceated a map with 20 chromosomes, each carrying five
markers spaced 10 cM apart, with the first and last mark- threshold because of its linkage to the QTL. This prob-

lem is endemic to all QTL analyses and no adequateers placed at the ends of the chromosome. This map
was used for all simulations. On this map, we randomly solution has yet been developed (Whittaker et al. 1996;

Goffinet and Mangin 1998). To reduce this problem,placed 2, 5, 10, 20, or 100 QTL using Rqtl. For a given
number of QTL, 30 different QTL maps were generated we screened our data set for obvious “ghost” QTL. That

is, we eliminated intervals containing putative QTL(i.e., we constructed 30 different “experimental ge-
nomes”). In the basic set of simulations, the following whose position was within another QTL’s approximate
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support interval (the chromosome interval within which true QTL (6/600), two QTL were detected whose esti-
mated effects were, by chance, equal. To avoid division-the likelihood of a QTL was within a factor of 10 of the

peak likelihood for that QTL; see Lynch and Walsh by-zero errors, the mean was increased by 5% over the
minimum in these cases. (If, instead, these cases were1998, pp. 448–449). In each case, the QTL with the

weaker support was eliminated. Visscher et al. (1996) eliminated, the performance of the estimators improved
have shown that a bootstrap approach is much more slightly over the results shown in Table 1.)
accurate, but it would have been too time consuming
for our analysis.

RESULTSWe chose interval mapping for two reasons. First,
interval mapping is an established method that has been The results of the simulations are presented in Table
repeatedly used in empirical studies and is well explored 1. As expected, our QTL-based estimator was more accu-
theoretically. Second, interval mapping is much faster, rate when (11) was used to estimate the threshold of
allowing us to perform more extensive tests. We also detection (u) than when the smallest detected QTL
suggest that interval mapping provides a conservative was used (amin). We therefore focus our discussion on
test of n̂QTL. Interval mapping produces data that are

estimates based on (11). Both our estimator and the
less precise than more advanced methods of QTL analy-

Castle-Wright-Zeng estimator were fairly accurate on av-
sis, such as composite interval mapping and multiple

erage when there was an intermediate number of under-
interval mapping (Zeng 1994; Kao et al. 1999); this

lying QTL (5 # n # 20). With 100 QTL, however, bothreduced precision should result in less accurate esti-
methods underestimated the true number of QTL butmates for n̂QTL. Furthermore, interval mapping corre-
for different reasons. The QTL-based estimator will besponds less well to our model, which assumes that QTL
biased downward whenever the density of QTL is high,above the threshold of detection are always detected.
because tightly linked QTL are then rarely separatedConsequently, it seems reasonable that our estimator
by recombination. Furthermore, in interval mapping,would perform even better with data from more sophisti-
the number of detected QTL must be less than thecated methods for detecting QTL.
number of marker intervals, which was only 80 in ourOur simulation data were imported into Mathematica
study. This bias could be eliminated by following the3.0 (Wolfram 1996; package available at www.zoology.
lines for more generations (increasing the opportunityubc.ca/zotto/Research) for analysis. In our calcula-
for recombination) and by adding more markers to thetions, we used the estimators appropriate for an expo-
study (increasing the number of marker intervals). Thenential distribution of underlying QTL effect sizes. Spe-
Castle-Wright-Zeng estimator, on the other hand, be-cifically, we used Equation 6 for the QTL-based
comes less and less accurate as the number of loci in-estimator and Equation 2 for the Castle-Wright-Zeng
creases because the segregation variance approachesestimator, with C 5 1. For n̂CWZ, we initially used the
zero and becomes harder to estimate precisely. Al-average recombination rate between randomly chosen
though increasing the number of F2 progeny tested andpairs of loci, c, which equals 0.48 for a genome with 20
following the lines for more generations may improvechromosomes, each of length 40 cM (Lynch and Walsh
the accuracy of the Castle-Wright-Zeng estimator, our1998, Equation 9.3). Unfortunately, this often led to
simulations indicate no substantial improvement be-nonsensical answers, especially when the number of un-
tween NF2

5 200 and NF2
5 500.derlying loci was large (.5). The problem lies in the

With only two true QTL, our estimator performedfact that the denominator in (2) is subject to substantial
poorly, but the Castle-Wright-Zeng estimator continuedsampling error; relatively often, the denominator ap-
to perform well, on average. Because we often had toproached zero (causing severe overestimates) or be-
exclude cases where only one QTL was detected whencame negative. With 20 underlying QTL, the n̂CWZ esti-
there were only two true QTL, it is not surprising thatmate for the number of underlying loci averaged 49.3
the estimators overestimated the number of underlying(with 500 F2’s) and 221.8 (with 200 F2’s) over the 300
QTL. Note that if we also excluded cases where onlysimulations! To avoid these problems, we set c to 1⁄2 in
two QTL were detected, the average of our estimatorall of our analyses, which either made little difference
improved (Table 1, last two rows), which suggests that(for small n) or improved the estimates.
n̂QTL is biased upward by sampling error when there areBecause the QTL estimator relies on the difference
few detected QTL. More generally, Table 1 suggestsbetween the mean effect of factors found and the mini-
that, unless the number of QTL is very large, the QTL-mum effect found, it can only work if at least two QTL
based estimator tends to overestimate the true numberhave been identified. Therefore, we excluded QTL anal-
of underlying loci and that this bias is stronger withyses with only one detected QTL. In experimental ge-
fewer QTL. We expect an upward bias in our estimatornomes with more than two true QTL, very few analyses
for two reasons: (1) when there are few detected QTL,were excluded. With only two true QTL, however, ap-
there will be substantial variation in the denominatorproximately half of the analyses had to be excluded.

Furthermore, in a very small number of cases with two (M 2 u) of Equation 6, which can approach zero and
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TABLE 1

Estimated number of underlying QTL assuming an exponential distribution
of effect sizes without dominance

n NF2
nd n̂QTL (u 5 amin) n̂QTL [u from (11)] n̂CWZ (C 5 1)

100 500 28.84 {21, 38} 46.86 {29.14, 69.87} 45.21 {28.06, 67.63} 38.40 {32.75, 45.37}
[1.3%] t 5 0.37 [0.7%] t 5 0.39 [0%]

100 200 12.00 {6, 19} 57.72 {25.13, 117.19} 52.51 {23.65, 104.17} 37.43 {30.09, 45.77}
[35.7%] t 5 0.25 [30.7%] t 5 0.27 [0%]

20 500 9.65 {5, 14} 23.42 {11.85, 42.57} 20.98 {10.39, 39.35} 19.51 {7.86, 43.90}
[94.0%] t 5 0.44 [95.0%] t 5 0.49 [41.0%]

20 200 5.65 {3, 9} 25.78 {10.98, 58.69} 20.98 {9.02, 48.22} 18.10 {10.78, 53.45}
[93.6%] t 5 0.32 [95.7%] t 5 0.39 [42.3%]

10 500 6.84 {3, 11} 13.99 {5.80, 25.95} 11.93 {4.80, 21.27} 5.34 {20.12, 12.61}
[93.3%] t 5 0.47 [97.3%] t 5 0.55 [17.7%]

10 200 4.94 {2, 8} 17.71 {6.24, 38.67} 13.88 {4.74, 32.32} 9.63 {6.12, 14.14}
[87.7%] t 5 0.34 [94.7%] t 5 0.43 [64.0%]

5 500 4.19 {2, 8} 8.84 {3.88, 25.89} 6.84 {3.11, 15.62} 5.29 {2.77, 8.81}
[90.0%] t 5 0.49 [96.0%] t 5 0.61 [48.7%]

5 200 3.85 {2, 7} 12.00 {5.12, 29.66} 8.68 {3.99, 19.32} 5.57 {3.17, 8.05}
[84.0%] t 5 0.33 [91.7%] t 5 0.44 [72%]

2 500 2.59 {2, 4} 19.38 {3.25, 130} 10.65 {2.59, 65} 2.66 {1.80, 3.25}
[63.0%] t 5 0.32 [81.3%] t 5 0.45 [24.7%]

2 200 2.74 {2, 4} 25.05 {3.98, 135.2} 13.64 {3.06, 67.58} 2.78 {2.01, 3.87}
[61.7%] t 5 0.30 [81.7%] t 5 0.43 [47.7%]

2 500 Cases (147) 7.29 {3.25, 13.9} 5.21 {2.84, 9.27}
with nd . 2 [66.0%] t 5 0.40 [91.8%] t 5 0.53

2 200 Cases (177) 7.87 {3.97, 22.30} 5.53 {3.07, 14.9}
with nd . 2 [61.0%] t 5 0.34 [87.6%] t 5 0.47

For each combination of n (the number of underlying loci) and NF2
(the number of F2 individuals scored),

30 different QTL maps were generated, where each map was used in 10 replicate QTL experiments. Each row
reports the mean estimate of n over the 300 resulting analyses. The 2.5–97.5% range of estimates is given in
braces. In brackets is the percentage of cases where the 95% confidence limits for n included the true value
of n. The average value of the power of the QTL studies, t 5 (M 2 u)/M, is also reported.

generate an overestimate, and (2) the Beavis effect will inherent in having a limited number of QTL, whose
effects represent particular draws from an underlyinggenerate a greater upward bias in u than in M, which

also leads (6) to overestimate the number of underlying distribution. For example, if the QTL with the largest
effect has, by chance, a magnitude that is greater thanloci. We therefore recommend the use of the QTL-

based estimator only when three or more QTL have expected, there will be more segregation variance than
expected, and n̂CWZ will underestimate n. Conversely, ifbeen detected and when the mean detected QTL is

substantially above (say .25% above) the minimum the major QTL have, by chance, roughly equal influ-
ence, there will be less segregation variance than ex-threshold of detection.

Interestingly, the largest difference between the two pected, and n̂CWZ will overestimate n.
In fact, the sampling of different sets of QTL in differ-estimators is not in their average performance but in

their confidence limits. Appropriate 95% confidence ent experimental genomes accounts for a large fraction
of the total variance in estimates of n (Figure 4). This islimits should include the true value 95% of the time.

The confidence limits based on (9) for our estimator especially true for n̂CWZ, where almost all of the observed
variation was among genomes with different sets of QTLhave this property (see numbers in square brackets in

Table 1). In those cases where our estimator had little (dark gray bars) rather than among the different sets of
F2 individuals sampled from each experimental genomebias (5 , n , 20), the confidence limits included the

true value 95.1% of the time. On the other hand, the (light gray bars). In other words, n̂CWZ depended little
on the exact set of F2 individuals, but it varied greatlyconfidence limits for the Castle-Wright-Zeng estimator

included the true value only 47.6% of the time. The each time a new set of QTL was generated. Figure 4
suggests that, with at least 200 F2 individuals, the confi-confidence limits for n̂CWZ often excluded the true num-

ber of underlying loci because these limits only account dence limits for the Castle-Wright-Zeng estimator are
based on a minor source of error (F2 sampling variance)for error caused by sampling a limited number of F2

individuals. They do not account for the sampling error rather than the bulk of the error (QTL sampling vari-
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Figure 4.—The square of the coef-
ficient of variation for the QTL-based
estimator and the Castle-Wright-Zeng
estimator. For each combination of n
(number of underlying loci) and NF2

(number of F2 individuals scored), the
total variance among the 300 QTL
analyses is illustrated, scaled by the
square of the mean estimate (n̂QTL or
n̂CWZ, as appropriate). The square root
of the total height of each bar there-
fore gives the coefficient of variation
for each estimator. The dark gray bars
(bottom) indicate the proportion of
variation observed among experimen-
tal genomes (i.e., sets of QTL), while
the light gray bars (top) indicate the
proportion of variation observed
within experimental genomes (i.e.,
among sets of F2 progeny). An expo-
nential distribution of effect sizes was
assumed in both the simulations and
the analyses, and Equation 11 was used
to estimate u. The bars for n̂QTL with 2
QTL were scaled to 1; their true
heights are 4.6 (with 500 F2’s) and 21.8
(with 200 F2’s).

ance). In practice, this means that if a researcher is the Castle-Wright estimator, these generally assume that
the mean and distribution of dominance coefficientsinterested in the number of underlying loci that are

responsible for a trait difference between two parental are known. Because most QTL studies lack such infor-
mation, we continue to use (2) and (6) to estimatelines, the Castle-Wright-Zeng estimator will too often

indicate a high degree of confidence in the wrong num- the number of underlying loci. That is, we ask, how
inaccurate are the two estimators if we assume no domi-ber and exclude the right number. Furthermore, as

indicated by the simulations, reestimating n̂CWZ using a nance when dominance is actually present? The inclu-
sion of dominance did not noticeably affect the perfor-different set of F2 individuals is unlikely to help because

the sampling of F2’s was not the major source of error mance of the QTL-based estimator, but it caused n̂CWZ

to underestimate n by z20% (Table 2). Dominance(Figure 4).
Dominance: In the above results, the simulated QTL tends to inflate the segregation variance inferred from

F2 individuals, because heterozygotes at a locus havehad additive effects. To test the impact of dominance
on our estimator, we simulated experimental genomes genotypic values further from the mean. This effect is

even more exaggerated with overdominance or under-that included 20 QTL with nonadditive effects ranging
from fully recessive to fully dominant. Although models dominance, in which case the phenotype of the F2’s may

lie outside of the range defined by the two parentalhave been developed to incorporate dominance into

TABLE 2

Estimated number of underlying QTL assuming an exponential distribution
of effect sizes with dominance

n NF2
nd n̂QTL (u 5 amin) n̂QTL [u from (11)] n̂CWZ (C 5 1)

20 500 8.87 {3, 14} 21.37 {8.55, 37.35} 18.69 {6.54, 34.24} 15.42 {5.89, 21.75}
[94.7%] t 5 0.46 [91.0%] t 5 0.52 [21.3%]

20 200 5.78 {3, 9} 27.14 {12.27, 63.41} 22.22 {9.32, 51.23} 16.19 {10.55, 23.19}
[93.3%] t 5 0.32 [96.3%] t 5 0.39 [42.7%]

Dominance effects for each QTL were drawn at random from purely recessive to purely dominant as described
in the text. See Table 1 for more details.
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TABLE 3

Estimated number of underlying QTL when there was an 85% chance that the additive
effect (a) was positive and a 15% chance that it was negative

n NF2
nd n̂QTL (u 5 amin) n̂QTL [u from (11)] n̂CWZ (C 5 1)

20 500 4.70 {2, 7} 20.72 {3.70, 47.31} 15.89 {2.63, 38.08} 9.37 {20.50, 18.17}
[92.0%] t 5 0.29 [84.7%] t 5 0.38 [3.0%]

20 200 4.41 {2, 7} 21.86 {8.38, 52.81} 16.35 {6.11, 44.01} 8.85 {1.65, 18.09}
[93.3%] t 5 0.29 [81.7%] t 5 0.38 [6.0%]

See Table 1 for more details.

lines (transgressive segregation). This explains the sensi- nance, the segregation variance measured among the
F2’s is thus inflated, and the Castle-Wright-Zeng estima-tivity of n̂CWZ to the inclusion of dominance but does

not address why n̂QTL was little affected by dominance. tor underestimates the number of underlying loci. On
the other hand, the inclusion of QTL with oppositeWe believe that, because the methods used to detect

QTL explicitly allow dominance levels to vary among effects reduced the power of the QTL experiments
(compare t values in Tables 1 and 3), but the additiveloci, the estimated additive effects of the detected QTL

(and hence n̂CWZ) are not strongly biased by dominance. effects of the detected QTL (and hence n̂QTL) were not
strongly biased.Interestingly, the average power of the QTL experi-

ments was also little affected by dominance (compare Gamma distribution of effect sizes: Finally, we tested the
extent to which the estimators were sensitive to thet values in Tables 1 and 2). Because n̂QTL is less sensitive

to dominance interactions, it is a more appropriate esti- underlying distribution of effect sizes. Table 4 provides
results from simulations where the underlying distribu-mator to use than n̂CWZ whenever the nature of domi-

nance is unknown. tion was gamma (with C 5 0.5 or 2.0) but where the
analyses assumed an exponential distribution (C 5 1.0).QTL of opposite effect: Table 3 presents results for exper-

iments where the additive effect of a QTL had an 85% As expected, n̂QTL and n̂CWZ overestimated the true num-
ber of QTL when the underlying distribution had achance of being positive and a 15% chance of being

negative. Although both estimators underestimated the lower coefficient of variation (C 5 0.5). The extent of
the bias was not severe for n̂CWZ in this case; this is consis-true number of underlying QTL, n̂QTL was much less

sensitive than n̂CWZ to the inclusion of loci affecting the tent with the form of Equation 2, which changes less
when C is lowered by a fraction than when it is increased.trait of interest in the opposite direction. On average,

z16 underlying QTL were estimated with n̂QTL, while Conversely, both n̂QTL and n̂CWZ underestimated the true
number of QTL by z50% when the underlying distribu-z9 were estimated with n̂CWZ, whereas the true number

was 20. When the effects of QTL oppose one another, tion had a higher coefficient of variation (C 5 2.0),
with n̂CWZ performing slightly worse than n̂QTL. One canthe trait values of the F2’s are no longer expected to lie

strictly between the parental lines, providing another correct these estimators using Equation 2 for n̂CWZ, and
14 and 15 for n̂QTL. These corrections brought the esti-explanation for transgressive segregation. As with domi-

TABLE 4

Estimated number of underlying QTL when the distribution of additive effects was not exponential

n NF2
nd n̂QTL (u 5 amin) n̂QTL [u from (11)] n̂CWZ (C 5 1)

C 5 0.5
20 500 10.32 {7, 14} 34.86 {21.16, 50.67} 31.44 {18.60, 46.53} 26.31 {21.43, 31.28}

[70.0%] t 5 0.38 [85.0%] t 5 0.42 [9.0%]
20 200 5.80 {3, 8} 49.04 {20.20, 105.53} 39.94 {15.99, 85.23} 26.25 {18.42, 34.11}

[66.0%] t 5 0.24 [79.3%] t 5 0.3 [37.0%]

C 5 2.0
20 500 5.16 {2, 8} 13.48 {5.50, 29.41} 10.97 {4.31, 23.78} 10.44 {4.63, 17.27}

[85.0%] t 5 0.49 [61.3%] t 5 0.60 [1.7%]
20 200 5.59 {2, 10} 17.14 {5.47, 41.57} 13.04 {4.55, 30.04} 8.77 {5.41, 14.93}

[74.3%] t 5 0.35 [62.3%] t 5 0.43 [0.3%]

Simulations were run where QTL effects were drawn from a gamma distribution with a coefficient of variation
of either 0.5 or 2.0 (see Figure 1). In this table, the analyses assume (incorrectly) that the underlying distribution
of QTL effects was exponential (C 5 1). See Table 1 for more details.
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mates toward the true value of 20 but tended to overcor-
rect, especially for n̂QTL when C 5 2.0, perhaps because
the observed coefficient of variation of the true effects
of the QTL was highly variable in this case. Of course,
making these corrections requires external knowledge
about the underlying distribution, which will often be
lacking. When many QTL have been detected, the num-
ber of underlying loci, the threshold of detection, and
the shape of the distribution could be simultaneously
estimated using a maximum-likelihood approach. One
potential problem is that the Beavis effect will bias the
shape parameter (lowering C) by making QTL of small
effect seem larger.

CONCLUSIONS

Historically, the number of genetic factors, n, underly-
ing an observed difference between two parental lines
has been estimated using methods developed by Castle
(1921) and Wright (1968). QTL analyses have, to some
extent, supplanted the Castle-Wright estimator. QTL
analyses localize the genetic factors and estimate their
additive and dominance effects without assuming that
these effects follow a particular distribution. Unfortu-
nately, QTL analyses are best at finding factors with
profound phenotypic effects and often miss factors of
moderate to small effect. As a result, the number of
observed QTL is a poor indicator of the number of loci
contributing to a difference between two parental lines.

This problem is illustrated in Figure 5, which shows
Figure 5.—The expected number of detected loci as a

the expected number of detectable QTL as a function function of the number of underlying loci. The expected
of the number of underlying QTL. Figure 5 is based on number of detected loci is equal to n times the fraction of
the assumption that there is a threshold below which a the probability density function, g[x, m, C] given by (13), that

lies above u. It is plotted as a function of the number ofQTL is unlikely to be detected and above which it is.
underlying loci for a bell-shaped distribution (C 5 0.5; dot-Two threshold levels of detection are illustrated, with u
dashed curve), an exponential distribution (C 5 1, C 5 1;

set to 5 or 10% of D, where D is the total additive solid curve), and an L-shaped distribution (C 5 2; dashed
effect size (i.e., half the parental difference). The first curve). (A) u 5 10% of D, as was typical in our studies with
threshold was typical in our simulation studies with 500 a large number of QTL and 200 F2’s. (B) u 5 5% of D, as was

typical in our studies with a large number of QTL and 500F2’s, while the second was typical in simulations with
F2’s.200 F2’s. The most striking feature of these curves is that

they do not increase monotonically with the number
of underlying loci. Instead, the expected number of

because QTL studies predominantly detect loci of largedetected loci initially rises, reaches a maximum, and
effect, the number of loci detected in a QTL study isthen falls back toward zero as the number of underlying
not linearly related to the number of underlying loci.loci increases. These curves suggest two reasons why a

Here, we present a new estimator of gene number,certain number of QTL may be observed: (1) there are
n̂QTL, that takes into account the bias of QTL analysesfew underlying QTL, but their average effect is relatively
toward detecting loci of large effect. By noting the aver-large such that most are above the threshold, or (2)
age size and the minimum size of the detected QTL,there are several QTL, but their average effect is rela-
we can estimate the number and magnitude of the locitively small such that few are above the threshold of
whose effects were too small to be detected. As with thedetection. Furthermore, the maxima of these curves is
Castle-Wright estimator, this technique requires us tofairly low, indicating that only a handful of QTL will be
specify the expected distribution of effect sizes. We de-detected regardless of the true number of loci contribut-
velop a QTL-based estimator for an exponential distri-ing to the trait difference. These conclusions are the
bution and a gamma distribution of effect sizes. Al-same whether the effects of the underlying loci follow
though our method assumes that QTL analyses havean exponential distribution, an L-shaped gamma distri-

bution, or a bell-shaped gamma distribution. In short, a negligible probability of detecting a QTL below a



2105Detecting the Undetected

TABLE 5

Data analysis of stamen length and pistil length from Bradshaw et al. (1998)

Stamen length (mm) Pistil length (mm)

D 5 (P1 2 P2)/2 9.0 10.2
nd, number of detected QTL 5 5
M, mean QTL effect 2.2 2.7
amin, minimum QTL effect 1.6 1.7
Var(S), segregation variance 16.0 21.1
NF2

, number of F2’s 465 465

n̂QTL [u from (11)] 12.0 {4.3, 25.8} 8.2 {2.9, 17.6}
n̂CWZ (C 5 1, c 5 0.413) 6.5 {4.8, 8.2} 6.1 {4.5, 7.7}
n̂CWZ (C 5 1, c 5 1/2) 4.1 {3.4, 4.7} 3.9 {3.3, 4.6}

An exponential distribution of effect sizes was assumed. The average rate of recombination among pairs of
loci (0.413) was estimated from Equation 9.3 of Lynch and Walsh (1998) using data from Figure 3 of
Bradshaw et al. (1998).

threshold (u) and a 100% probability of detecting QTL about half of the QTL have been detected. Using 1/2
as the average rate of recombination among pairs of loci,above u, simulations indicate that this simplifying as-

sumption does not generate a substantial bias in the the Castle-Wright-Zeng estimator inferred 4.1 factors
affecting stamen length and 3.9 factors affecting pistilaverage number of estimated loci (n̂QTL).

As Table 1 shows, our QTL-based estimator provides length, both of which fall short of the observed number
of QTL. Using the average recombination rate baseda good approximation for the number of underlying

loci unless few QTL were detected (nd , 3) or the on the genome map of monkeyflowers (0.413) in-
creased these estimates only slightly (to 6.5 and 6.1,genetic map was saturated with QTL (more QTL than

marker intervals; nd . 80). Furthermore, in those cases respectively). The Castle-Wright-Zeng estimators are
particularly suspect for these traits, however, becausewhere the average value of the estimator approximately

equals the true number of underlying loci (i.e., when both exhibit transgressive variation, where the F2 distri-
bution is broader than the parental difference. The5 # n # 20), the 95% confidence limits based on n̂QTL

contain n z 95% of the time (Table 1). In contrast, presence of transgressive variation suggests that there
are either strong interactions among alleles (e.g., over-the 95% confidence limits for the Castle-Wright-Zeng

estimator often miss the true value for n, despite the dominance) or QTL of opposite effects. In either case,
the Castle-Wright-Zeng estimator underestimates thefact that the simulations and the estimator both assume

an exponential distribution of effect sizes. Essentially, number of underlying loci and is less reliable than the
QTL-based estimator (see Tables 2 and 3).the confidence limits for the Castle-Wright-Zeng estima-

tor do not account for the variance inherent in the The above example highlights the difference between
n̂QTL and n̂CWZ. Our next example demonstrates that oursampling of mutations that arise and fix within a popula-

tion. Because the confidence limits for n̂QTL take into estimator could be used to predict the number of loci
that may be uncovered in a more powerful QTL study.account the sampling error inherent in drawing allelic

effects from an underlying distribution, they more often Liu et al. (1996) mapped factors affecting genital arch
shape in Drosophila mauritiana and D. simulans hybrids,include the true value for the number of underlying

loci. An additional benefit of our estimator is that it is employing two backcrosses and ,200 individuals. Zeng
et al. (2000) extended this analysis by increasing theless sensitive to dominance (compare Tables 1 and 2)

and to violations of the assumption that the additive sample size (z500 individuals per backcross) and reana-
lyzing the old and new data sets using multiple intervaleffects of all alleles have the same sign (compare Tables

1 and 3). mapping. We concentrate on the results presented by
Zeng et al., as they were obtained by applying the sameTo demonstrate the application of our estimator to

real data, we consider two examples. The first, a QTL mapping methodology and criteria to both data sets.
Liu et al.’s backcross analysis suggested that 11–13study by Bradshaw et al. (1998), examined floral mor-

phology in monkeyflowers (Table 5). We focus on two QTL are involved in the genitalia difference. [The first
backcross to D. mauritiana (BM) identified 11 QTL; theof their morphological characters, stamen and pistil

length. In both cases, 5 QTL were detected, each acting backcross to D. simulans (BS) identified 13 QTL.] Based
on Equation 11, our estimator suggests that the truein the same direction. Assuming an exponential distri-

bution, our QTL-based estimator predicted that 12.0 number is closer to 21.4 for BM and 23.2 for BS. The
number of QTL found in the BS analysis is within ourloci underlie the stamen length differences and that 8.2

loci underlie pistil length differences, suggesting that 95% confidence intervals (CIs), albeit just barely (95%
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