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ABSTRACT
We developed an empirical Bayes procedure to estimate genetic distances between populations using

allele frequencies. This procedure makes it possible to describe the skewness of the genetic distance while
taking full account of the uncertainty of the sample allele frequencies. Dirichlet priors of the allele
frequencies are specified, and the posterior distributions of the various composite parameters are obtained
by Monte Carlo simulation. To avoid overdependence on subjective priors, we adopt a hierarchical model
and estimate hyperparameters by maximizing the joint marginal-likelihood function. Taking advantage
of the empirical Bayesian procedure, we extend the method to estimate the effective population size using
temporal changes in allele frequencies. The method is applied to data sets on red sea bream, herring,
northern pike, and ayu broodstock. It is shown that overdispersion overestimates the genetic distance and
underestimates the effective population size, if it is not taken into account during the analysis. The joint
marginal-likelihood function also estimates the rate of gene flow into island populations.

AS a stock management tool to counteract decreased esis is not rejected, the statistical power is required to
or depleted fishery resources, stock enhancement be reported from a conservation viewpoint (Peterman

programs have been undertaken in many countries for 1990; Dizon et al. 1995). However, when the genetic
salmonid (Hilborn and Winton 1993; Ritter 1997; difference is small, the corresponding statistical power
Kaeriyama 1999; Knapp 1999) and for other marine may also be small with small sample sizes, making it
species (Bartley 1999; Kitada 1999). Concerns about difficult to conclude that there is no genetic difference.
the genetic effects of hatchery releases on wild popula- The statistical power is the probability of detecting the
tions have increased and aroused discussion (Walters alternative hypothesis when it is correct. A considerably
1988; Waples 1991; Hilborn 1992; Utter 1998; large sample size is required if one wants to obtain
Waples 1999). Campton (1995) reviewed the genetic satisfactory large statistical power to reject the null hy-
effects of hatchery releases on natural stocks of salmon pothesis and detect small genetic differences. The hy-
and brown trout and concluded that the empirical data pothesis testing framework implies rejecting the null
supporting those arguments are absent or largely cir- hypothesis, so it does not work well for detecting the
cumstantial. This is a complex topic that needs further genetic identity, and calculating the power is meaning-
research (Waples 1999). A 10-point approach for a less. Problems of the null hypothesis testing framework
responsible stock enhancement program has been pro- are discussed in Cohen (1994) and Hagen (1997).
posed, which includes the need to use genetic resource An effective method of determining genetic identity
management to avoid deleterious genetic effects (Blan- is to examine the genetic distances between popula-
kenship and Leber 1995). Using wild individuals as tions. If an estimated confidence interval of the genetic
broodstock may possibly reduce genetic risks (Bartley distance between two populations includes 0, we could
et al. 1995; Harada et al. 1998). conclude that the populations are genetically identical

The genetic identity between produced progenies and or not statistically significantly different. There are sev-
the wild stock will be required before one can release the eral measures for the genetic distance (Nei 1987). How-
progenies. To examine the genetic identity, statistically ever, the sample distributions of these genetic distances
significant differences are required. The homogeneity

are unknown. It is then inappropriate to estimate the
x2 test of allele frequencies is commonly used for testing

confidence intervals of the genetic distance using as-genetic differences and the Roff test (Roff and Bentzen
ymptotic variances of the estimator.1989) is used when minor alleles exist. If the null hypoth-

In this article, we develop a Bayesian estimating proce-
dure to measure genetic distances between populations
from allele frequencies. We can directly evaluate the
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here is extended to estimate the effective population
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hood function to estimate the rate of gene flow into
island populations using the sample allele frequency

which is again a Dirichlet distribution with parametersfrom a number of islands (Rannala and Hartigan
modified by the data ni 1 ai (Lange 1995; Weir 1996).1996).
Given a 5 (a1, · · · , ak)9, we can obtain a posterior
distribution of p by generating Dirichlet random num-
bers with parameter a 1 n using Monte Carlo simula-METHODS
tions. Using independent Dirichlet random numbers

Let the frequencies of k alleles of two populations to for posterior distributions of population allelic frequen-
be compared be p11, · · · , p1k and p21, · · · , p2k. Sanghvi cies, we can obtain a posterior distribution of D using
(1953) proposed that the genetic distance between two Equation 1. The number of each Monte Carlo simula-
populations be determined by tion is set to 10,000, so 10,000 D are calculated from the

10,000 sets of p between two populations. The posterior
D 5 o

k

i51
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. (1) probability density function is estimated on the basis of
the histogram of D with the number of classes of 100
by using the function “density” of S language version 4We use this distance as a natural measure of the genetic
(Chambers and Hastie 1992). For multilocus data, thedistance between populations, which takes values be-
mean of the genetic distances at J loci is calculated astween 0 and 4. It is known that 2n1.n2.D̂/(n1. 1 n2.)
D 5 RJ

j51D̂j/J.follows a x2 distribution with degree of freedom k 2 1
Empirical Bayes procedure: The primary disadvan-when p1i 5 p2i 5 pi for i 5 1, · · · , k (Nei 1987), where

tage of using a Bayesian analysis for allele frequencyn1. and n2. are sample sizes (individuals) of the two
estimation is that there is no obvious way of selecting apopulations, and D̂ is the estimator obtained by substi-
reasonable prior (Lange 1995). The Dirichlet distribu-tuting sample frequencies in Equation 1. However, the
tion with a1 5 · · · 5 ak 5 1⁄2 is a noninformative priordistribution of D̂ is unknown when p1i ? p2i for i 5
(Box and Tiao 1992). Here we adopt an empirical Bayes1, · · · , k. It is then inappropriate to evaluate the confi-
procedure to avoid dependence to priors. This proce-dence interval of D using an asymptotic variance of D̂,
dure estimates the hyperparameters a by maximizingalthough it can be derived. Here we directly evaluate
the marginal-likelihood function (Maritz and Lwinthe posterior probability density of the genetic distance
1989),measure using a Bayesian framework.

Prior and posterior distribution of D: It is not easy to L̃(a|n) 5 # · · · #P(n|p)p(p|a)dp
describe a reasonable prior distribution of D, especially
when we compare more than two populations. Alterna-
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Rni 5 2n (n individuals). When the sample is collected
by a simple random sampling procedure with replace- which is also given in Lange (1995) and Weir (1996).
ment, n follows a multinomial distribution. A b distribu- The distribution is known as a Dirichlet-multinomial
tion is known as a conjugate prior of the binomial pa- distribution (Lange 1995; Weir 1996), which is a gener-
rameter p. A Dirichlet distribution is a conjugate prior alization of the b-binomial distribution.
of multinomial proportions, which is an extension of a Lange (1995) estimated the hyperparameters from
b distribution (Johnson and Kotz 1969; Lee 1989): single-locus data using Newton’s method. Here we esti-

mate them from multilocus data by maximizing Equa-
p(p|a) 5
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ai21. (2) tion 3 using a simplex minimization for the negative

logarithm of Equation 3. Assuming that a is the same
for H populations (samples) to be compared and RaiHere, a 5 (a1, · · · , ak)9 are regarded as hyperparamet-
is also the same for J loci, the joint marginal likelihooders specifying the prior distribution. We use this distribu-
is then given bytion as a prior for allele frequencies.

The posterior distribution is obtained by multiplying L̃(a1j, · · · , akj21,j( j 5 1, · · · , J), s2|n)
the likelihood function, which is multinomial distribu-
tion in this case, by the prior. The posterior distribution 5 p
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of p is then given by
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where Cjh 5 (Rkj
i51nhij)!/Pkj

i51nhij! is a constant term for the allele frequency exceeding the nominal variance of a
simple random sample from a gamete pool. If therecombination of the multinomial likelihood that can be

excluded from the estimation procedure. are subpopulations divided spatially in a survey area, a
sample allele frequency from the area might be over-Parameter s2 is the dispersion parameter that defines

the magnitude of overdispersion; i.e., the variance of the dispersed even if a simple random sampling is per-
formed. If a cluster of a genotype is taken, a sampleresponse Y exceeds the nominal variance (McCullagh

and Nelder 1983). For example, the expectation of the allele frequency from a population might be also over-
dispersed. One can then estimate overdispersion basedbinomial random variables of a sample size m is E[Y] 5

mp and the variance is V[Y] 5 mp(1 2 p). If there is on several sets of allele frequencies obtained from the
survey area.overdispersion, the variance is V[Y] 5 s2mp(1 2 p)

though the expectation remains the same, where Y has Standardized genetic distance: When allele frequen-
cies at J loci are obtained from genetically identicala density of a b-binomial distribution. For a multinomial

event with overdispersion, the variance-covariance ma- populations, 2n1.n2. RJ
j51D̂j/(n1. 1 n2.) follows a x2 distri-

bution with a degree of freedom of R(kj 2 1) asymptoti-trix of Y is s2 times larger than that of the multinomial
distribution, where Y has a density of a Dirichlet- cally (Nei 1987). The shape of the distribution varies

with the sample sizes and degree of freedom. Whenmultinomial distribution.
Johnson and Kotz (1969) showed that the variance- larger numbers of individuals are sampled, the distribu-

tion is farther from 0 even if the genetic difference iscovariance matrix of a Dirichlet-multinomial distribu-
tion is (Rk

i51ni 1 Rk
i51ai)/(1 1 Rk

i51ai) times larger than small. Suppose the case for n1. 5 n2. 5 n., the above
statistics become n.RJ

j51D̂j and take a value proportionalthat of the multinomial distribution. Hence the relation-
ship between the dispersion parameter and the hyper- to the sample size. It is then not convenient to make D

an index of the genetic distance.parameters for a population is given by
Here we standardize D and propose a general index

for the genetic distance. Performing a square root trans-s2 5
Rk

i51ni 1 Rk
i51ai

1 1 Rk
i51ai

. (4)
formation to make the variance independent of the
mean (Snedecor and Cochran 1967) and subtractingWe assume equal overdispersion effects for all loci, so
the expected value of I (the derivation is given in thethe total of the hyperparameters u (hereafter we use u
appendix), we obtain a standardized genetic distancefor Rai) is the same for all loci, which gives the expres-
assion for s2 as
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which follows a normal distribution with mean 0 andHere 2n is the mean number of genes of H populations
variance 0.5 under the condition of p1 5 p2.given by 2n 5 RH

h512nh/H. Given the estimate of s2, we
The x2 distribution of 2n1.n2.RJ

j51D̂j/(n1. 1 n2.) assumeshave the estimator for u as
that 2n1 and 2n2 genes are taken by a binomial sampling
from a population. For this case, s2 in the first term of

û 5
2n 2 ŝ2

ŝ2 2 1
. (6)

Equation 7 equals 1. However, if there is overdispersion,
s2 becomes active and takes a value larger than 1. If the

We estimate RJ
j51(kj 2 1) 1 1 free parameters numeri- overdispersion is neglected, the genetic distance is then

cally, including s2, which is assumed to be the same overestimated and the scale of the distribution of 2n1.n2.
among loci, and a1j, · · · , akj21,j for locus j, and akj is RJ

j51D̂j/(n1. 1 n2.) becomes s2 times larger than that
estimated by û 2 Rkj21

i51 âij. under the previously stated assumption. The dispersion
The binomial and multinomial counts are assumed to parameter s2 corrects this effect.

be taken by a simple random sampling, so the dispersion Effective population size: The effective population
parameter s2 is considered to indicate the magnitude size is estimated from the temporal variation of allele
of overshooting from a simple random sample. McCul- frequencies in a population. Since the observed variance
lagh and Nelder (1983) stated that “The simplest and of the allele frequencies includes the sampling variance
perhaps the most common mechanism of overdisper- in addition to the genetic drift, we subtract the sampling
sion is clustering in the populations.” Kitada et al. variance when estimating the effective population size.
(1994) estimated the dispersion parameter for fish tag Let us assume that we have two samples with sizes n0

recovery data and showed that the variances of the esti- and nt from the population at generations 0 and t, re-
mated mortality rates were zŝ2(5 14.73) times larger spectively. The empirical Bayes procedure developed
than those assuming the multinomial model, which was here can be extended to obtain the posterior distribu-
considered to be caused by the aggregation of the tions of the effective population size Ne by using the
tagged fish in the fishing ground. In genetic data analy- posterior distribution of F-statistics calculated from the

posterior distribution of allele frequencies.sis, overdispersion corresponds to the variance of an
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The standardized variance of allele frequency change distances at the four loci. It should be noted that the
posterior distances were overestimated including themeasured by F-statistics has been used to estimate Ne

(Krimbas and Tsakas 1971; Nei and Tajima 1981; Pol- overdispersion and the posterior distributions in Figure
2 were then overestimated. The means and SDs of D12,lak 1983; Waples 1989). Among F-statistics, Fk proposed

by Pollak (1983) is similar in form to D and is given D13, and D14 were about two times larger than D23, D24,
and D34; however, they might include the effect of theby
smaller sample size of population 1 (Tanabe Bay).

The posterior distribution of the standardized geneticFk 5
1

k 2 1 o
k

i51

2(p0i 2 pti)2

p0i 1 pti

. (8)
distance took the overdispersion and sample size differ-
ence into account. The means of I12, I13, and I14 rangedFor the case of multiple loci, Fk is calculated by Fk 5
from 0.2706 to 0.4671, whereas those of I23, I24, and I34Rj(kj 2 1)Fkj/Rj(kj 2 1) from Nei and Tajima (1981),
took negative values. The SDs ranged from 0.53 to 0.58where Fkj is Fk at the jth locus. Without overdispersion,
and took almost the same values. The genetic differ-Ne is estimated by
ences with population 1(I12, I13, and I14) looked larger
than the others (Table 3). However, the posterior distri-N̂e 5

t
2[F̂k 2 1/(2n0) 2 1/(2nt) 1 1/N]

(9)
butions of I overlapped well with the theoretical distribu-
tion of no genetic difference (Figure 3).

for plan I, where the sample is taken after reproduction. We estimated the 95% confidence interval of the dis-
For plan II, where the sample is taken before reproduc- persion parameter to be from 1.72 to 1.88 by the likeli-
tion, the term 1/N is eliminated, where F̂k is the estima- hood-ratio test. The lower limit of the dispersion param-
tor obtained by substituting sample frequencies in Equa- eter corresponds to the upper limit of the genetic
tion 8 and N is the census size for a population (Waples distance, from which we evaluate the difference. The
1989, Equations 11 and 12). means of the posterior distributions for the lower limit

Equation 9 assumes that 2n0 and 2nt genes are taken of the dispersion parameter were increased from 8 to
by a binomial sampling from the population. If there 27% and SDs remained the same (Table 3), but the
is overdispersion, Fk is overestimated, which leads to posterior distributions of I were almost the same as those
underestimation of Ne. Since the effective sample size for the point estimate of the overdispersion and still
is obtained by discounting the apparent sample size by overlapped well with the theoretical distribution (Fig-
dispersion parameters, Equation 9 is modified as ure 3).

The value of 95% upper limit of the credibility region
N̂e 5

t
2[F̂k 2 ŝ2/(2n0) 2 ŝ2/(2nt) 1 1/N]

. (10) of the theoretical normal distribution of I with mean
of 0 and variance of 0.5 is 1.16. All posterior means were
,1.16, and the credibility regions included 0; hence we
concluded that there was no genetic difference between

CASE STUDIES
the four populations of red sea bream. This finding
agreed with the result of the original authors, who re-Red sea bream: To evaluate genetic distances, we first

analyzed the data of four populations of red sea bream ported that the Roff test did not reject the homogeneity
of the haplotype frequencies (Tabata and Mizuta(Pagrus major) from Tabata and Mizuta (1997; Table

1). From the fragment pattern of mtDNA D-loop regions 1997, p 5 0.219). Nevertheless, they rejected the hypoth-
esis by the pairwise comparison. From the results of ourwith six restriction enzymes, 48 haplotypes were ob-

tained for four wild populations. We decomposed the test, however, we argue that it was inappropriate analysis.
Herring: Stock enhancement of herring (Clupea pal-haplotype frequency to six allelic frequencies for each

restriction enzyme and eliminated HaeIII and Msp, lasii) has been performed in Akkeshi Bay, Hokkaido
(Japan). Because the matured herrings migrate to Ak-which showed little or no polymorphism, from the anal-

ysis. keshi Bay to spawn, they are considered to have origi-
nated from Lake Akkeshi and Akkeshi Bay. AlthoughThe estimate of the total hyperparameters was

106.553 for each locus (Table 1), and the dispersion wild adult fish that migrated to the bay are used for
artificial spawning to produce juveniles every year, itparameter was estimated at 1.80 by maximizing Equa-

tion 3. Here 2n. 5 (72 1 95 1 93 1 90)/4 5 87.5 still may be important to monitor the genetic change
and estimate the effective population size to maintainbecause mtDNA is a haploid. With a prior distribution

specified by these parameters, we obtained the posterior the wild stock.
Temporal changes in allozyme allele frequencies weredistribution of D by dividing RDj over four loci by the

number of loci (Table 2). As an example, the histogram obtained by combining two studies on the same loci by
Ando and Ohkubo (1997) and Hotta et al. (1999;and estimated density function of the posterior distribu-

tion of D at HinfI between Tanabe Bay and Tomoga- Table 4). Independent samples were taken in March
and April 1993. In 1996, males and females were takenshima Channel is shown in Figure 1. D12 in Figure 2 was

obtained as the mean of such four posterior genetic separately from the sample, hence they were not inde-
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TABLE 1

Allele frequencies of the mtDNA D-loop region from Tabata and Mizuta (1997) and estimated
hyperparameters for four populations of red sea bream from eastern Japan

Tanabe Tomogashima Sea of Bingo
Bay Channel Japan Nada

Sample size: 72 95 93 90 Hyperparameter

HinfI 0.458 0.411 0.376 0.378 43.855
0.375 0.442 0.409 0.456 43.872
0.167 0.147 0.215 0.166 18.826

MspI 0.903 0.863 0.882 0.867 92.864
0.097 0.137 0.118 0.133 13.688

TaqI 0.958 0.811 0.806 0.856 91.248
0.042 0.189 0.194 0.144 15.305

RsaI 0.097 0.137 0.215 0.178 17.015
0.264 0.305 0.312 0.266 30.253
0.306 0.316 0.312 0.289 32.871
0.180 0.116 0.075 0.078 11.802
0.153 0.126 0.086 0.189 14.613

pendent. For the purposes of our case study, we treated tion, so Equation 10 was used by eliminating the term
the data as if they were taken independently. of 1/N and substituting (206 1 214)/2 5 210 for 2n0

The estimate of the total hyperparameters was and (168 1 148)/2 5 158 for 2nt. The posterior means
130.956 for each locus (Table 4), and the dispersion of Ne estimates and 95% credibility region of Ne are
parameter was estimated at 2.39, with 2n. 5 (206 1 given in Table 5.
214 1 168 1 148)/4 5 184. The posterior distribution The dispersion parameter was estimated at 2.39 with
of Fk estimate was calculated from each of two sets of a 95% confidence interval from 1.00 to 7.51. From a
posterior distributions of allele frequencies for 1993 and conservation viewpoint, it is better to consider the lower
1996 by limit of Ne. The lower limit of the dispersion parameter

evaluates the upper limit of Fk corresponding to theFk 5
1
4o RJ

j51(kj 2 1)F̂kj

RJ
j51(kj 2 1)

. (11)
lower limit of Ne. The lower limit of s2 was 1.00. Corre-
sponding with that, no overdispersion arose and noFk ranged from 0.0014 to 0.0814 with the mean and
subpopulation existed. The number of simulations withSD of 0.0226 and 0.0105, respectively. The posterior
a negative value of Ne estimate was 1221 in 10,000 trials.distribution of Fk is shown in the left side of Figure 4.
When Fk # [1/(2n0) 2 1/(2nt)], the only feasible esti-Most of the matured herring migrating to Akkeshi
mate of Ne is infinity (Waples 1989). The mean of theBay to spawn are in their second year of life; the remain-
positive Ne estimate was 350, and the 95% credibilityder are in their third year. The age composition of the
region was estimated from 20 to infinity (Table 5). Thespawners was surveyed and estimated at 0.9 and 0.1 for
posterior distribution of the positive Ne estimate iseach age class by the Japan Sea-Farming Association.
shown in the right side of Figure 4; it suggests the orderThe expected number of generations can be used for
of the effective population size of herring, even thought in the estimating equations of Ne because the expecta-
the upper limit was not estimated.tion of the F-statistics was approximated to be linear

Northern pike: We analyzed the data from Millerwith t as shown in Waples (1989, p. 382). We estimated
and Kapuscinski (1997) for comparison. Temporalthe expected number of generations at 1.48 (5 3/2.1)
changes in microsatellite allele frequency at seven locidivided by the number of years between samples by
were typed in the northern pike (Esox lucius) populationthe mean age of spawners as Miller and Kapuscinski

(1997) did. The samples were taken before reproduc- of Lake Escanaba, Wisconsin. Of the seven loci, five had

TABLE 2

Means and SDs of the posterior distribution of the genetic distance for the red sea bream populations

D12 D13 D14 D23 D24 D34

Mean 0.0585 0.0523 0.0530 0.0229 0.0241 0.0244
SD 0.0207 0.0196 0.0192 0.0112 0.0116 0.0118
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Figure 2.—Posterior distributions of the genetic distance
(D) between four populations of red sea bream using data
given in Table 1.Figure 1.—A histogram and the estimated density function

of the posterior distribution of the genetic distance between
red sea bream populations of Tanabe Bay and Tomogashima
Channel for HinfI using data given in Table 1. D12 in Figure and Kapuscinski (1997). The mean of the positive Ne
2 was obtained as the mean of the four posterior genetic estimate was 73 and a 95% credibility region neglecting
distances for the four loci. the overdispersion was estimated from 29 to 190 (Table

6). The number of negative Ne estimates was 6 in 10,000
trials. Miller and Kapuscinski’s estimates for 1977 andtwo alleles and two had three alleles. Following the data
1993 data were 0.038 for Fk and 72 for Ne with a 95%processing techniques of Williamson and Slatkin
confidence interval from 17 to 258. Our posterior mean(1999), we also combined the two least common allelic
of Fk was 1.26 times larger and that of the Ne estimateclasses for the two loci with three alleles and created a
coincided with a 67% narrower confidence interval (Ta-diallelic frequency set. To estimate the hyperparame-
ble 6).ters, we allocated sample sizes of 86 for 1961, 110 for

The 95% confidence interval of the dispersion param-1977, and 72 for 1993 according to the diallelic frequen-
eter was estimated from 5.51 to 18.80. For the 95%cies for each locus to obtain the number of individuals
lower limit of the dispersion parameter, the number ofcorresponding to the frequencies. Because the data had
simulations with a negative value of Ne estimate was 8480one sample for each year, it was not possible to estimate
in 10,000 trials. The mean of the positive Ne estimatesthe hyperparameters for each locus. Therefore, we as-
was 1065 and the 95% credibility region was estimatedsumed that the seven loci were independent of each
from 123 to infinity (Table 6). The posterior distribu-other and had common hyperparameters. The two com-
tion of the positive Ne estimate, neglecting the over-mon hyperparameters and the dispersion parameter
dispersion (s2 5 1), and for the lower limit of ŝ2(5were estimated at 16.232, 3.089, and 9.74, with 2n. 5
5.51) are given in the right side of Figure 5. In this(172 1 220 1 144)/3 5 178.7.
example, we can see the effect of the overdispersion onFk between the year of 1977 and 1993 ranged from
the posterior distribution of Ne estimate. The estimate0.0087 to 0.1264 with the mean and SD being 0.0479
of Ne, neglecting the overdispersion, agreed well withand 0.0150, respectively. The posterior distribution of
the estimate of Miller and Kapuscinski (1997).Fk is given in the left side of Figure 5. The posterior

Ayu broodstock: Ayu (Plecoglossus altivelis) is the mostdistribution of the Ne estimate was obtained by substitut-
popular target species of recreational anglers in riversing the posterior distribution of Fk into Equation 10,

eliminating the term 1/N, with t 5 4, as given in Miller and streams in Japan. A total of 300 million juveniles
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TABLE 3

Means and 95% credibility regions of the posterior distribution of the standardized genetic distance
for the red sea bream populations

s2 5 1.80a s2 5 1.72b

Mean SD 95% CR Mean SD 95% CR

I12 0.4671 0.5774 [20.4819, 1.4232] 0.5448 0.5914 [20.4272, 1.5240]
I13 0.2706 0.5747 [20.6706, 1.2169] 0.3435 0.5886 [20.6205, 1.3127]
I14 0.2735 0.5567 [20.6259, 1.1977] 0.3464 0.5702 [20.5747, 1.2931]
I23 20.6241 0.5284 [21.4582, 0.2767] 20.5729 0.5411 [21.4272, 0.3497]
I24 20.5866 0.5332 [21.4226, 0.3163] 20.5345 0.5461 [21.3907, 0.3903]
I34 20.5768 0.5276 [21.4047, 0.3319] 20.5244 0.5404 [21.3723, 0.4062]

CR, credibility region.
a Point estimate of the dispersion parameter.
b 95% lower limit of the dispersion parameter.

are released every year, of which hatchery-produced fish artificial fertilization. In 1996, z850 females and 650
males were used. The temporal changes in allozymecomprise z30%. The life span of ayu is 1 year. They

spawn in a river from September to November and die allele frequencies of the ayu broodstock were reported
by Yoshizawa (1997; Table 7). These samples in Tableafter spawning. Hatched larvae go down to the sea and

winter there. The upstream run of wild ayu juveniles 7 were taken after artificial fertilization from two rearing
tanks in which males and females were kept separately.begins from the coast in late March to early April and

is over by early July. Soon after, they mature, spawn from The total of the hyperparameters was estimated at
28.576 for each locus (Table 7), and the dispersionSeptember to November, and then die after spawning.

Hatcheries have commonly cultured broodstocks over parameter was estimated at 5.86, with 2n. 5 (190 1
210 1 128 1 130 1 100 1 100)/6 5 143. The 95%generations. At the Gunma Prefecture Fisheries Experi-

mental Station, adult ayu have been cultured over 27 confidence interval of the dispersion parameter was esti-
mated to range from 3.04 to 13.49. We calculated fourgenerations. About 3000–4000 fish have been reared

every year as broodstock, some of which are used for Fk’s on the basis of temporal changes in allele frequen-

Figure 3.—Posterior distributions of the standardized genetic distance (I) for the red sea bream populations taking the point
estimate of the dispersion parameter 1.80 (left) and the 95% lower limit 1.72 (right) into account.
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TABLE 4

Temporal changes in allozyme allele frequencies and estimated hyperparameters
of herring in Akkeshi Bay

1993a 1996b

March April Male Female
HyperparameterSample size: 103 107 84 74

Gpi 0.282 0.243 0.191 0.149 28.630
0.718 0.757 0.809 0.851 102.326

Pgm 0.447 0.393 0.321 0.324 48.993
0.553 0.607 0.679 0.676 81.963

a Ando and Ohkubo (1997).
b Hotta et al. (1999).

cies observed in the first (1996–1997; F1) and second Miller and Kapuscinski 1997; Williamson and Slat-
kin 1999).(1997–1998) time intervals (F2), over the entire interval

(1996–1998; F3), and for the entire interval based on The values of Fk calculated by Equation 11 were varied
using four combinations for two samples in each sam-the pooled F for the first two intervals, as Miller and

Kapuscinski (1997) did. For the last case, Miller and pling year, reflecting the variation in allele frequencies
for each sampling period. The posterior mean and SDKapuscinski (1997) used the sum of F1 and F2 for the

entire interval, but we used the mean for the two inter- of F3 were the largest, and the SD of Fmean was the smallest
but almost the same as that of F1 (Table 8). The poster-vals (Fmean), which gives the same form of Ne estimate

by Equation 10, substituting n0 by the harmonic mean ior distributions of Fk are illustrated in the left side of
Figure 6.of the sample size of the first and second year, and nt

by that of the second and third year. When t is equal We fixed the generation time at t 5 1.0 for the first
and second time intervals and had t 5 2.0 for the entirefor the two intervals, the estimate of Ne derived from

pooled Fk is the harmonic mean for both sampling peri- interval because the life span of ayu is 1 year. The sam-
ples were taken after reproduction, so we used Equationods (Nei and Tajima 1981; Pollak 1983; Waples 1989;

Figure 4.—Posterior distributions of the standardized variance of allele frequency change Fk and effective population size Ne

of herring for the 95% lower limit of the dispersion parameter (s2 5 1) using data in Table 4.
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TABLE 6TABLE 5

Means and 95% credibility regions of the posterior Means and 95% credibility regions of the posterior
distribution of the effective population size ofdistribution of the effective population size of herring

in Akkeshi Bay obtained using data in Table 4 northern pike obtained using 1977–1993 data
from Miller and Kapuscinski (1997)

s2 Meana 95% CR ∞/10,000b

s2 Meana 95% CR ∞/10,000b

1.00c 350 [20–∞] 1,221
2.39d 16,841 [35–∞] 6,832 1.00c 73 [29–190] 6
7.51e ∞ [∞–∞] 10,000 M and Kd 72 [17–258]

5.51e 1,065 [123–∞] 8,480
a Mean of positive Ne. 9.74f 20,606 [∞–∞] 9,998b Number of Ne that took ∞ in 10,000 simulations.
c 95% lower limit of the dispersion parameter (no over- a Mean of positive Ne.

dispersion). b Number of Ne that took ∞ in 10,000 simulations.
d Point estimate of the dispersion parameter. c No overdispersion is assumed.
e 95% upper limit of the dispersion parameter. d Estimated by Miller and Kapuscinski (1997).

e 95% lower limit of the dispersion parameter.
f Point estimate of the dispersion parameter.

10, substituting 2n0 5 (190 1 210)/2 5 200, 2nt 5
(100 1 100)/2 5 100, and N 5 1500, which was the total
number of individuals used for artificial fertilization. posterior mean of Fmean being smaller than that of F3,

as shown in the left side of Figure 6. The posteriorWe made four estimates of Ne on the basis of F1, F2,
F3, and Fmean. Estimates for the 95% lower limit of the distributions of the positive Ne estimate obtained by

using F1, F2, F3, and Fmean for the lower limit of ŝ2 aredispersion parameter (5 3.04) are given in Table 8.
The posterior mean obtained using F3 was the largest given in the right side of Figure 6, showing a larger

variance of the estimate based on F3 than those derivedwith the largest SD, and that for Fmean was second with
a smaller SD. The Ne estimate that took ∞ in 10,000 from F1, F2, and Fmean.

We failed to estimate the upper limit of the credibilitysimulations was 8677 when using Fmean, and that for F3

was 4927. This is because the sampling correction term regions because of large sampling variances with over-
dispersion. However, when the numbers of breedingin the denominator of Equation 10 took the very similar

values of 0.0912 for F3 and 0.0928 for Fmean, despite the males Nm and females Nf are given, which is difficult to

Figure 5.—Posterior distributions of the standardized variance of allele frequency change Fk and effective population size Ne

of northern pike for the 95% lower limit of the dispersion parameter (s2 5 5.51) and that with no overdispersion (s2 5 1.00)
using 1977–1993 data from Miller and Kapuscinski (1997).
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TABLE 7

Temporal changes in allozyme allele frequencies from Yoshizawa (1997) and estimated hyperparameters of
ayu broodstock cultured over 27 generations in Gunma Prefecture

1996 1997 1997

Male Female Male Female Male Female
HyperparameterSample size: 95 105 64 65 50 50

Gpi1 0.184 0.200 0.141 0.192 0.290 0.230 6.341
0.816 0.800 0.859 0.808 0.710 0.770 22.235

Mpi1 0.521 0.400 0.422 0.315 0.280 0.300 10.794
0.479 0.600 0.578 0.685 0.720 0.700 17.783

know in a wild population but possible in hatcheries, populations while taking full account of the uncertainty
of the sample allele frequencies. When we comparethe effective population size is obtained by Ne 5 4NmNf/

(Nm 1 Nf) (Wright 1931). We obtained a value for Ne populations in which the genetic differentiation is small,
the hypothesis-testing framework cannot accept the nullof 1473 by using the equation (4 3 850 3 650/(850 1

650)), which referred to the effective population size hypothesis of no genetic differentiation in almost all
cases, because of the poor statistical power with relativelywhere a random mating was performed by artificial fer-

tilization. In a spawning season of ayu, males and fe- small sample sizes. The empirical Bayes procedure is
males eligible for spawning were selected every day from effective even in such cases. So we believe it could play
the broodstock and used for artificial fertilization. The an important role in the field of conservation.
number of females used in an artificial fertilization This general method can easily be extended to any
ranged from z10 to 20, and the ratio of males to females parameter that is a function of multinomial frequencies.
was z0.8. The eggs were squeezed from the females When the parameter of interest is a function of allele
and stocked in a stainless bowl and then fertilized by frequencies, the posterior distribution of that parameter
squeezing sperm from individual males. This method can be obtained through the function by using the pos-
of fertilization might not guarantee a random mating terior distribution of the allele frequencies, instead of
of the males and females used; hence, 1473 should be assuming a prior distribution for the parameter.
used as the upper limit of the credibility regions instead Overdispersion and empirical Bayes: Until now, mod-
of ∞ (Table 8). If we neglect overdispersion, the 90% els based on a simple random sampling from the gamete
credibility region could be obtained at [13–589] with pool have been assumed when evaluating allele frequen-
the posterior mean of 136, which was underestimated. cies. However, as shown in the four case studies treated

in this article, a simple random sampling is not necessar-
ily guaranteed. If there are subpopulations divided spa-

DISCUSSION tially in a survey area, or a cluster of a genotype is taken,
a sample allele frequency might be overdispersed. IfThe empirical Bayes procedure developed here
overdispersion arises, a sampling variance becomes s2makes it possible to describe the skewness of the genetic

distance and evaluate genetic differentiation between times larger than that for a simple random sampling.

TABLE 8

Means and 95% credibility regions of the posterior distribution of the effective population size of ayu for
95% lower limit of the dispersion parameter (3.04) obtained using data in Table 7

Fk Ne

Period t a Meanb SD Mean SD 95% CR ∞/10,000c

1996–1997 (F1) 1 0.0263 0.0121 350 4,024 [32–∞] 8,453
1997–1998 (F2) 1 0.0379 0.0189 240 1,388 [17–∞] 8,094
1997–1999 (F3) 2 0.0474 0.0191 796 18,538 [22–∞] 4,927
1997–1999 (Fmean) 1 0.0321 0.0120 491 3,294 [35–∞] 8,677
1997–1999 (Fmean)d 136 3,720 [13–589e] 377

a Number of generations.
b Mean of positive Ne.
c Number of Ne that took ∞ in 10,000 simulations.
d No overdispersion is assumed (s2 5 1).
e 90% credibility region.
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Figure 6.—Posterior distributions for the four estimators of the standardized variance of allele frequency change Fk and
effective population size Ne of ayu broodstock using 1996–1998 data in Table 7.

This can seriously affect the precision of the estimate If the sample sizes are small, one might consider that
the large variation in the sample allele frequencies is aof genetic distance and the effective population size.

As a result, the genetic distance and F-statistics can be function of the small sample size. On the other hand,
if the same allele frequencies are obtained for largeroverestimated, and the effective population size can be
sample sizes, one could consider that the large variationunderestimated, if overdispersion is not taken into ac-
comes from the subpopulation structure with confi-count in the analysis. Therefore, it is quite important
dence. The more samples one draws, the more preciselyto take overdispersion into account when estimating
one can estimate the dispersion parameter. In addition,genetic distance and effective population size.
increasing the number of polymorphic loci to be sur-Sample sizes: If we use the noninformative prior of
veyed may also increase the information available forthe Dirichlet distribution (Box and Tiao 1992), the
estimating the dispersion parameter, e.g., the precisiondispersion parameter might be overestimated for most
of the dispersion parameter estimate in the case of redcases. For example, the dispersion parameter of herring
sea bream, in which the narrowest confidence intervalwas estimated at 92.5 from the noninformative prior,
was obtained among our four case studies.which was estimated at 2.39 from the empirical Bayes

It is also quite important to consider sampling strate-procedure, illustrating the importance of estimating the
gies to minimize overdispersion caused by sampling pro-hyperparameters from the data.
cedures. For example, sampling from different sites andWe examined the relationship between sample size
times may be useful to avoid sampling clusters of individ-and the estimates of the hyperparameters using the data
uals having the same genotype. Such multiple samplesof red sea bream given in Table 1. We estimated the
contribute simultaneously to a more precise estimationhyperparameters with multipliers of 0.5, 2, 3, and 4
of the dispersion parameter.to test each population with the same sample allele

Standardized genetic distance: As I follows the normal dis-frequencies. The estimates of the hyperparameters were
tribution, it takes values between 2∞ and 1∞. For sim-stable and not dependent upon sample sizes. This con-
plicity, let X 5 2n1.n2.RJ

j51D̂j/((n1. 1 n2.)s2) and define thefirmed the robustness of the empirical Bayes procedure
expected value by E[√X]. If √X . E[√X], I takes a posi-(Table 9). However, the dispersion parameter became
tive value, and 0 if √X 5 E[√X]. If √X , E[√X], I takeslarger as sample size increased. This is to be expected
a negative value. As X follows the x2 distribution asymp-from the relationship between the total of the hyperpar-

ameters, the sample sizes, and the dispersion parameter totically when there is no genetic difference, E[√X] is
given by Equation 5. almost equal to the square root of the degrees of free-

Suppose there are several subpopulations and the dom of X, which is the number of loci examined. When
RJ

j51D̂j does not increase compared to the increased num-population allele frequencies are largely varied spatially.



2074 S. Kitada, T. Hayashi and H. Kishino

TABLE 9

Estimated hyperparameters and the dispersion parameter for four populations of red sea bream for sample
sizes of 0.5, 2, 3, and 4 times larger than the original one with the same sample allele frequencies

Sample size: 30.5 Original 32 33 34

u 106.844 106.553 106.168 106.119 106.075
s2 1.40 1.80 2.62 3.44 4.25
HinfI 43.956 43.855 43.603 44.301 43.683

43.989 43.872 43.887 43.932 43.986
18.899 18.826 18.679 17.886 18.406

MspI 93.049 92.864 93.007 92.027 93.033
13.795 13.688 13.161 14.093 13.042

TaqI 90.981 91.248 90.853 91.949 91.253
15.863 15.305 15.315 14.170 14.822

RsaI 16.961 17.015 16.759 16.886 16.383
30.155 30.253 30.091 29.762 30.310
32.976 32.871 33.032 32.855 32.791
11.841 11.802 11.777 11.732 11.910
14.910 14.613 14.509 14.885 14.682

ber of loci examined, the likelihood for I taking a nega- s2 5 FST(2n 2 1) 1 1, (13)
tive value increases. On the other hand, when RJ

j51D̂j from which we can see larger FST gives larger overdisper-
increases to the increased number of loci examined,

sion. From Equation 13, we also have the relationship
the likelihood for I taking a positive value increases.
This point illustrates the effectiveness of increasing the

FST 5
s2 2 1
2n 2 1

. (14)number of loci to obtain increased information on the
genetic differentiation from the value of the posterior

Rannala and Hartigan (1996) proposed the pseudo-mean of I. Conversely, a negative posterior mean indi-
maximum-likelihood method (PMLE) for estimatingcates that little information on genetic differentiation
the rate of gene flow into island populations using thewill be obtained even if the number of loci is increased,
distribution of alleles in samples from a number ofas a function of the small genetic differentiation. This
islands. We confirmed that their likelihood functionis considered to be the cause of the negative values of
for multiple loci (p. 149 Equation 10) coincides withthe posterior mean for I23, I24, and I34.
Equation 3 by using the relationship of G(n) 5Overdispersion and gene flow: Weir (1996) stated that
(n 2 1)!. In PMLE, ai is treated by upi. Here, pi is afor populations that have reached an equilibrium under

the joint effects of drift and mutation or migration,
Wright (1945) found that allele frequencies for loci TABLE 10
with two alleles had a b distribution, and for multiallele

Estimated hyperparameters and the dispersion parameterloci the distribution was Dirichlet (Wright 1951). We
from the mtDNA haplotype distribution among islands

assumed that the hyperparameters for the b or Dirichlet for Channel Island foxes (Table 2 of Rannala
distributions were common for every sample and locus and Hartigan 1996), using the full-likelihood
that was in an overdispersed population. Our assump- function (Equation 3)
tion corresponds with Wright’s (1945, 1951) theories.
So if the random sampling is performed, the estimated Rannala and This article

Parameter Hartigan (PMLE) (MLE)hyperparameters and dispersion parameter both de-
scribe a kind of genetic differentiation between popula-

u 0.41 0.45
tions that have reached an equilibrium. If all popula- (60.35)a [0.18, 0.84]b

tions mate randomly, the total variance of allele a1 0.1189 0.0945
a2 0.0574 0.0428frequency p with two alleles of 2n genes is given by Weir
a3 0.0082 0.0382(1996)
a4 0.0779 0.0992
a5 0.1476 0.1760

V(p̂) 5
p(1 2 p)

2n
{FST(2n 2 1) 1 1}, (12) s2 18.38c 17.89

a SD.where FST is the coancestry coefficient of Wright b 95% confidence interval estimated by the likelihood-ratio
(1951). The second term of Equation 12 corresponds test.

c Estimated by Equation 5.to the dispersion parameter, yielding the relationship
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nuisance parameter estimated from the data as p̂i 5 ni./ lations exist, overdispersion arises and affects the estima-
tion of the effective population size. It is then importantn . ., and then p̂i is substituted for pi in the log-likelihood
to collect data on the spatial variation. At the same time,function, and the only unknown parameter u is esti-
when many isolated subpopulations exist, the effectivemated by using the Newton method. By contrast, we
population size is considered to be close to the size ofdirectly maximize the negative log-likelihood function
a subpopulation. When this occurs, it seems dangerousand estimate RJ

j51(kj 2 1) 1 1 parameters by using a
to dismiss the variation between generations as over-simplex minimization. We estimated the hyperparamet-
dispersion. It needs further consideration.ers and the dispersion parameter from the mtDNA hap-

Practical considerations on estimating Ne: From thelotype distribution among islands for Channel Island
approximate variance formula of Ne estimate (Pollakfoxes given in Table 2 of Rannala and Hartigan
1983, Equations 28 and 29; Waples 1989, Equation 17),(1996) using the full-likelihood function (Equation 3).
it is clear that increasing the sample size, the numberThe estimates were similar to Rannala and Hartigan’s
of loci, and the number of generations t simultaneouslyPMLE (Table 10). Thus, our empirical Bayes procedure
ensures greater precision for the estimate of Ne (Waplesalso offers the maximum-likelihood estimators (MLEs)
1989). Miller and Kapuscinski (1997) stated that ifof the rate of gene flow. MLE is more efficient than
Ne is expected to be moderately large, the sample size,PMLE (Chuang and Cox 1985) and has the advantage
the number of loci, and the number of generationsthat it can estimate the confidence interval of the param-
should all be as large as possible. To improve the preci-eters by using the likelihood-ratio test.
sion of the estimate of Ne, it is essential to reduce theWright (1969) proposed the estimator of u for a
sampling variance and increase information on geneticdiscrete-generation island model of a population at
drift.equilibrium, based on FST as û 5 1/FST 2 1 (Rannala

Sample size: The idea of the temporal method is toand Hartigan 1996). Substituting this estimator into
estimate Ne from the genetic change over time describedEquation 4, we have Equation 13, which was obtained
by F-statistics estimated from the sample allele frequen-from the total variance of Weir (1996). As is clear from
cies. F-statistics, then, consist of the genetic drift andEquation 6, larger s2 gives smaller u, indicating that
the sampling variance. To evaluate the genetic drift, welarger genetic differentiation corresponds to smaller
have to subtract the sampling variances from thegene flow. For the case of the red sea bream, s2 and u
F-statistics. The second and third terms in the denomina-were estimated at 1.80 and 106.55, respectively. For the
tor of Equation 10 are the sampling variances at genera-case of the foxes, they were estimated at 17.89 and 0.45,
tions 0 and t. If Ne is large, the genetic drift may berespectively. From this result, it is clear that the six fox
small, so the denominator of Equation 10 would takepopulations in the isolated islands had small gene flow
a negative value, which leads to an infinite Ne for smalland large genetic differentiation. On the other hand,
sample sizes n0 and nt. If overdispersion arises, the effectred sea bream had large gene flow and small genetic
of subtracting the sampling variances becomes s2 timesdifferentiation. The estimate of FST for red sea bream
larger, which is why we failed to estimate the upper limit
of the credibility region of Ne. As pointed out by Wapleswas FST

l

5 (1.80 2 1)/(87.5 2 1) 5 0.0093, which was

(1989), the temporal method should be useful for casesrelatively small. But for foxes it was FST

l

5 (17.89 2
1)/(25.5 2 1) 5 0.6894, suggesting advanced inbreed- of small Ne, where larger genetic drift is expected. Even
ing in the fox populations. in the case of a small Ne, the problem of an infinite Ne

The essential idea for estimating overdispersion is estimate can occur due to large sampling variance, as
to compare the variation of sample allele frequencies shown in the ayu studies, because of the small sample
obtained from the different locations to the multinom- sizes. When one uses the temporal method, reducing
ial variance. In addition, the effective population size the sampling variance is indispensable. The sample size
is based on the changes in allele frequencies between should be kept as large as possible. A larger sample size
generations. Conversely, overdispersion provides in- also provides greater information on the genetic drift.
sight into the spatial variation of allele frequencies. By Number of loci: Williamson and Slatkin (1999) devel-
evaluating the spatial variation, it might become possi- oped a maximum-likelihood temporal method to esti-
ble to discriminate the overdispersion resulting from mate Ne and compared estimates with those derived with
the variation between generations. Hence, the proce- the F-statistic method. The simulation result in their
dure needs to evaluate overdispersion as a function of Table 1 showed that increasing the number of loci re-
the spatial variation and then measure the variation duced the variance and bias in both estimators, although
between generations taking overdispersion into ac- when the number of loci was .50, the corresponding
count. reduction of variance and bias was not large, and the

In the three case studies we looked at for estimating total information on allele frequency changes did not
the effective population size, direct information on the increase much. The results of Williamson and Slatkin
spatial variation was scarce. Therefore, the precision of (1999) suggest that information on genetic drift was

not improved much even if the number of loci wasthe dispersion parameter was marginal. When subpopu-
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.100, because their simulation was based on diallelic those based on F1 and F3. This suggests that the decision
about which estimate obtained from F3 and Fmean to usealleles. F-statistics measure a magnitude of changes in

allele frequencies per allele, which can be regarded as should be made on the basis of the relative effect of
improving precision by using Fmean and a doubled num-a sample mean. So, the estimation precision can be

improved if the number of loci is increased. This sug- ber of years. Which estimate has more information on
the genetic drift must be determined on a case-by-casegests that increasing the number of alleles is essential,

which can be attained by increasing the number of loci. basis.
Overlapping generations: The basic theory of the tempo-Number of years between samples: The number of years

between samples is correlated with the number of gener- ral method assumes generations to be discrete. The
expected number of generations used in Equation 10ations, and it then affects the precision of the estimate

of Ne. A large number of generations between samples directly affects the estimate of Ne. We take time to be
measured in years. The expected number of generationscan improve the precision of the estimate of Ne (Waples

1991), because information on genetic drift increases between samples can be estimated by dividing the num-
ber of years between samples by the mean generationas the number of generations increases. Williamson

and Slatkin (1999, Table 1) showed through simulated time, which corresponds to the mean age of maturity.
In the case of ayu, since the life span is 1 year, 1 yearpopulations sampled at generations 0–4 and 0–8 that

the variance and bias in both estimators were reduced coincides with one generation, which makes it possible
to estimate E[t] by the above-mentioned method.when the number of years between samples was dou-

bled, although the effect of reducing the bias was not In the case of herring and salmon, however, where
there are overlapping year classes of spawners, the esti-clearly observed with the F-statistic method.

For the case study of ayu, the posterior mean of Ne mation of E[t] is complex. When generations overlap,
the age-specific birth rate may essentially affect the esti-was 350 based on F1 and 796 based on F3, and SDs for

the two estimates were 4024 and 18,538, respectively, mate of E[t]. Hill (1979) showed that estimates of Ne

are robust with overlapping generations if demographicshowing the reduction of precision despite the fact that
the number of years between samples was doubled (Ta- parameters are stable. If demographic parameters

change over time, F̂ may be biased upward, leading toble 8). This is because the doubled number of genera-
tions increased the variance of allele frequency changes. an estimate of Ne that is too small (Pollak 1983; Waples

1989). Jorde and Ryman (1995) proposed a correctionThe numbers of infinite Ne estimates in 10,000 simula-
tions were 8453 on F1 and 4927 on F3, and the smaller method for the bias and showed by using simulations

for short time intervals that the bias was larger for a caseF values increased the estimated value of Ne. The result
was similar for northern pike. The point estimate of Ne where age-specific birth rates were extremely different

compared with a case with equal age-specific birth rates.based on F3 (5 125) was larger than those based on F1

(5 35) and F2 (5 72), and the confidence interval for Waples (1990) developed a statistical method for this
situation that can be applied to Pacific salmon popula-F1 was the largest (Miller and Kapuscinski 1997).

Miller and Kapuscinski (1997) discussed the ques- tions that have an unusual life history of semelparity
with overlapping year classes. Tajima (1992) developedtion of which estimate obtained from F3 and Fmean to use

for the entire time interval. If Ne changes between the a formula to estimate the expected number of genera-
tions without computer simulations and showed the esti-two sampling intervals, it should be evaluated by using

F1 and F2 for the respective intervals. The numbers of mates agreed well with estimates obtained by the
method of Waples (1990), which requires computeradult ayu used for the artificial fertilization in 1997 were

600 females and 480 males, which are lower numbers simulations.
In the case of herring, age-specific survival and birththan those used in 1996. The posterior mean of F2 was

larger than that of F1, which resulted in a smaller Ne rates were unknown, so it was not possible to apply the
method of Jorde and Ryman (1995), which requiresestimate based on F2, supporting the fact that Ne actually

changed (Table 8 and Figure 6). One can use the esti- these demographic parameters. If an individual contin-
ues to spawn every year after the first spawning, likemate of Ne based on Fmean as the harmonic mean of the

effective population size in the respective intervals. The herring, E[t] may be estimated by dividing the years
between samples by the mean age of spawners, leadingprecision was improved by using Fmean, in which a larger

quantity of information was included. The greater preci- to the estimate of E[t] at 1.48 (5 3/2.1). If a distribution
of age-specific birth rates is concentrated to a specificsion that occurred with using Fmean and the lower preci-

sion that occurred with using F3 for the case study of age, E[t] may be close to the estimate obtained by the
methods of Waples (1990) or Tajima (1992). We esti-ayu are shown clearly in Figure 6.

When Ne does not change in the entire interval, F3 is mated the number of steps at 12 and the expected
number of generations at 5.71 (5 12/2.1) for a timeexpected to have more information on genetic drift

than F1 and F2. Williamson and Slatkin (1999, Table interval of 3 yr between samples by using the computer
program given in Tajima (1992), where we substituted1) also showed by their simulation that the estimates of

Ne based on Fmean had smaller variances and biases than f(2) 5 0.9, f(3) 5 0.1, and f(4) 5 0. The downward bias
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males taken in 1996 were analyzed as independent sam-
ples even though they were the same sample, leading
to a smaller value of Ne, which caused the rate of inbreed-
ing to be overestimated. The mean for northern pike
was smallest with the narrowest credibility region. How-
ever, these values may be underestimated because of an
overestimated dispersion parameter of northern pike,
which was the largest among our four case studies. There
was only one sample for one sampling year, and we
assumed that the seven loci had common hyperparame-
ters, so the estimated dispersion parameter may include
the change of the allele frequencies.

Multistage sampling in hatcheries: All existing meth-
ods assume that Ne is drawn from a gamete pool by a
simple random sampling. This is an appropriate assump-
tion for the reproduction of a wild population. However,
for broodstocks cultured over generations in hatcheries,
candidates of the next broodstock are sampled from
the progenies produced by the broodstock. Therefore,
Ne is drawn from the progenies by a two-stage sampling.
If artificial fertilization using a part of the candidates is
performed, as in the case study of ayu, Ne is drawn from
the progenies by a three-stage sampling and the sample
is drawn from the candidates to estimate the allele fre-
quencies, which is therefore a two-stage sampling of the
progenies. The multistage sampling must lead to the

Figure 7.—Posterior distributions of the rate of inbreeding different form of V(x 2 y) given in Waples (1989). This
of herring, ayu broodstock, and northern pike for the 95% is a problem that needs further research, but it shouldlower limit of the dispersion parameter.

be noted that the variances corresponding to the two-
stage and three-stage sampling become small when the
sample sizes are large. In the case of ayu, a total ofof N̂e when demographic parameters change over time

with overlapping generations should be corrected up- 3000–4000 candidates were sampled from the progenies
and cultured in rearing tanks, and 1500 adult fish fromward. From a conservation viewpoint, the estimate of

Ne without the correction must be conservative for the the candidates were used for artificial fertilization.
Hence the sample allele frequencies of ayu were ex-overlapping generations.

Rate of inbreeding: As another evaluation of breeding pected to represent those of the progenies produced
by the broodstock. However, if the sample sizes arepopulation size, the inbreeding coefficient may be use-

ful, especially for cases where the population size is small, V(x 2 y) is seriously affected.
estimable, as it is in the field of fishery science. Crow We thank Zhao-Bang Zeng and two anonymous referees for their
(1954) used the inbreeding effective size, making a dis- comments on an earlier version of this article. We also thank Ray Timm

for critical review of the manuscript, Fumio Tajima for importanttinction between that and the variance effective size,
suggestions made during our research, Kazutomo Yoshizawa for bio-which was defined by an inverse of the inbreeding coef-
logical information on ayu broodstocks including unpublished data,ficient. However, it is known that there is no great differ-
and Masashi Yokota for helpful discussions.

ence between the two effective sizes (Nei 1987); hence
we calculated the posterior distribution of the rate of
inbreeding defined as 1/(2Ne) (Falconer and Mackay
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Using the gamma function, which is given byFor our case, the expectation of √X is calculated as

#y(k11)/221e2ydy 5 G1k 1 1
2 2,E[√X] 5 #√Xf(x)dx 5

1
2k/2G(k/2)#x

(k 1 1)/2 21e2x/2dx.

finally we haveLet x/2 5 y, and we have

E[√X] 5
1

2k/2G(k/2)#(2y)(k11)/221e2y2dy. E(√X) 5 √2
G((k11)/2)

G(k/2)
.




