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ABSTRACT

Relatedness estimators are widely used in genetic studies, but effects of population structure on per-
formance of estimators, criteria to evaluate estimators, and benefits of using such estimators in conser-
vation programs have to date received little attention. In this article we present new estimators, based on
the relationship between coancestry and molecular similarity between individuals, and compare them with
existing estimators using Monte Carlo simulation of populations, either panmictic or structured. Es-
timators were evaluated using statistical criteria and a diversity criterion that minimized relatedness. Re-
sults show that ranking of estimators depends on the population structure. An existing estimator based
on two-gene and four-gene coefficients of identity performs best in panmictic populations, whereas a new
estimator based on coancestry performs best in structured populations. The number of marker alleles and
loci did not affect ranking of estimators. Statistical criteria were insufficient to evaluate estimators for their
use in conservation programs. The regression coefficient of pedigree relatedness on estimated relatedness
(b2) was substantially lower than unity for all estimators, causing overestimation of the diversity con-
served. A simple correction to achieve b2 ¼ 1 improves both existing and new estimators. Using re-
latedness estimates with correction considerably increased diversity in structured populations, but did not
do so or even decreased diversity in panmictic populations.

ADDITIVE genetic relatedness between individuals
plays an important role in many fields of genetics.

In genetic analyses, knowledge of relatedness is used to
estimate genetic parameters such as heritabilities and
genetic correlations (Falconer and Mackay 1996). In
artificial selection, estimation of breeding values relies on
knowledge of relatedness of individuals (Henderson

1984; Lynch and Walsh 1998), and relatedness be-
tween individuals affects optimum designs of selection
programs (e.g., Nicholas and Smith 1983). In evolu-
tionary biology, knowledge of relatedness between in-
teracting individuals is required to predict evolutionary
consequences of social interaction (Hamilton 1964).
In conservation genetics, knowledge of relatedness is
required to optimize conservation strategies. In this
article we focus on estimating relatedness for use in
conservation strategies, but results are equally relevant
for other fields in genetics. Throughout, we consider
the traditional population-genetic definition of relat-
edness for diploid individuals, which equals twice the
coefficient of coancestry (Malécot 1948; Lynch and
Walsh 1998).

When pedigrees of populations are known, additive
genetic relatedness between individuals can be calcu-
lated from the pedigree (Emik and Terrill 1949) and
can be used to estimate additive genetic variance. Pedi-
gree data are, however, often lacking or incomplete,
especially between subpopulations of a species. In those
cases, estimates of relatedness rely on molecular mark-
ers. Methods to estimate relatedness from molecular
marker data described in the literature can be divided
into two groups (Blouin 2003): (1) methods that esti-
mate relatedness on a continuous scale (e.g., Lynch
and Ritland 1999; Wang 2002), and (2) methods that
categorize individuals into a limited number of discrete
classes of relatives, such as full-sib, half-sib, or parent–
offspring relationships.

Toro et al. (2002) compared estimators expressing
relatedness on a continuous scale in a pedigreed pop-
ulation of pigs divided into two related strains, using
actual and simulated markers. Molecular coancestry
(Malécot 1948), the estimator of Lynch and Ritland
(1999), and a maximum-likelihood estimator showed
the highest correlation between pedigree and estimated
relatedness. When both strains were analyzed together,
molecular coancestry performed substantially better than
more sophisticated estimators, indicating that quality
of estimators depends on the population structure and
that current estimators are not optimal in general. More
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recently, novel estimators have been proposed and
compared by Wang (2002) and Milligan (2003) for
their statistical performance in an ‘‘outbred’’ popula-
tion structure, having only four degrees of relatedness,
parent–offspring, full-sibs, first cousins, and unrelated
individuals.

A number of issues remain unsolved, relating in par-
ticular to the population structure (Milligan 2003),
the utility of estimated relatedness in conservation pro-
grams, and the criterion to judge the quality of an
estimator. Estimators of Lynch and Ritland (1999)
and Wang (2002) assume no inbreeding. Those esti-
mators have been evaluated using simulated popula-
tions without pedigree, no inbreeding, and simple
classes of relatives of full-sibs, half-sibs, parent–offspring,
or unrelated individuals. Complex pedigree structures
and high levels of relatedness and inbreeding, however,
are typical for populations in need of conservation.
There is a need for relatedness estimators that can be
applied to fragmented populations, where interest is
in both within and between subpopulation relatedness.
Development of such estimators is not merely a sta-
tistical issue, but needs a connection with population
genetic concepts such as drift. Furthermore, the utility
of using estimators in conservation programs, with the
aim to maximize the amount of additive genetic vari-
ance conserved, has not been investigated to our knowl-
edge. Hence, more knowledge is needed of the usefulness
of relatedness estimators to support conservation strat-
egies, such as determining which individuals are genet-
ically important.

In this article we introduce estimators that are based
on the relationship between coancestry and relatedness,
which holds irrespective of inbreeding. In total, we
compare eight estimators expressing relatedness on a
continuous scale, with a focus on supporting conserva-
tion strategies. Monte Carlo simulations produced pop-
ulations with both pedigree and marker data. Behavior
of the estimators is studied for alternative populations,
differing in (a) the number of alleles per locus in the
base generation, (b) the number of loci used, (c) the
average relatedness compared to the base population,
(d) the population structure (either panmictic or struc-

tured), and (e) the size of a subset of individuals se-
lected to maximize the amount of genetic variation
conserved. Relatedness was estimated using simulated
marker data and analyzed against pedigree relatedness,
using both statistical and diversity criteria.

METHODS

Here we describe (1) the relatedness estimators con-
sidered, (2) the simulated population structures in
which estimators will be tested, and (3) the criteria used
to assess quality of the estimators.

Relatedness estimators: Eight relatedness estimators
are compared, which we divide into three categories
(Table 1). The first category is based on the relationship
between additive genetic relatedness (r), population ge-
netic coancestry ( f, also known as ‘‘kinship’’; Falconer
and Mackay 1996), and molecular coancestry ( fM)
( Jacquard 1983; Lynch 1988; Toro et al. 2002) and
consists of both existing and new estimators. The second
category is based on the relationship between additive
genetic relatedness and two-gene and four-gene coef-
ficients of identity in ‘‘noninbred’’ populations and con-
sists of the estimators of Lynch and Ritland (1999) and
Wang (2002). The third category consists of the estima-
tor of Queller and Goodnight (1989). All estimators
express relatedness on a continuous scale.

Milligan (2003) presented a maximum-likelihood
estimator for noninbred populations. In ‘‘inbred’’ pop-
ulations, however, finding the maximum-likelihood value
is computationally demanding because many modes of
identity by descent (IBD) occur (see Table 1 in Milligan

2003). We did, therefore, not investigate maximum-
likelihood estimators.

Category 1: Estimators based on coancestry: By defini-
tion, additive genetic relatedness (r) between diploid
individuals equals twice the coefficient of coancestry ( f,
also known as kinship; r¼ 2f ) (Malécot 1948; Falconer
and Mackay 1996). Thus, conservation strategies based
on coancestry are equivalent to strategies based on
relatedness. Coancestry of two individuals is the prob-
ability that two alleles drawn randomly, one from each
individual, are IBD, indicating that they descend from

TABLE 1

Estimators used

Abbreviation Full name/reference Equation Category

fM Molecular coancestry 4 1
UCS Unweighted corrected similarity 5 1
WCS Weighted corrected similarity 6, 7 1
WEDS Weighted equal drift similarity 6, 7, 8 1
L&R Lynch and Ritland (1999) 13, 14 2
Wang Wang (2002)a — 2
Q&G Queller and Goodnight (1989) 15, 16 3

a See http://www.zoo.cam.ac.uk/ioz/software.htm for software.
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a common ancestor (Falconer and Mackay 1996).
Coancestry and relatedness are expressed relative to a
so-called base population, in which all alleles are de-
fined as being not IBD, so that coancestry in the base
population is zero by definition (Falconer and Mackay

1996; Lynch and Walsh 1998). Alleles that are molec-
ularly identical in the base population are referred to as
alike in state (AIS). Thus, in any generation, the pro-
portion of alleles AIS is equal to expected homozygosity
in the base population. When pedigrees are known, the
founder generation is commonly used as the base pop-
ulation, so that relatedness among founders is zero by
definition. In principle, base populations serve merely
as a reference point, and the choice of the base pop-
ulation is arbitrary. However, not all choices are genet-
ically meaningful and theoretically correct, particularly
in structured populations (see discussion).

The new estimators presented in this article are based
on the approach of Eding and Meuwissen (2003).
Eding and Meuwissen (2003) developed estimators of
between-population coancestry, using observations on
molecular similarity between and within populations, in
which case the definition of the base population is more
obvious. We modify estimators of Eding and Meuwissen

(2001, 2003) to estimate coancestries between individ-
uals instead of between populations.

First we describe the theoretical background of es-
timators based on coancestry. Estimators based on coan-
cestry make use of the molecular similarity index (Sxy,l),
which refers to a single locus l in a pair of individuals xy
and is defined as the probability that two marker alleles
drawn from two individuals are molecularly identical
( Jacquard 1983; Caballero and Toro 2000; Toro
et al. 2002). In the following, Sxy,l is referred to as
‘‘similarity.’’ For locus l, similarity between individual x
having alleles a and b and individual y having alleles c
and d is defined as

Sxy;l ¼ 1
4½Iac 1 Iad 1 Ibc 1 Ibd � ð1Þ

(Li and Horvitz 1953), where indicator Iac is one when
allele a of individual x is identical to allele c of individual
y, and zero otherwise, etc. Similarity takes values of 0, 1

4,
1
2, or 1. Values of 3

4 do not occur, because the fourth
indicator must be equal to 1 when the previous three
indicators are equal to 1. Similarities of 1

4 require at
least three distinct alleles and therefore do not occur
at biallelic loci.

Similarity will vary between pairs of individuals and
will be partly due to alleles that are IBD but also due to
alleles AIS. When sl denotes the probability that two
alleles at locus l are AIS, then expected similarity be-
tween individuals x and y at locus l is

E ½Sxy;l � ¼ fxy 1 ð1 � fxyÞsl ð2aÞ

(Lynch 1988), where sl is the average similarity at locus
l in the base population, and fxy is the coancestry be-

tween individuals x and y expressed relative to this base
population. Equation 2a may be interpreted as the
probability that alleles are IBD ( fxy) plus the probability
that they are not IBD but AIS [(1 � fxy)sl]. Equation 2a
holds irrespective of inbreeding or random mating.
Rearrangement of Equation 2a gives a convenient form
resembling Wright’s F-statistics (Wright 1978):

1 � E ½Sxy;l � ¼ ð1 � fxyÞð1 � sl Þ: ð2bÞ

A so-called ‘‘method of moments estimator’’ of co-
ancestry is obtained by rearranging Equation 2a, sub-
stituting expected similarity by observed similarity, and
averaging over L loci, which gives

f̂ xy ¼
1

L

XL

l¼1

Sxy;l � sl
1 � sl

: ð3Þ

Multiplying Equation 3 by a factor of 2 yields a re-
latedness estimator (see Ritland 1996).

Equation 3 shows that a value for sl is needed for each
locus. Because allele frequencies in the base population
are usually unknown, sl needs to be estimated, which
involves two problems. First, when the average level of
AIS is estimated incorrectly, the average estimated re-
latedness of the current population will be biased. The
observed average similarity and the estimated probabil-
ity of alleles AIS together implicitly define the base
population. The lower the estimated AIS, the further
back in time this base population is set, and the higher
the average estimated relatedness of the current pop-
ulation. Vice versa, an overestimation of AIS will result
in underestimating relatedness (Toro et al. 2003). For
example, when the base population is set equal to the
current population, which is done implicitly when sl
is calculated from current allele frequencies assuming
random mating, IBD between all pairs of individuals will
be �1/2N on average, resulting in negative estimates
of relatedness for many pairs of individuals. Negative
estimates are difficult to interpret because relatedness
is defined as twice the probability that alleles are IBD.
The second problem is that, although probabilities of
alleles AIS differ per locus, expected coancestry for a
pair of individuals is equal at all neutral loci by defi-
nition. Ideally, this should be taken into account when
estimating sl for each locus. In the following we de-
scribe estimators based on Equations 2 and 3, in order
of increasing complexity.
Molecular coancestry ( fM): Toro et al. (2002; 2003) used

fM as an estimator of coancestry. Molecular coancestry
ignores alleles AIS by setting sl ¼ 0 for all loci, so that
estimated relatedness equals the average similarity over
loci multiplied by a factor of two:

r̂xy ¼
2

L

XL

l¼1

Sxy;l : ð4Þ

When founder alleles are unique, r̂xy would be an un-
biased estimator of relatedness.
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Unweighted corrected similarity: For the unweighted
corrected similarity (UCS) estimator, sl is estimated as-
suming that all distinct alleles in the current population
had equal frequencies (pl) in the base population, pl ¼
1/nl, where nl is the number of distinct alleles at locus
l observed in the current population, which is often
referred to as allelic diversity (ADl) (Fernandez et al.
2005). Consequently, the probability that alleles are AIS
equals sl ¼

P
nl
p2
l ¼ 1/nl. Estimates for UCS were ob-

tained by substituting sl ¼ 1/nl into Equation 3 and
multiplying by a factor of 2, giving

r̂xy ¼
2

L

XL

l¼1

Sxy;l � 1=nl

1 � 1=nl
: ð5Þ

The assumption that sl ¼ 1/nl ignores differences in
allele frequencies among loci and consequently does
not necessarily satisfy the condition that expected co-
ancestry of a pair of individuals is equal at all loci.
However, it is simple to apply and may turn out to be
robust.

Weighted corrected similarity: Allele frequencies vary
among loci. Consequently, different loci contribute dif-
ferently to the estimated relatedness, and the variance of
observed similarity around its expectation (Equation
2a) varies among loci. The weighted corrected similarity
(WCS) estimator uses weights (wl) to optimize the im-
pact of loci on estimated relatedness,

r̂xy ¼
2

W

XL

l¼1

wl
Sxy;l � ŝl

1 � ŝl
; ð6Þ

where W is the sum of weights wl over all loci and ŝl ¼
1=nl . When variance of an estimator varies among ob-
servations, using reciprocals of the variance as weights
minimizes the mean squared error of the estimate (Lynch
and Ritland 1999; Eding and Meuwissen 2001).
The variance of estimated coancestry is proportional
to VarðSxy;lÞ=ð1 � slÞ2 (Equation 3). An exact expression
for Var(Sxy,l) follows from the probabilities of occur-
rence of each similarity value and is given in theappendix.
A simple approximation for Var(Sxy,l) is obtained by
assuming that Iac through Ibd in Equation 1 are mutually
independent, in which case Var(Sxy,l) is proportional to
Var(I..) and we can use Var(I) to obtain weights. Since I.
is binomial, the reciprocal of weight wl for locus l having
nl alleles equals

w�1
l ¼ VarðIxy;lÞ

ð1 � ŝl Þ2 ¼
Pnl

i¼1 p̂
2
i ð1 �

Pnl
i¼1 p̂

2
i Þ

ð1 � ŝlÞ2 ; ð7Þ

where p̂i is the estimated allele frequency of allele i at
locus l in the current population. Preliminary results
showed that differences between exact or approximate
weights were negligible. Values presented in results,
therefore, are obtained using approximate weights
(Equation 7), which are much simpler than exact weights.

Weighted equal drift similarity: The UCS and WCS es-
timators use the number of distinct alleles to estimate sl
for each locus, which does not fully guarantee that co-
ancestry between a pair of individuals is equal at all loci.
The weighted equal drift similarity (WEDS) estimator
solves this problem by calculating sl so that the increase
in coancestry since the base population is equal at all
loci. The WEDS estimator starts by setting sl ¼ 0 for the
locus having the lowest expected similarity (Smin) given
its allele frequencies, Smin ¼ minð

P
n p̂

2
nÞ, where n is the

number of alleles. This defines the base population such
that estimated sl will be nonnegative for all loci. The
next step is to calculate sl at other loci as the expected
similarity at those loci, corrected with the same amount
Smin of coancestry. It follows from Equation 2b, that for
all loci

ŝl ¼
P

nl
p̂2
i � Smin

1 � Smin
: ð8Þ

Finally, coancestries are estimated using Equations 6
and 7.

Weighted log-linear model: Eding and Meuwissen (2003)
estimated average coancestries within and between pop-
ulations, by using the logarithm of Equation 2b, which
yields a linear model. Here we applied their approach on
the individual level. In contrast to the previous estimators,
this procedure obtains r̂xy and ŝl simultaneously. However,
the weighted log-linear model (WLM) estimator required
substantial computing time and yielded poor results (not
presented), which seemed to originate from the log-
transformation when Sxy,l ¼ 1.

Category 2: Estimators based on two-gene and four-gene
coefficients of identity: The second category of estimators
is based on the relationship between relatedness and
two-gene and four-gene coefficients of identity in ‘‘non-
inbred’’ populations (Lynch and Ritland 1999),

rxy ¼
fxy

2
1Dxy; ð12Þ

where fxy is the probability that, at a certain locus, a
single allele in individual x is IBD to a single allele in
individual y, and D is the probability that both alleles in
individual x are IBD to both alleles in individual y (f and
D are denoted D8 and D7 in Lynch and Walsh 1998). In
the following, we summarize the estimators of Lynch
and Ritland (1999) and Wang (2002), which are based
on Equation 12. Beware of a typo in Lynch and Ritland
(1999) and Wang (2002), which reads f ¼ 0.25 instead
of f ¼ 0.5 for half-sibs (Falconer and Mackay 1996).

Lynch and Ritland: Lynch and Ritland (1999) pro-
posed an asymmetrical estimator that is now commonly
used. Their estimator is based on regression of genotype
probabilities of the one individual on the genotype of
the other individual of a pair. A symmetrical multilocus
estimator is obtained as the weighted arithmetic mean
over loci, taking the average of the reciprocal multilocus
estimates,
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r̂xy ¼
1

2Wx

XL

l¼1

wx;l r̂xy;l 1
1

2Wy

XL

l¼1

wy;l r̂yx;l : ð13Þ

The locus-specific estimator r̂xy;l has as denominator
ð11 IabÞðpa 1 pbÞ � 4papb , where pa is the frequency of
allele a at locus l and, as in Equation 1, Iab ¼ 1 when
alleles a and b of individual x are identical and 0
otherwise. Consequently, a division by 0 occurs when
pa ¼ pb ¼ 0.5 and Iab ¼ 0, and the Lynch and Ritland
(L&R) estimator performs poorly at biallelic loci due to
rounding errors at allele frequencies close to 0.5. We
solved this problem by combining the productwx:l r̂xy;l in
Equation 13 into a single term, yielding the estimator

r̂xy ¼
1

2Wx

XL

l¼1

pbðIac 1 IadÞ1 paðIbc 1 IbdÞ � 4papb
2papb

1
1

2Wy

XL

l¼1

pdðIac 1 IbcÞ1 pcðIad 1 IbdÞ � 4pcpd
2pcpd

;

ð14Þ

whereWx andWy are the sums of all weighting factorswx,l

and wy,l, respectively. (See Lynch and Ritland 1999 for
details). Following Toro et al. (2002), we used estimated
allele frequencies in Equation 14.

Wang (2002): Using Equation 12, Wang (2002) de-
veloped an estimator that takes into account the un-
certainty of estimated allele frequencies. Briefly, the
approach of Wang consists of the following. First, for
a single locus, joint probabilities of observing a pair
of genotypes are expressed as a function of f and D.
Subsequently, resulting expressions are solved for f and
D, by treating genotype probabilities as known observa-
tions. Next, solutions for f and D are substituted into
Equation 12, giving an estimate for rxy,l. Finally, a multi-
locus estimate is obtained by using weighted least
squares, where weights are obtained assuming that f

and D ¼ 0. Further details are in Wang (2002). We im-
plemented Wang’s estimator using his Fortran code
available at http://www.zoo.cam.ac.uk/ioz/software.htm.
Category 3: The estimator of Queller and Goodnight:

Queller and Goodnight (1989) (Q&G) developed an
estimator that was originally designed for estimating
average relatedness between populations, instead of in-
dividuals. However, it can be modified to obtain a pairwise
asymmetric estimator for individuals, which is com-
monly used nowadays (Lynch and Ritland 1999; Toro
et al. 2002; Wang 2002; Milligan 2003). With Q&G,
relatedness of individual x with individual y at locus l is

r̂xy;l ¼
0:5ðIac 1 Iad 1 Ibc 1 IbdÞ � pa � pb

11 Iab � pa � pb
: ð15Þ

A number of alternative implementations of Equation
15 are possible. We obtained relatedness by averaging
the reciprocal estimates over L loci,

r̂xy ¼
P

L
l¼1 r̂xy;l 1 r̂yx;l

2L
; ð16Þ

where L is the number of loci. For biallelic loci, Equa-
tion 15 is undefined when individual x is heterozygous,
because it results in a division by zero. The Q&G esti-
mator was therefore omitted with biallelic loci.
Simulated populations: To compare estimators, pop-

ulations with several discrete generations were simu-
lated. The following two sections describe the standard
population and five alternatives. Table 2 summarizes
population parameters.
Standard population: The standard population was

panmictic and was bred from a base generation of 10
male and 50 female founders. Twenty marker loci were
simulated. Each locus had a random number of alleles
(n), ranging from 2 through 8. At each locus, alleles were
sampled with a probability of 1/n for each allele, so that,

TABLE 2

Simulated standard population and alternatives

Alleles Loci Generations Structureb Capacitye

Alternativea 2 10 5 Panmictic 100
5 20 10 Structured Ac 10
2–8 50 15 Structured Bd

10 100 20
2–18

Unique

Values for the standard population are in italics.
a Input parameters were varied one at a time, and other parameters were as in the standard population.
b The panmictic population had 10 male and 50 female parents until generation 10. The structured popu-

lation had 10 male and 50 female parents until generation 5, after which it split into two subpopulations.
c Ninety individuals were sampled from the subpopulation bred from 10 male and 50 female parents, and 10

were sampled from a subpopulation bred from 8 male and 40 female parents.
d Ten individuals were sampled from the subpopulation bred from 10 male and 50 female parents, and 90

were sampled from a subpopulation bred from 8 male and 40 female parents.
e Capacity denotes the number of individuals that can be conserved.
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on average, alleles at a particular locus had the same fre-
quency in the base generation. Alleles were codominant,
autosomal, unlinked, neutral, without mutation, and
followed Mendelian inheritance.

Ten discrete generations of 400 individuals were bred,
using random mating and selection of 10 male and 50
female individuals as parents of the next generation.
The last generation consisted of 100 individuals, which
were genotyped for all 20 loci. Relatedness between all
pairs of individuals was estimated from the marker data,
for each of the estimators described above. In addition,
relatedness between individuals was calculated from the
pedigree, using the tabular method (Emik and Terrill
1949), and was considered to be the true value. Finally,
quality of estimators was assessed by comparing esti-
mated with pedigree relatedness, using both statistical
and diversity criteria (see below).

Alternatives: The effect of the following five variables
on quality of estimators was investigated (Table 2): (a)
the number of alleles per locus in the base generation;
(b) the number of loci; (c) the average level of relat-
edness in the current generation, by varying the number
of generations simulated; (d) a structured population;
and (e) a limitation to the number of individuals that
could be used in a conservation program, which was
either all 100 or only the genetically most important
10 (see Diversity criterion). Alternative d was included
to investigate quality of estimators in structured pop-
ulations. The structured population had 10 male and 50
female parents until generation 5, after which it split
into two subpopulations, of which one was bred with 8
male and 40 female parents and the other with 10 male
and 50 female parents. Two final generations of 100
individuals were simulated, and 90 individuals were
sampled from one and 10 from the other population
or vice versa. Alternative e resembles the situation in
practice, where conservation funds are limited. For each
alternative, one parameter was varied at a time, and
other parameters were as in the standard population.
One hundred replicates were run per alternative, and
results were averaged over replicates.

Criteria: Two types of criteria were used: (1) statistical
criteria that compared estimated with pedigree related-
ness and (2) a diversity criterion that measures the
genetic variation conserved by using an estimator in
conservation strategies.

Statistical criteria: Four statistical criteria were used:
(1) the average bias, being the difference between aver-
age estimated relatedness and average pedigree related-
ness (bias); (2) the regression coefficient of estimated
relatedness on pedigree relatedness (b1), which is a
measure for bias in the estimated differences in relat-
edness among pairs of individuals; (3) the regression
coefficient of pedigree relatedness on estimated relat-
edness (b2), which indicates whether estimated relat-
edness yields an ‘‘unbiased’’ prediction of pedigree
relatedness, which is important in practice because con-

servation decisions are based on the estimates, not on
the true values; and (4) the correlation between esti-
mated and pedigree relatedness (r), which measures
the proportion of the variance in pedigree relatedness
explained by the estimator. Relatedness of individuals
with themselves was excluded from the calculation of
these criteria.

Diversity criterion: Although statistical criteria are in-
formative for the quality of estimators, they do not
directly reveal the amount of genetic diversity conserved
by using an estimator in practice. In addition to sta-
tistical criteria, therefore, we develop a criterion that
evaluates the genetic diversity conserved when selection
decisions are based on estimated relatedness.

In this section we argue that relatedness is a key factor
in conservation. An important aspect in conservation
genetics is to minimize inbreeding levels and maximize
genetic diversity (Ballou and Lacy 1995; Frankham
et al. 2002). Here we interpret genetic diversity as ad-
ditive genetic variance, for the following reasons. Fisher’s
fundamental theorem of natural selection (Fisher 1958),
stating that the rate of increase in fitness equals the
additive genetic variance of relative fitness, shows that
adaptive potential of populations should be measured
by their additive genetic variance for fitness. In random
mating populations, additive genetic variance in gener-
ation t for any trait equals

VA;t ¼ ð1 � �FtÞVA;0; ð17Þ

where �Ft is the average inbreeding level in the popula-
tion in generation t, measured relative to the base gen-
eration, and VA,0 is the additive genetic variance in the
base generation (Falconer and Mackay 1996). With
random mating, the inbreeding level in the next gen-
eration, �Ft11, equals the average coancestry of the cur-
rent population and thus half the average relatedness
of the current population (r ¼ 2f ). Thus, maximizing
genetic diversity and minimizing inbreeding in gener-
ation t 1 1 is identical to minimizing relatedness in
generation t. In conclusion, therefore, conservation de-
cisions within a species should aim at minimizing the
average additive genetic relatedness in that species.
Consequently, our diversity criterion measures the ef-
ficiency of estimators when the objective is to minimize
average relatedness in a group of individuals.

With random mating, average relatedness in the next
generation is given by Meuwissen (1997),

�r ¼ c9Ac; ð18Þ

where c is a vector of proportional contributions of
individuals to the next generation, so that elements of
c sum to one, and A is a matrix of additive genetic
relatedness between all individuals, including related-
ness of individuals with themselves. Average relatedness
among parents, and thus the inbreeding level in the
next generation, can be decreased or increased by
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varying the contributions of individuals (c). Thus av-
erage relatedness can be minimized by finding an opti-
mum contribution vector co that minimizes c9Ac, which
is given by

co ¼ A�11

19A�11
ð19Þ

(Meuwissen 1997; Eding et al. 2002), where 1 is a
column vector of ones. The matrix of additive genetic
relationships has to be estimated from marker data. The
amount of genetic diversity conserved by using esti-
mated optimal contributions ( ĉo) will depend on the
estimator used. To obtain estimated optimum contribu-
tions, we substituted the matrix of pedigree relatedness
by the matrix of estimated relatedness ( Â) in Equation
19. When negative contributions were obtained, the
most negative contribution was set to zero and optimal
contributions were recalculated, until all contributions
were nonnegative. In alternative e the lowest contribu-
tion was set to zero and optimal contributions were re-
calculated, until all contributions were nonnegative or
only 10 contributions were left.

We evaluated the result on two scales. On the first
scale, the diversity criterion equals the proportion of
additive genetic variance conserved relative to the base
generation,

He ¼ 1 � 1
2ĉo9Aĉo; ð20Þ

which is derived by combining Equations 17 and 18.
Note that, in Equation 20, A refers to relatedness cal-
culated from the pedigree. With random mating, He

equals expected heterozygosity in a population with
estimated optimum contributions of individuals, ex-
pressed as a proportion of heterozygosity in the base
generation. On the second scale, the diversity criterion
equals the number of founders (Nge) that would have
the same average coancestry (and thus the same additive
genetic variance) as the population obtained using esti-
mated optimum contributions. Average coancestry among
N founders ¼ 1/(2N ), so that

Nge ¼ 1

ĉo9Aĉo
: ð21Þ

Caballero and Toro (2000) referred to Nge as the
number of founder genome equivalents. Equation 21 is
an expression on the scale of effective population size,
since it equals Nge ¼ 1=ð2 �f Þ.

In contrast to the statistical criteria, relatedness of
individuals with themselves was included in Â and was
estimated by using y¼ x in the relevant expressions for r̂xy.

RESULTS

Comparison of estimators on the standard popula-
tion: Table 3 gives results for the standard population.
Average pedigree relatedness in the simulated standard
population in the 10th generation was 0.282. With fM

and Q&G, average estimated relatedness deviated con-
siderably from the pedigree average, as reflected by bias.
Bias depends on the definition of the base population,
which is essentially arbitrary (see discussion). Bias,
therefore, is not an important quality criterion and is
not presented further.

The regression of estimated relatedness on pedigree
relatedness (b1) was close to one for most estimators,
except for fM and Q&G. Results indicate a relationship
between bias and b1, showing that b1 is underestimated
when bias is positive. The fM estimator performed best
for the regression of pedigree on estimated relatedness
(b2), but in all cases b2 was substantially less than one.
The correlation between estimated and pedigree re-
latedness (r) ranged from 0.50 (Q&G) to 0.60 (L&R),
indicating that differences between estimators are rel-
atively small. When pedigree information was known, the
use of optimum contributions maintained 3.69 founder
genome equivalents (Nge). Application of the estima-
tors maintained between 2.82 (Q&G) and 3.33 (L&R)
founder genome equivalents, which are 76 and 90% of
the maximum value obtained with known pedigree.
When quality of estimators is judged by the correlation
and the number of founder genome equivalents, the
following order is obtained: L&R performs best, fol-
lowed by the group of WCS, WEDS, and Wang; next
comes fM; then UCS; and finally Q&G.
Number of alleles: Table 4 summarizes results for

different numbers of alleles per locus. The number of
distinct alleles in the current generation was reduced
by almost 90% when alleles in the base generation were
unique, whereas no reduction was observed when the

TABLE 3

Comparison of estimators in the standard population

Estimator Biasa b1b b2c rd He
e Nge

f

Pedigree 0 1 1 1 0.86 3.69
fM 0.43 0.76 0.40 0.55 0.84 3.10
UCS �0.02 1.02 0.27 0.52 0.84 3.08
WCS �0.08 1.04 0.32 0.57 0.84 3.17
WEDS 0.10 0.94 0.35 0.57 0.84 3.15
L&R �0.24 1.01 0.35 0.60 0.85 3.33
Wang �0.28 1.16 0.28 0.57 0.84 3.17
Q&G �0.96 1.66 0.15 0.50 0.82 2.82

Results are averages of 100 replicates. Standard errors of
results were #0.01.

a Estimated relatedness minus pedigree relatedness.
b The regression of estimated relatedness on pedigree

relatedness.
c The regression of pedigree on estimated relatedness.
d The correlation between estimated relatedness and pedi-

gree relatedness.
e The expected heterozygosity with estimated optimum con-

tributions, Equation 19.
f The number of founder genome equivalents with opti-

mum contributions, Equation 20.
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base generation had only 2 alleles per locus. As ex-
pected, the correlation between estimated and pedigree
relatedness increased with the number of alleles. The
benefit of increasing the number of alleles was smaller
when there were already many alleles. On average, the
correlation increased by 50% when the number alleles
increased from 2 to 5, whereas the correlation increased
by 16% when the number of alleles increased from 5 to
10. The L&R estimator had the highest correlation for
all schemes considered. WEDS, WCS, and Wang showed
nearly identical correlations.

It follows from Tables 3 and 4 that Q&G and UCS had
the poorest results, whereas WCS and WEDS had nearly
identical results. This trend was observed in all alter-
natives. No further results, therefore, are presented for
UCS, Q&G, and WCS.

Number of loci: Table 5 summarizes results for
schemes with different numbers of loci. The number
of loci did not affect the regression coefficient of es-
timated relatedness on pedigree relatedness (b1). In
contrast, the regression coefficient of pedigree on es-
timated relatedness (b2) increased considerably when
the number of loci increased, but still deviated clearly
from unity. The correlation increased by �30% when
going from 10 to 20 loci, by �30% when going from 20
to 50 loci, and by �14% when going from 50 to 100 loci.
The L&R estimator showed the highest correlation
and maintained the most genetic variation, whereas fM
showed the lowest correlation and maintained the least
genetic variation. WEDS performed slightly better than
Wang, but differences were small.

Average level of relatedness: As expected, an in-
crease in the number of generations increased pedigree
relatedness and decreased the number of alleles surviv-
ing from the base to the current generation. Performance
of estimators decreased in correspondence with the
decreasing number of alleles (results not shown). Apart
from an effect via the number of alleles, there was no effect
of the level of relatedness on performance of estimators.

Structured populations: Table 6 summarizes results
for the structured population for two sampling schemes.
In scheme A, 90 individuals were sampled from the
subpopulation bred from 10 and 50 parents and 10
from the subpopulation from 8 and 40 bred parents.

TABLE 4

Correlation between pedigree and estimated relatedness for a varying number of alleles in base populations

No. alleles: 2 2–8 5 2–18 10 120

Average no.: 2.00 4.56 4.71 6.71 7.45 13.3
Estimator % alleles left: 100 91 94 67 75 11

fM 0.37 0.54 0.57 0.62 0.66 0.77
UCS 0.37 0.52 0.57 0.60 0.65 0.77
WCS 0.37 0.56 0.58 0.65 0.67 0.79
WEDS 0.38 0.57 0.59 0.65 0.67 0.79
L&R 0.41 0.63 0.65 0.71 0.73 0.81
Wang 0.35 0.57 0.58 0.65 0.67 0.79
Q&G —a 0.49 0.52 0.60 0.65 0.78

Results are averages of 100 replicates. Standard errors of results were #0.01.
a Q&G is not applicable to biallelic loci.

TABLE 5

Comparison of estimators for a varying number of loci

Estimator b1a b2b rc Nge
d

10 loci Pedigree 1 1 1 3.70
fM 0.76 0.23 0.42 2.86
WEDS 0.92 0.21 0.44 2.93
L&R 1.04 0.23 0.49 3.34
Wang 1.15 0.17 0.43 2.83

20 loci Pedigree 1 1 1 3.69
fM 0.76 0.39 0.55 3.10
WEDS 0.94 0.35 0.57 3.17
L&R 1.03 0.39 0.63 3.50
Wang 1.16 0.28 0.57 3.06

50 loci Pedigree 1 1 1 3.67
fM 0.75 0.68 0.72 3.30
WEDS 0.95 0.58 0.74 3.35
L&R 1.02 0.60 0.78 3.55
Wang 1.16 0.46 0.73 3.26

100 loci Pedigree 1 1 1 3.70
fM 0.76 0.90 0.82 3.44
WEDS 0.97 0.73 0.84 3.48
L&R 1.02 0.73 0.86 3.59
Wang 1.16 0.59 0.83 3.39

Results are averages of 100 replicates. Standard errors of
results were #0.01.

a The regression of estimated relatedness on pedigree
relatedness.

b The regression of pedigree on estimated relatedness.
c The correlation between estimated relatedness and pedi-

gree relatedness.
d The number of founder genome equivalents with opti-

mum contributions, Equation 20.
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In scheme B, the sampling of individuals was reversed.
With scheme A, average relatedness was 0.26 and av-
erage inbreeding was 0.13. On average, correlations be-
tween estimated and pedigree relatedness had the same
level as in the standard population. When judged by the
correlation, estimators performed equally well. When
judged by the number of founder genome equivalents,
however, Wang showed poorest results and L&R highest,
indicating that ranking of estimators depends on the
criterion used. With scheme B, average relatedness was
0.38 and average inbreeding was 0.19. In contrast to
the panmictic standard population and scheme A, L&R
had the lowest correlation and lowest founder genome
equivalents, whereas WEDS had the highest founder
genome equivalents.

Use in conservation: Table 7 shows the number of
founder genome equivalents conserved in sets of either
10 or all 100 individuals, having either optimal or equal
contributions of individuals, and for the panmictic
standard population or a structured population.

In the standard population, the number of founder
genome equivalents conserved using optimal contribu-
tions calculated from pedigree relatedness was only a
little higher than when using equal contributions (3.69
vs. 3.56). In standard populations, variation in related-
ness among pairs of individuals is relatively small, and
the benefit of using optimum contributions is limited
when the set contains all individuals. Surprisingly, when
all 100 individuals were included, the use of optimum
contributions based on estimated relatedness conserved
fewer founder genomes than equal contributions did.
Hence, conservation strategies based on estimated re-
latedness of limited accuracy can actually reduce the ge-
netic variation conserved, instead of increasing it. When
sets consisted of only 10 individuals, sets of optimum
contributions always had higher founder genome equiv-
alents than sets with equal contributions.

In the structured population, the number of founder
genome equivalents conserved using optimal contribu-
tions calculated from pedigree relatedness was higher
than when using equal contributions with scheme A
(4.23 vs. 3.85) and substantially higher with scheme
B (3.82 vs. 2.61), indicating that optimizing contribu-
tions is more important in structured than in standard
populations When only 10 individuals were included in
the set, the use of optimal contributions calculated from
estimated relatedness always conserved more founder
genomes then the use of equal contributions. Scheme B
always conserved more founder genomes, irrespective

TABLE 6

Comparison of estimators in structured populations

Structured Aa Structured Bb

Estimator b1c b2d re Nge
f b1c b2d re Nge

f

Pedigree 1 1 1 4.23 1 1 1 3.82
fM 0.75 0.43 0.57 3.52 0.74 0.65 0.70 3.22
WEDS 0.90 0.38 0.58 3.58 0.86 0.54 0.68 3.25
L&R 0.88 0.39 0.59 3.84 0.65 0.47 0.55 2.96
Wang 1.15 0.31 0.59 3.45 1.13 0.42 0.69 3.13

Results are averages of 200 replicates (instead of 100). Standard errors of results were #0.01 (except for Nge).
a Ninety individuals were sampled from the subpopulation bred from 10 male and 50 female parents, and 10 were sampled from

a subpopulation bred from 8 male and 40 female parents.
b Ten individuals were sampled from the subpopulation bred from 10 male and 50 female parents, and 90 were sampled from a

subpopulation bred from 8 male and 40 female parents.
c The regression of estimated reletedness on pedigree relatedness.
d The regression of pedigree on estimated relatedness.
e The correlation between estimated and pedigree relatedness.
f The number of founder genome equivalents with optimum contributions, Equation 20. Standard errors of results were #0.02.

TABLE 7

Number of founder genome equivalents in sets of either 10 or
100 individuals, in a panmictic or structured population

Panmictic Structured Aa Structured Bb

Individuals in set 100 10 100 10 100 10
Pedigree 3.69 3.17 4.23 3.52 3.82 3.39
Equalb 3.56c 2.78d 3.85c 2.89d 2.61c 2.17d

fM 3.12 2.88 3.52 3.20 3.22 3.03
WEDS 3.17 2.90 3.58 3.21 3.25 3.02
L&R 3.51 2.91 3.84 3.13 2.96 2.62
Wang 3.07 2.87 3.45 3.18 3.13 2.97

Results are averages of 200 replicates (instead of 100). Stan-
dard errors of results were #0.02.

a Ninety individuals were sampled from the subpopulation
bred from 10 male and 50 female parents, and 10 were sam-
pled from a subpopulation bred from 8 male and 40 female
parents.

b Ten individuals were sampled from the subpopulation
bred from 10 male and 50 female parents, and 90 were sam-
pled from a subpopulation bred from 8 male and 40 female
parents.

c All 100 individuals have equal contributions to the set.
d Ten random individuals have equal contributions to the set.
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of the number of individuals in the set, illustrating the
importance of the sampling procedure.

Differences between estimators are in agreement with
results in Tables 3–6. The L&R estimator performed
best in the standard population, whereas fM and WEDS
performed best in the panmictic structured population.

DISCUSSION

We investigated quality of relatedness estimators in
simulated populations with many generations of pedi-
gree. The estimators UCS and Q&G showed lowest
accuracy. Differences among fM, WCS, WEDS, Wang,
and L&R were relatively small, and ranking of estimators
depended on the population structure. In contrast to
previously published results (Wang 2002), the L&R es-
timator clearly performed better than the Wang esti-
mator in panmictic populations. The WEDS and fM
estimators performed best in structured populations.
The difference between UCS and WCS showed that
weighting the impact of loci plays a significant role in
relatedness estimation. Average level of relatedness in
the population did not affect quality of estimators.
When interest is not in conservation, but merely in
point estimates for relatedness between pairs of indi-
viduals, quality of estimators may be judged by the cor-
relation between true and estimated relatedness. When
judged by the correlation, L&R performs best in pan-
mictic populations and WEDS, fM, and Wang in struc-
tured populations. Fernandez et al. (2005) argued that
minimizing simple molecular coancestry ( fM) is the op-
timum way to maximize diversity, which would imply
that other relatedness estimators are redundant. Our
results show, however, that there is a clear benefit of
using more sophisticated relatedness estimators (see,
e.g., L&R vs. fM in Table 5). In structured populations,
sets of estimated optimum contributions had in most
cases more diversity than sets of equal contributions of
individuals. Surprisingly, in panmictic populations, sets
of optimum estimated contributions sometimes had less
diversity than sets with equal contributions of individu-
als, showing that estimates of relatedness can be useful
in conservation programs, but should be used with caution.

L&R vs. Wang: In contrast to results presented by
Wang (2002), the L&R estimator performed consis-
tently better than the Wang estimator in panmictic pop-
ulations, irrespective of the numbers of alleles and loci.
We identified three reasons for this discrepancy:

1. We have used a modified version of the L&R
estimator that avoids the numerical rounding errors
that may occur when pa ¼ pb ¼ 0.5 or when estimates
‘‘blow up’’ when they approach this value. Wang

(2002) noted this problem, but did not correct for it.
We observed that the L&R estimator improved
considerably when calculating the product of re-
latedness and weight in a single step (Equation 14).

However, with the exception of biallelic loci, L&R
also performed better than Wang when relatedness
and the weight were calculated separately, indicating
that this cannot be the only source of differences.

2. Wang (2002) presented results only for close rela-
tives of a single type at a time, nonrelatives, full-sibs,
or half-sibs. In reality, however, pedigree related-
ness is unknown so that it is impossible to a priori
distinguish between different types of relatives. Ped-
igree relatedness will take many distinct values, since
all real populations have many generations of pedi-
gree. It is not possible, therefore, to judge perfor-
mance of the Wang estimator in general populations
from results presented in Wang (2002). In our study,
we considered populations with general relationships
and evaluated estimators by the correlation between
pedigree and estimated relatedness, without a priori
distinguishing between categories of relatives.

3. Wang (2002) observed that the L&R estimator per-
formed better for ‘‘unrelated’’ individuals (i.e., not sibs
or parent–offspring), which will be the majority even
in small populations. In contrast to current belief,
therefore, we find the L&R estimator to be superior
to the Wang estimator in panmictic populations.
Furthermore, the L&R estimator is substantially
simpler.

Bias and base population: For most estimators, aver-
age estimated relatedness differed substantially from
average pedigree relatedness, but the difference (bias)
was unrelated to the accuracy (r) of estimators, illus-
trating that the choice of a base population is arbitrary
in a panmictic population. Bias depends on the way es-
timators define the base population or, in other words,
on how they divide the average observed similarity into a
proportion due to IBD vs. a proportion due to AIS. The
L&R and Wang estimators set the probability of AIS
equal to the expected homozygosity in the current pop-
ulation, which implicitly defines the current generation
as the base population. Average estimated relatedness is
therefore close to zero for Wang and L&R, bias is neg-
ative, and many estimates are negative. Negative esti-
mates may seem confusing, because relatedness equals
twice the probability that alleles are IBD, which cannot
be negative by definition. However, negative estimates
can easily be scaled to positive values using an equation
similar to Equation 8, which solves the interpretation
problem (see also Eding and Meuwissen 2003). Alter-
natively, relatedness may be interpreted as a measure
of additive genetic covariance between individuals, in
which case below average values indicate individuals
with dissimilar breeding values.

Regression of estimated relatedness on pedigree re-
latedness: The regression coefficient of estimated relat-
edness on pedigree relatedness (b1) is a measure of bias.
Unbiasedness, i.e., E ½r̂xy j rxy� ¼ rxy, requires that b1 ¼ 1.
(Note that the criterion bias refers to average relatedness,
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whereas b1 refers to pairs of individuals.) There was a
clear relationship between bias and b1; positive bias was
accompanied by underestimation of b1 (Table 3). This
result is due to the population genetic relationship
between absolute differences among coancestries of
pairs of individuals and the average coancestry level of
a population. Equation 3 illustrates this phenomenon.
Positive bias, i.e., overestimation of sl, reduces absolute
differences between coancestries because similarities
are scaled by 1 � sl. Alternatively, the relationship can
be understood by considering coancestry as a function
of generation number (t), ft ¼ 1 � ð1 � Df Þt , which is a
function starting at zero at t ¼ 0 and asymptoting to
1 when t / ‘ (Falconer and Mackay 1996). At low
values of ft the function is steep and differences in
coancestries within a generation are large, whereas at
high ft the function is flat and differences are small.
Thus the relationship between bias and b1 is a direct
consequence of standard population genetic theory, and
estimators that are consistent with population genetic
theory will always show this relationship.

Regression of pedigree on estimated relatedness:
The regression coefficient of pedigree on estimated
relatedness (b2) may be interpreted as the reciprocal
of a usual measure of unbiasedness, i.e., E ½rxy j r̂xy� ¼ r̂xy
requires thatb2¼ 1. (Note that rxy is treated as a random
variable here.) In conservation practice, selection of
breeding individuals relies on estimated relatedness;
pedigree relatedness is unknown. To avoid overestima-
tion of the genetic diversity conserved, it is important
that estimated relatedness is an unbiased predictor of
pedigree relatedness, which requires that b2 ¼ 1.
However, b2 ¼ Covðr ; r̂ Þ=Varðr̂ Þ ¼ 1 requires that
sr̂ ¼ rsr , indicating that estimates should have lower
variance than pedigree values. As a consequence,
b1 ¼ Covðr ; r̂ Þ=VarðrÞ ¼ rsr̂=sr ¼ r2. Therefore, when
b2 ¼ 1, b1 must equal the square of the correlation
between pedigree and estimated relatedness. Conse-

quently, irrespective of the estimator used, b1 ¼ b2 ¼ 1
can be attained only when r¼ 1, which requires data on
many loci. All estimators had values for b2 substantially
,1 (Table 3), indicating that the amount of genetic
diversity conserved will be overestimated when select-
ing least-related individuals on the basis of estimated
relatedness.

To investigate the effect of b2 on the number of
founder genome equivalents conserved, we rescaled
relatedness estimates to obtain b2 ¼ 1. First, we derived
an empirical relationship between b2 and the amount
of information and next regressed estimated related-
ness to its mean, using predicted b2. The empirical
prediction of b2 was

b̂2 ¼ 0:079 ½lnðno: lociÞ � 1� ½lnðno: allelesÞ1 1:22�:
ð22Þ

For the WEDS estimator, Equation 22 explained 99% of
the variation in b2 observed in the schemes analyzed
(Table 2). We regressed relatedness estimates to their
mean using r̂ *

xy ¼ �̂r xy 1 b̂2ðr̂xy � �̂r xyÞ, which was applied
separately to relatedness between individuals and to
relatedness of individuals with themselves. Finally, Nge

was calculated using r̂ *
xy instead of r̂xy. Results showed a

clear increase in Nge, in particular in the panmictic
population with a conservation capacity of 100 individ-
uals (Table 8 vs. Table 7). Furthermore, as indicated by
the Nge values for equal vs. estimated optimal contribu-
tions, the use of r̂ *

xy almost completely removed the loss
of diversity that occurred when using r̂xy with limited
accuracy. Those results show that, when conservation
decisions are based on estimated relatedness, the re-
verse of unbiasedness, i.e., E ½rxy j r̂xy� ¼ r̂xy, may be more
important than the usual definition, E ½r̂xy j rxy� ¼ rxy. Re-
gression of relatedness estimates to their mean will be
particularly relevant when the amount of marker in-
formation differs between individuals, in which case

TABLE 8

Number of founder genome equivalents in sets of either 10 or 100 individuals, in a panmictic or structured population
after a priori b2 correction

Panmictic Structured Aa Structured Bb

Individuals in set 100 10 100 10 100 10
Pedigree 3.69 3.17 4.23 3.52 3.82 3.39
Equalb 3.56 2.78 3.85 2.89 2.61 2.17
fM 3.47 (11) 2.93 (2) 3.93 (12) 3.24 (1) 3.45 (7) 3.09 (2)
WEDS 3.49 (10) 2.93 (1) 3.95 (10) 3.25 (1) 3.41 (5) 3.06 (1)
L&R 3.58 (2) 2.93 (1) 3.93 (2) 3.19 (2) 2.89 (�2) 2.69 (3)
Wang 3.45 (12) 2.91 (1) 3.92 (14) 3.23 (2) 3.36 (7) 3.00 (1)

Results are averages of 200 replicates (instead of 100). Standard errors of results were #0.02. Numbers in parentheses show
percentage change due to b2 correction.

a Ninety individuals were sampled from the subpopulation bred from 10 male and 50 female parents, and 10 were sampled from
a subpopulation bred from 8 male and 40 female parents.

b Ten individuals were sampled from the subpopulation bred from 10 male and 50 female parents, and 90 were sampled from a
subpopulation bred from 8 male and 40 female parents.
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individuals with little information would be selected
too often because they have higher variance of their
estimates.

As expected, the correlation between pedigree and
estimated relatedness was not affected by regressing
estimates to the mean. Consequently, for the purpose
of conservation, the correlation between pedigree and
estimated relatedness is not the optimal criterion for
quality of an estimator, since results in Table 8 are clearly
better than those in Table 7. A criterion such as the
number of founder genome equivalents, which directly
reflects the amount of diversity conserved, is to be
preferred for conservation purposes.

Although Equation 22 was obtained using the WEDS
estimator, results in Tables 3, 5, and 6 show that the
relationship between b2 and the numbers of alleles and
loci is nearly identical for the L&R estimator and very
similar for fM. Equation 22 is, therefore, not restricted to
the WEDS estimator, but useful in general. Equation 22
is a simple but rather crude two-step method to regress
estimates to their mean value depending on the amount
of information. A statistically more appropriate method
is to treat relatedness as a random, instead of fixed,
variable when estimating relatedness. However, such
models involve the estimation of the variance of re-
latedness, which may not be trivial.

Diversity criterion with nonrandom mating and
selection: The diversity criterion used in this study
relates to the additive genetic variance in an unselected
random-mating population; i.e., 1 � c9Ac equals the
additive genetic variance in the sampled population,
expressed as a proportion of that in the founder pop-
ulation, assuming that the sampled population is gen-
erated by random mating and that there has been
no selection between the founder and current genera-
tion. Most actual populations, however, undergo either
natural or artificial selection and show nonrandom mat-
ing, which raises questions about the utility and gen-
erality of our criterion. In our opinion, however, the
additive genetic variance under random mating and
no selection is a useful measure for diversity, also when
the actual population is selected or shows nonrandom
mating. The reasoning is as follows. By definition, the
additive genetic variance is the variance of the breeding
values. In diploids, this variance is composed of two com-
ponents: (1) the additive genetic variance with Hardy–
Weinberg and linkage equilibrium, sometimes referred
to as the genic variance (Wei et al. 1996), which depends
solely on the allele frequencies, and (2) a deviation from
the genic variance that depends on the way in which
alleles at all loci are combined within individuals. This
deviation is due to nonrandom mating causing devia-
tions from Hardy–Weinberg equilibrium and to muta-
tion, selection, and drift causing linkage disequilibrium.
Part of the total linkage disequilibrium is generated by
selection in the short term and is not related directly to
linkage, but occurs between any two loci affecting the

selected trait. It is, therefore, also known as gametic-
phase disequilibrium (Bulmer 1971).

In principle, deviations from Hardy–Weinberg and
gametic-phase equilibrium are transient, in contrast to
changes in allele frequency and linkage disequilibrium
due to tight linkage. With two sexes, Hardy–Weinberg
equilibrium is restored in two generations of random
mating. Positive deviations from Hardy–Weinberg equi-
librium, e.g., due to obligatory selfing, increase the ad-
ditive genetic variance, but it is unclear what value to
attribute to such additional variance, since utilization of
it involves between-family selection causing rapid loss of
diversity. Furthermore, when selection ceases, the ga-
metic phase disequilibrium asymptotes quickly to zero
(Bulmer 1971). Although natural selection will never
cease, it probably generates little gametic-phase disequi-
librium because components of fitness have low herita-
bility. Hence, gametic-phase disequilibrium is mainly a
phenomenon of artificial selection. Thus, in the long
run, it is mainly the genic variance that represents true
genetic diversity originating from the allelic variety.
Transient components of the additive genetic variance
should not be included in a diversity criterion. In our
opinion, therefore, a diversity criterion based on addi-
tive genetic variance in an idealized population is still
useful when real populations deviate from that situation.

Population structure: Populations in need of conser-
vation predominantly have fragmented structures. In
agriculture, species are generally composed of breeds
and relatedness within breeds is much higher than that
between breeds. Within rare breeds, fragmentation (over
different countries, for example) is common as well
(FAO 2000). This is logical because many domestic
species are kept in herds and breeding programs are
often organized nationally. Similarly, populations in zoos
frequently descend from groups from founders derived
from different locations (see EAZA in Situ Conservation
Database: http://www.eaza.net). Furthermore, human-
induced habitat loss and fragmentation are recognized
as the primary causes of loss of biodiversity (Ballou and
Lacy 1995; Frankham et al. 2002). Hence, structured
populations are the rule and panmictic populations the
exception.

Results of the structured population with scheme B in
Table 6 and results of Toro et al. (2002) indicate that
estimators based on two- and four-gene coefficients of
identity are sensitive to the population structure . This
result is probably because the basic relationship un-
derlying these estimators (Equation 12) is valid only in
the absence of inbreeding. For example, the maximum
value for relatedness in Equation 12 is 1, whereas in
inbred populations, relatedness of an individual with
itself is 1 1 F, which has a maximum of 2. Furthermore,
in the derivation in Wang (2002), the genotype pairs
AiAi–AiAi and AiAj–AiAj are grouped into a single cat-
egory that has a similarity value of 1 (according to the
definition in Wang 2002), which is correct on the basis
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of Equation 12. For example, in the hypothetical situ-
ation that founder alleles are unique, both genotypes
havef¼ 0,D¼ 1, and r¼ 1. However, from a population
genetic point of view, those genotype pairs are clearly
different: AiAi–AiAi has f¼ 1 and r¼ 2, whereas AiAj–AiAj

has f ¼ 1
2 and r ¼ 1.

When noting that the basic equation underlying the
L&R and the Wang estimators is invalid with inbreeding,
the good performance of those estimators in inbred
panmictic populations seem surprising at first. However,
as argued above, the definition of a base population is
arbitrary with a panmictic population. Occurrence of
inbreeding, therefore, does not present a problem with
random mating, because inbreeding coefficients can be
shifted to approximately zero by redefining the base
population. The L&R and Wang estimators ‘‘remove’’
inbreeding by determining the probability that alleles
are AIS on the basis of observed allele frequencies,
which defines the base population to be equal to the
current population. The same would happen if sl in
Equation 3 were set to the currently expected homozy-
gosity, as in Ritland (1996). In a structured population,
however, removing inbreeding by using the current
population as the base population causes negative (true)
coancestries between individuals in different subpopu-
lations, which is theoretically incorrect. In structured
populations, therefore, inbreeding cannot be removed
by shifting the base population. We believe that the
inability to fully remove inbreeding is the basis of the
poor performance of the L&R estimator in scheme B of
the structured population. The high number of founder
genome equivalents of L&R with scheme A in Table 7
is probably because scheme A resembles a panmictic
population, since the low number of sampled individu-
als from the high-drift population is in balance with a low
contribution of diversity in this sample. The b2 correc-
tion hardly improves founder genome equivalents for
L&R, whereas it improves all other estimators (Table 8).

Our results show that benefits of using relatedness
estimates in conservation programs are substantially
larger in structured than in panmictic populations
(Table 7; Fernandez et al. 2005). What is needed in
practice, therefore, is an estimator that can be applied
to general populations. The WEDS estimator is based
on: (1) the relationship between relatedness and co-
ancestry (r ¼ 2f ) and (2) the relationship between mo-
lecular similarity and coancestry (Equation 2a). Both
relationships are valid irrespective of the population
structure (Lynch 1988; Falconer and Mackay 1996)
and provide the theoretical basis for an estimator of
both within- and between-population relatedness (Eding
and Meuwissen 2001).

We obtained the WEDS estimator using a simple
statistical approach, in which expected similarity was
equated to observed similarity (Equation 3). Good re-
sults of the L&R estimator in panmictic populations
indicate that estimators can be improved by using a

more advanced statistical approach, such as conditional
probabilities of observing genotypes, rather than simi-
larity values. Hence, a promising approach to develop
an estimator that performs better in both panmictic and
structured populations is to follow the statistical ap-
proach of Lynch and Ritland (1999), but using r ¼
2f and the similarity definition of Equation 1 as a start-
ing point (see also Toro et al. 2002).
Use in conservation practice: The benefit of optimal

contributions based on relatedness estimators in conser-
vation programs depends on the population structure
and on the breeding capacity available for conservation,
e.g., expressed as the size of a population that can be
conserved (N ). The use of optimal contributions based
on relatedness estimates that are regressed to their
mean always maintains more diversity than applying
equal contributions (Table 8), when populations are
structured, which is common for populations in need of
conservation. Even when they are panmictic and there
is a limited breeding capacity (e.g., N ¼ 10), optimal
contributions based on relatedness estimates are bene-
ficial. With panmictic populations and large capacity, it
is equally good or better to use equal instead of optimal
contributions (Table 8, N ¼ 100), although this is
seldom the case in conservation.

When using Equation 22 to regress estimates to their
mean value, fM and WEDS are overall the best estima-
tors. They are robust with respect to population struc-
ture, which is important when it is unknown whether the
population is truly panmictic.

More information and partial Fortran code can be
found at http://www.geneticdiversity.net/estimators.
html.
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APPENDIX

From Equation 6, weights are w�1
l ¼ VarðSxy;lÞ=ð1 � ŝlÞ2.

For each locus l, we find the variance of the observed
similarity as VarðSlÞ ¼ EðS2

l Þ � EðSl Þ2, where EðS2
l Þ ¼P4

q¼1 PrðS ¼ SqÞS2
q and EðSlÞ¼

P4
q¼1 PrðS ¼ SqÞSq , where

Sq takes values 0, 1
4,

1
2, and 1 for q ¼ 1–4, and Pr(S ¼ Sq)

denotes the probability of observing S ¼ Sq on locus l,
which depends on the allele frequencies. (We drop sub-
script l for brevity.) Let Ai–Ak denote distinct alleles, pi
be the frequency of allele Ai in the current population,
and n be the number of alleles at locus l. Then, for each
locus,

Category S ¼ 1 consists of the genotypes AiAi–AiAi, so
that

PrðS ¼ 1Þ ¼
Xn

i¼1

p4
i : ðA1Þ

Category S ¼ 1
2 consists of the genotypes AiAi–AiAj and

AiAj–AiAj, so that

PrðS ¼ 1
2Þ ¼ 4

Xn�1

i¼1

Xn

j¼j1i

ðp3
i pj 1 pip

3
j 1 p2

i p
2
j Þ: ðA2Þ

Category S ¼ 1
4 consists of the genotypes AiAj–AiAk, so

that

PrðS ¼ 1
4Þ ¼ 8

Xn�2

i¼1

Xn�1

j¼i11

Xn

k¼j11

ðp2
i pjpk 1 pip

2
j pk 1 pipjp

2
k Þ:

ðA3Þ

Note that S ¼ 1
4 requires at least three distinct alleles.

Finally,

PrðS ¼ 0Þ ¼ 1 � PrðS ¼ 1
4Þ � PrðS ¼ 1

2Þ � PrðS ¼ 1Þ:
ðA4Þ

Substitution of the probabilities in the above equations
for EðSlÞ, EðS2

l Þ, VarðSlÞ, and w�1
l gives the weights for

locus l.
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