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ABSTRACT

Ataxia telangiectasia (A-T) is an inherited disorder characterized by progressive loss of motor function
and susceptibility to cancer. The most prominent clinical feature observed in A-T patients is the de-
generation of Purkinje motor neurons. Numerous studies have emphasized the role of the affected gene
product, ATM, in the regulation of the DNA damage response. However, in Purkinje cells, the bulk of ATM
localizes to the cytoplasm and may play a role in vesicle trafficking. The nature of this function, and its
involvement in the pathology underlying A-T, remain unknown. Here we characterize the homolog of ATM
(AtmA) in the filamentous fungus Aspergillus nidulans. In addition to its expected role in the DNA damage
response, we find that AtmA is also required for polarized hyphal growth. We demonstrate that an atmA
mutant fails to generate a stable axis of hyphal polarity. Notably, cytoplasmic microtubules display aberrant
cortical interactions at the hyphal tip. Our results suggest that AtmA regulates the function and/or
localization of landmark proteins required for the formation of a polarity axis. We propose that a similar
function may contribute to the establishment of neuronal polarity.

ATM is a phosphatidyl-3-kinase-related protein kinase
(PIKK) that functions as a central regulator of the

DNA damage response in eukaryotic cells (Shiloh 2001;
McKinnon 2004). Like its homolog ATR, ATM responds
to damage such as double-strand breaks (DSBs) by phos-
phorylating multiple targets that collectively act to main-
tain genome integrity. Key targets include proteins that
direct chromatin modification (histone H2AX), pro-
mote DNA repair (BRCA1, BLM), activate cell cycle
checkpoints (Chk1, Chk2, Nbs1, FancD2, Mdm2), and
trigger apoptosis (p53) (summarized by McKinnon
2004). Many of these proteins contain consensus ATM
phosphorylation sites whose importance has been dem-
onstrated in functional studies (O’Neill et al. 2000).
Notably, studies in yeast have shown that the ATM homo-
log Tel1 is one of the first proteins recruited to DSBs,
where it appears to mediate formation of protein com-
plexes involved in checkpoint activation and repair
(Lisby et al. 2004). Accordingly, it is generally thought
that the primary function of ATM is to choreograph the
response to DNA damage.

In humans, mutations in ATM cause the devastating
neurodegenerative disease ataxia telangiectasia (A-T;

summarized by Gatti 1998; Chun and Gatti 2004).
The most prominent neurological feature of A-T is
progressive cerebellar ataxia, which is triggered by the
loss of Purkinje cells within the cerebellum. Although
the number of Purkinje cells initially appears normal at
birth, the cells begin to degenerate shortly thereafter.
ATM is predominantly a nuclear protein (Lakin et al.
1996), but it surprisingly displays prominent cytoplas-
mic localization in mouse Purkinje cells and cerebellar
tissue (Kuljis et al. 1999; Barlow et al. 2000). Addi-
tional biochemical studies show that ATM associates
with cytoplasmic vesicles (Watters et al. 1997). Both
in vitro and in vivo assays demonstrate that ATM interacts
with b-adaptins (Lim et al. 1998), which are components
of the adaptor complexes involved in clathrin-mediated
vesicle transport (Boehm and Bonifacino 2001). Con-
sistent with these observations, A-T cells and mouse
Atm�/� mutants display aberrant accumulation of ly-
sosomes (Barlow et al. 2000). Additional cytoplasmic
abnormalities observed in A-Tcells include the presence
of unusually thick actin stress fibers (McKinnon and
Burgoyne 1985) and possible defects in exocytosis
(O’Connor and Linthicum 1980). Given the large size
of ATM, these studies collectively support the notion
that ATM has a cytoplasmic function independent of its
role in the DNA damage response.

The filamentous fungus Aspergillus nidulans possesses
a sophisticated DNA damage response that ensures the
maintenance of genome integrity (Goldman et al. 2002;
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Goldman and Kafer 2004). The ATR homolog UvsBATR

is a central component of this response, in which it con-
trols the activation of multiple checkpoints, regulates
damage-induced gene expression, and also promotes
DNA repair (De Souza et al. 1999; Hofmann and
Harris 2000). UvsBATR displays an extensive web of ge-
netic interactions with other proteins involved in the
DNA damage response, including the Mre11 complex
(ScaANBS1, MreAMRE11, and SldIRAD50), the cdc2-related
kinase NpkA, and SepBCTF4 (Fagundes et al. 2004, 2005;
Gygax et al. 2005; Malavazi et al. 2005). However, the
function of UvsBATR relative to its paralog ATM remains
unclear for the filamentous fungi. In particular, ATM
and ATR homologs possess both shared and unique
functions in the DNA damage responses of the model
yeast Saccharomyces cerevisiae (Rouse and Jackson
2002). To determine if a similar relationship exists in
A. nidulans, we cloned and initiated the functional char-
acterization of the A. nidulans ATM homolog, AtmAATM.
As expected, AtmAATM is intimately involved in the DNA
damage response. However, to our surprise, it is also
required for the formation of a stable axis of hyphal
polarity. On the basis of our observations, we propose
that AtmAATM performs a conserved cytoplasmic func-
tion that is important for the growth of highly polarized
cells.

MATERIALS AND METHODS

Strains, media, and growth conditions: The strains used in
this study are A28 (pabaA6; biA1), A781 (wA2; nimA5), GR5
(pyrG89; wA3; pyroA4), R21 (pabaA1; yA2), IM69 (pyrG89 ;wA3;
pyroA1; DatmATpyrG), and IM69-221 (pyrG89; wA3; nimA5;
DatmATpyrG). Rich media (YG: 2% glucose, 0.5% yeast
extract, trace elements) and minimal glucose media (MM:
1% glucose, original high nitrate salts, trace elements, pH 6.5)
were prepared using standard approaches (Hill and Kafer
2001; Fagundes et al. 2005). For M-glycerol media, 1.2%
glycerol was substituted for glucose in MM. In all media,
uridine (5 mm) and uracil (10 mm) were added when nec-
essary for complementation of the pyrG89 marker. Routine
genetic approaches were used for strain construction (Kafer
1977, Appendix; available upon request). For the UV-light
viability assays, conidiospores were suspended in 0.2% Tween-
20 and plated out on YAG plates (YG plus 2% agar; �100
conidia/plate). The plates were then irradiated immediately
with UV using a UV Stratalinker 1800 (Stratagene, La Jolla,
CA) and incubated at 30� for 48 hr to determine UV sensitivity
of nondividing cells. To determine UV survival of dividing
cells, conidiospores on YAG plates were first allowed to ger-
minate for 4.5 hr at 30�. By this time the germinated spores
had entered the cell cycle and were about to undergo the first
mitosis. These germlings were UV irradiated on the plates and
then similarly incubated at 30� for 48 hr. Viability was deter-
mined as the percentage of colonies on treated plates com-
pared to untreated controls.

DNA manipulations and construction of the DatmA strain:
DNA manipulations were according to Sambrook and Russell
(2001). DNA fragment probes for Southern blots were
labeled with [a-32P]dCTP using the RTS Rad prime DNA
labeling system kit (GIBCO-BRL, Gaithersburg, MD). PCR
primers were designed for amplifying each DNA fragment

necessary for PCR-mediated technique by using Primer Ex-
press Version 1.0 (Applied Biosystems, Foster City, CA) design
software. In the deletion construction, the A. fumigatus pyrG
gene was amplified from the pCDA21 plasmid (Chaveroche
et al. 2000) and is referred to as the zeopyrG cassette because the
amplified fragment also contains the zeocin-resistance gene.
The PCR-mediated construction for the atmA gene consisted
of three initial amplifications that generated a 59- and 39-
flanking region of atmA gene and a final fusion PCR. For the
DNA fragments containing the flanking regions, genomic
DNA was used as a template. The 59-flanking fragment, which
encompasses 2000 bp upstream from the nucleotide 15214
of the atmA genomic sequence, was amplified with the prim-
ers ATM1 59-AATCTTAATGACATGATATGC-39 and ATM2
59-CTGAGAATTCCGGCTGAGGAAGCTACCG-39 (underlined
bases indicate the region of homology to the zeo-pyrG cassette).
The 39-flanking region, which encompasses 750 bp down-
stream of nucleotide 17632 of the atmA genomic sequence,
was amplified with the primers ATM3 59-TGAGGCGAATTCAT
GAAGCCCAGCGCCTG-39 and ATM4 59-TCATGCATAAGCG
GCCC-39 (underlined bases indicate the region of homology
to the zeo-pyrG cassette). The zeopyrG cassette was amplified
using plasmid pCDA21 as a template and the following
primers: ATM59ZEO 59-GGTAGCTTCCTCAGCCGGAATTCT
CAGTCCTGCT-39 and ATM39PYR 59-AGGCGCTGGGCTTCAT
GAATTCGCCTCAAACAAT-39 (where underlined bases in-
dicate the region of homology to the 59- and 39-atmA flanking
regions, respectively). The final 5167-bp fusion PCR frag-
ment was generated using the three previous DNA fragments
as templates and ATM1 and ATM4 as primers. The 50-ml
amplification mixture included 13 Platinum Taq DNA Poly-
merase high-fidelity buffer (Invitrogen, San Diego), 20 pmol
of each primer, 0.4 mm deoxynucleotide triphosphate mix,
1.0 unit of Platinum Taq high-fidelity DNA polymerase (Invi-
trogen), and 500 ng of genomic DNA or 100 ng of plasmid
DNA. PCR amplification was carried out in a PTC100 96-well
thermal cycler (MJ Research, Watertown, MA), at 94� for
2 min, and 30 times at 94� for 1 min, 52�–60� (depending on
the fragment) for 1 min, and 68� for 2–3 min, followed by an
extension step at 68� for 10 min. After the reaction, the PCR
products were gel purified with a QIAGEN (Chatsworth, CA)
PCR clean-up kit following the manufacturer’s instructions.
Transformation of A. nidulans strain GR5 was according to
the procedure of Osmani et al. (1987) using 5 mg of linear
DNA fragments. Transformants were scored for their ability
to grow on YG medium. Southern analysis demonstrated that
the deletion cassette had integrated at the atmA locus.

Protein expression, purification, and phosphorylation assays:
Protein assays were performed by initially growing conidia
from the wild type (GR5) and IM69 (DatmA) strains in a
reciprocal shaker at 37� for 16 hr in liquid YG medium (plus
uridine and uracil if necessary). Mycelia were aseptically trans-
ferred to fresh YG medium plus 25 mm camptothecin (CPT)
for different periods of time at 37�. Each sample was harvested
by filtration through a Whatman filter number 1, washed thor-
oughly with sterile water, quickly frozen in liquid nitrogen, and
disrupted by grinding. Total protein was extracted at 4� with
extraction buffer (15 mm p-nitrophenylphosphate, 25 mm Tris
pH 7.5, 15 mm EGTA, pH 7.5, 15 mm MgCl2) plus protease
inhibitors (1 mg/ml leupeptin, 10 mg/ml aprotinin, 5 mm

benzamidine, 15 mm PMSF). Protein concentration was deter-
mined using a modified Bradford assay (Bio-Rad, Hercules,
CA). Twenty-five mg of ScaANBS1THis6x fusion protein (puri-
fied as described in Fagundes et al. 2005) was incubated with
25 mg of GR5 or IM69 total extract in a final volume of 100 ml
and incubated for 5 min at 30�. Phosphorylation reaction
buffer (0.2 mm ATP, 2.5 mm MgCl2, 2.5 mm MnCl2, 0.5 ml
[g-32P]dATP) was added to this protein mixture and incubated
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for 1 hr at 30�. The Ni-NTA super flow (QIAGEN) resin was
prepared by washing in PBS buffer and equilibrated with
ligation buffer (20 mm sodium phosphate, pH 7.6, 500 mm

NaCl, 20 mm imidazole, 1 mm PMSF, 1 mm benzamidine). The
resin (90ml) was subsequently combined with 100ml of the pro-
tein mixture and incubated for 1 hr at room temperature. The
resin was recovered by centrifugation at 3000 rpm for 1 min,
washed three times with the ligation buffer, and finally re-
suspended in 30ml of SDS–PAGE sample buffer (62.5 mm Tris–
HCL, pH 6.8, 2% SDS, 10% glycerol, 5% b-mercaptoethanol,
and 5% bromofenol blue). The proteins were eluted from the
resin by heating at 100� for 3 min and separated by SDS–PAGE
gels. Gels were stained with Coomassie solution (Coomassie
0.25%, methanol 50%, and acetic acid 30%), dried, and
exposed to Kodak (MXG/Plus 35 3 43 cm) films.

Microscopy: Conidiospores from wild-type and DatmA
mutant strains were germinated at 37� or 42� on glass cover-
slips arrayed on the bottom of a plastic 100-mm petri dish
containing the appropriate growth medium. Coverslips with
adherent hyphae were fixed and stained as previously de-
scribed (Harris et al. 1994). Nuclei were visualized by staining
with Hoechst 33258 or DAPI, and septa were stained using
Calcofluor. After staining, coverslips were washed in sterile
water and mounted in n-propyl gallate. For lectin staining,
coverslips were incubated in prewarmed media containing
5 mg/ml FITC-conjugated wheat germ agglutinin (WGA) for
5 min and then fixed, washed, and mounted. To depolymerize
microtubules, hyphae grown for 12 hr in minimal glucose
media were exposed to 5 mg/ml benomyl for 2 hr before
staining with WGA. Slides were viewed using an Olympus BX51
fluorescent microscope. Images were captured with a Photo-
metrics CoolSnap HQ CCD camera (Roper Scientific) and
processed using IPLab software (Scanalytics) and Adobe Photo-
Shop 6.0. Confocal images were obtained with an Olympus
FW500/BX61 confocal laser scanning microscope using the
following laser lines: 405 nm for Hoechst 33258 and 488 nm
for FITC. Images were captured by direct acquisition with a
Z step of 1 mm and were subsequently processed using Adobe
PhotoShop 6.0.

Polarity maintenance assay: Conidiospores from wild-type
strain A28 and theDatmAmutant IM69 were germinated at 37�
for 12 hr on glass coverslips in a petri dish containing MM.
Coverslips were transferred to prewarmed MM containing
2 mg/ml cytochalasin A (CA; Sigma; maintained as a 1 mg/ml
stock in DMSO). Untreated controls received the correspond-
ing volume of DMSO. Hyphae were incubated at 37� in the
presence of CA for 60 min, washed twice in prewarmed media,
and then returned to MM for an additional 2 hr. Coverslips

were harvested prior to and immediately after the CA in-
cubation, as well as at multiple intervals following release into
drug-free media. Hyphae were fixed, stained with Calcofluor
and Hoechst 33258, and mounted for imaging by brightfield
and fluorescence microscopy.

RESULTS

Cloning and disruption of AtmAATM: BLAST searches
of the recently completed A. nidulans genome sequence
(Galagan et al. 2005; http://www.genome.wi.mit.edu/
annotation/fungi/aspergillus/) were used to identify
a homolog of ATM. These searches resulted in the
identification of AN0038.2 (renamed here as AtmAATM;
note that the previously characterized UvsBATR is anno-
tated as AN6975.2). The atmA gene possesses nine in-
trons (nucleotide positions 83–133, 177–231, 1594–1648,
1960–2244, 2530–2643, 6503–6548, 6940–6982, 8051–
8097, and 9059–9123, respectively) and encodes a pre-
dicted 2793-amino-acid protein with 30% identity and
48% similarity to ATM (4e-137).

To characterize the function of AtmAATM, an internal
deletion was generated using a fusion PCR-based ap-
proach (see materials and methods). This 2418-bp
deletion removes 806 amino acids that encompass the
entire FAT domain and a considerable portion of the
predicted catalytic kinase domain (Figure 1A). More-
over, RT–PCR experiments verified that no atmA tran-
scripts were generated from the region upstream of the
deletion (data not shown). Protoplasts of A. nidulans
strain GR5 were transformed using the fusion PCR prod-
uct, and several transformants were obtained by their
ability to grow in YAG. Allelic replacement of atmA was
verified in at least one transformant as confirmed by the
analysis of Southern blots (Figure 1B), thereby gener-
ating the DatmA strain IM69.

When tested on rich media (i.e., YG), the extent of ra-
dial colony growth and the production of asexual spores
were not dramatically affected by the loss of AtmA
(Figure 2A). However, no viable meiotic ascospores were
recovered when IM69 was self-fertilized (data not shown).

Figure 1.—Schematic of AtmA and the dele-
tion strategy. (A) Structure of the A. nidulans
ATM homolog. The number of residues is indi-
cated. This protein has three motifs: the FAT
and FAT-C domains and the PI3K domain. The
two first domains are of unknown functional sig-
nificance, and the last one contains the phos-
phatidylinositol 3-kinase motifs that harbor the
catalytic site in the active kinases of the family
(for a review, see Shiloh 2003). Genomic DNA
from both wild-type andDatmA strains was isolated
and cleaved with the enzyme KpnI; an internal
1963-bp DNA fragment was used as a hybridization
probe. This fragment recognizes a single 9.0-kb
DNA band in the wild-type strain and a unique
1.6-kb DNA band in the DatmA mutant because
the zeo-pyrG cassette has a single KpnI site as shown
in the Southern blot analysis (B).
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Role of AtmAATM in the DNA damage response: As an
initial test of AtmA function in the DNA damage re-
sponse, the effects of several different DNA-damaging
agents on the growth of IM69 were assessed. The DatmA
strain was more sensitive to several agents, including
CPT, bleomycin (BLEO), and methyl methanesulfonate
(MMS), whereas it was no more sensitive than wild type
to other agents such as hydroxyurea (HU) and 4-
nitroquinoline-1-oxide (4-NQO) (Figure 2A). In addi-
tion, germinating DatmA conidiospores (i.e., mitotically
active cells) exhibited a slight increase in sensitivity to
UV irradiation, while dormant spores (i.e., mitotically
quiescent cells) displayed wild-type levels of resistance
(Figure 2B), suggesting that AtmA is important for UV-
light-induced DNA damage only during cell cycle pro-
gression. To understand the basis for the sensitivity of
the DatmA mutant to DNA damage, we examined its
ability to undergo checkpoint-mediated delay of mitotic
entry. The G2/M DNA damage checkpoint prevents
entry into mitosis in the presence of damaged DNA (for
reviews, see Hartwell and Weinert 1989; Carr 1995).
To address the role of AtmA in this checkpoint, we first
constructed a nimA5 DatmA double-mutant strain (IM69-
221). The nimA5 mutation causes a late G2 arrest at
the restrictive temperature of 44�, thereby making it
possible to synchronize cells in G2 before causing DNA
damage. Preliminary tests verified that the nimA5 mu-
tation did not affect the growth of the DatmA mutant.

MMS (0.0025%) was added to either single-mutant
nimA5 atmA1 or double-mutant nimA5 DatmA G2-
arrested cells for 75 min to cause transient DNA damage
and then removed from the culture by replacement with
fresh medium as cells were downshifted to release the
G2 block. The fresh medium contained 5 mg/ml of
nocodazole to cause cell block in mitosis and to allow
chromosomal mitotic index (CMI) determination. Ad-
dition of MMS to nimA5 atmA1 cells markedly delayed
entry into mitosis after return to 30� (Figure 3, top). In
contrast, no delay was observed when MMS was added to
nimA5 DatmA (Figure 3, bottom). These observations
highlight the role of AtmA in the G2/M checkpoint that
operates to prevent mitosis in the presence of DNA
damage.

As a second approach to testing the role of AtmA in
the DNA damage checkpoint response, we determined
the ability of the DatmA mutant to undergo radio-
resistant DNA synthesis (RDS). The failure of A-T cells
to undergo transient RDS after irradiation is a charac-
teristic feature of the disease (for review, see D’Amours
and Jackson 2002). Wild-type hyphae exposed to the
radiomimetic drug BLEO display a transient delay in the
kinetics of nuclear division (Figure 4A, left), whereas no
such delay is observed in the DatmA mutant (Figure 4A,
right). This observation implies that exposure to BLEO
does not delay DNA synthesis when AtmA function is
compromised.

Figure 2.—Growth phe-
notypes of GR5 (wild type)
and IM69 (DatmA). (A)
The strains were grown for
72 hr at 37� in YG medium
in the presence or absence
of 4-NQO, BLEO, hydroxy-
urea (HU), MMS, and CPT.
(B) Quiescent (left) and
germinating (right) coni-
diospores from different
strains were exposed to UV
light, and viability was
scored after exposure as
the percentage of colonies
on treated plates compared
to untreated controls. To
evaluate the differences in
UV-light assays, we used
one-way ANOVA and Stu-
dent Newman Keuls post-
hoc test (Daniel 2005).
The results were expressed
by the average of four inde-
pendent experiments and
the means plus the standard
deviation are shown. Ana-
lyses were performed using
the software package Sigma
Stat ( Jandel Scientific, San
Rafael, CA) and the statisti-
cal significance was set at
a ¼ 0.05.
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Finally, we tested the capacity of AtmA to phosphor-
ylate a downstream target in response to DNA damage.
A general function of ATM homologs is the ability to
phosphorylate p95/Nbs1 on serine 343 in vitro and
in vivo after ionizing radiation (IR; Gatei et al. 2000; Lim
et al. 2000; Wu et al. 2000; Zhao et al. 2000). Considering
that DSBs are the main effect of IR, and that CPT
induces DSBs, we used the antitopoisomerase I drug in
experiments to verify whether the DatmA strain would
be unable to phosphorylate ScaANBS1. Accordingly, pro-
tein extracts prepared from the DatmA mutant and a
wild-type strain were tested for the ability to phosphor-
ylate the apparent A. nidulans Nbs1 homolog ScaANBS1

upon treatment with CPT (Figure 4B). For the wild-type
strains, the intensity ratio (radioactivity signal/amount
ScaA) increased with incubation time in the presence of
CPT (from 0.8 at 5 min to 7.6 at 120 min). In contrast,
extracts from the DatmA mutant were unable to phos-
phorylate ScaANBS1 to the same levels observed in the
wild-type strain (Figure 4C). A heat-inactivated extract
(KD), i.e., a protein extract from the wild-type grown for
30 min and heated at 100� for 10 min, was used as a
negative control for the ScaANBS1 phosphorylation re-
action (Figure 4C, bottom).

Taken together, these data strongly suggest that AtmA
shares with other ATM homologs a central and con-
served role in the DNA damage response.

Role of AtmAATM in the septation checkpoint: In
A. nidulans, the DNA damage checkpoint inhibits sep-
tum formation by modulating the activity of NimXCDK1

(Harris and Kraus 1998; De Souza et al. 1999). In
particular, chronic exposure of predivisional hyphae to
low levels of DNA damage causes increased AnkAWEE1-
mediated Tyr-15 phosphorylation of NimXCDK1 (Kraus
and Harris 2001), which prevents septation even though
nuclear division can occur (Harris and Kraus 1998).
Notably, the ability of DNA damage to block septum for-
mation requires UvsBATR function (Harris and Kraus
1998). We evaluated the role of AtmA in the septation
checkpoint by determining whether the DatmA mutant
could undergo septum formation in the presence of a
DNA-damaging agent. As expected, prolonged expo-
sure to 0.0025% MMS reduced the level of septation
in wild-type hyphae (42% of MMS-treated hyphae pos-
sessed septa vs. 82% of untreated controls). However,
unlike uvsBATR mutants, septum formation was not re-
stored in theDatmAmutant. Indeed, the septation block
was much more reduced than in the wild type (2% of
MMS-treated DatmA hyphae possessed septa vs. 92% of
untreated controls). This observation suggests that AtmA
does not play a direct role in blocking septum formation
upon activation of the DNA damage response.

AtmAATM is required for the formation of a stable
polarity axis: During the analysis of DatmA phenotypes,
it was noted that the mutant displayed pronounced
morphological defects even when grown under normal
conditions (i.e., in the absence of DNA damage). The
morphogenetic program associated with the germina-
tion of A. nidulans conidiospores includes (i) a brief
period of isotropic spore swelling, (ii) the establishment

Figure 3.—AtmA is required for the G2-M
DNA damage checkpoint. The CMI was deter-
mined for strains A781 (nimA5; top) and IM69-
221 (nimA5 DatmA; bottom) following release
from mitotic arrest into media containing
0.0025% MMS. h, Control; n, 0.0025% MMS.
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of a stable polarity axis, and (iii) the emergence of a
polarized germ tube (Momany 2002). This program
leads to the formation of a multinucleate hyphal cell
that grows solely by apical extension. Landmark pro-
teins that act as positional cues to specify sites of polar-
ized growth have not yet been identified in A. nidulans
(Harris and Momany 2004).

On a standard rich glucose medium (YG), DatmA
conidiospores produce polarized germ tubes with
kinetics similar to wild type. However, the result-
ing hyphae exhibit zig-zag or curled growth patterns
(Figure 5) suggestive of a defect in the microtubule-
dependent regulation of hyphal growth. Consistent with
this view, the normal bipolar pattern of germ-tube
emergence is abolished in the DatmA mutant. Whereas
.90% of wild-type conidiospores produce a second
germ tube opposite from the first, ,40% of DatmA
conidiospores display the same pattern (Figure 5).
Previous observations suggest that the bipolar pattern
requires an intact cytoskeleton (Harris et al. 1999),
which presumably transports a landmark protein to the
incipient polarization site. The wild-type growth pattern
leads to the formation of mycelial colonies whose edge
consists of well-spaced hyphae that grow outward in a
linear manner (Figure 5). Because of the defects in
growth pattern, DatmA colony edges are extremely
disorganized and contain hyphae whose growth appears
randomly oriented with respect to each other and the
colony center (Figure 5). On a poorer minimal glycerol

medium (M-glycerol), DatmA mutants display a pro-
nounced defect in polarity establishment. Instead of
forming a germ tube, they continue to grow in an iso-
tropic manner and produce large round multinucleate
spheres (Figure 5E). The aberrant growth patterns on
rich media and the failure to establish polarity on poorer
media occur despite apparently normal nuclear division
and cell growth. Indeed, swollen DatmA conidiospores
actually contain a greater number of nuclei than wild-
type hyphae grown for the same length of time. These
results suggest that AtmA might play a role in recruiting
the morphogenetic machinery to polarization sites.

We established an assay that would allow us to quantify
the ability of a mutant to retain a stable axis of polarized
hyphal growth. This assay is based on the ability of
the microfilament-depolymerizing agent cytochalasin
A (CA) to cause depolarization of growing hyphal tips.
When incubated in the presence of 2 mg/ml CA for
1 hr, wild-type hyphal tips swell in an isotropic manner
(Figure 6A). Upon removal of CA and return to un-
treated media, polarized growth resumes. Most impor-
tantly, in 94% of wild-type hyphae tested (n ¼ 300; two
independent experiments), growth resumes along the
original polarity axis (Figure 6A). This observation sug-
gests that, despite the loss of detectable actin filaments,
the morphogenetic machinery is retained at polariza-
tion sites for at least 1 hr. When subjected to the same
CA treatment regimen, DatmA mutants grown in MM
also form swollen hyphal tips (Figure 6B). However,

Figure 4.—AtmA is required for the
S-phase checkpoint response to DNA
damage and phosphorylates ScaANBS1.
(A) S-phase checkpoint response of
GR5 (wild type; left) and IM69 (DatmA;
right). Conidiospores were inoculated
onto coverslips in YG medium and in-
cubated at 37� for 5 hr. After this period
of growth, 1 mg/ml of BLEO (n) was
added to the culture medium and the
incubation at 37� continued for an addi-
tional 30 min. Control treatments with-
out BLEO (¤) were performed for each
strain. Samples were collected every 10
min and the number of nuclei assessed
by DAPI staining. (B) Phosphorylation
of the ScaANBS1 by GR5 (wild type) and
(C) IM69 (DatmA) protein extracts. Ex-
tracts were prepared and phosphoryla-
tion assays performed as described in
materials and methods. After the
phosphorylation reaction, ScaANBS1 was
precipitated with the Ni-NTA super flow
(QIAGEN) resin. SDS gels were stained
with Coomassie (B and C, top bands),
dried, and exposed to Kodak films (B
and C, bottom bands). The graphs in
B and C represent the intensity ratio,
i.e., the densitometry of the ScaANBS1

Coomassie staining divided by the densitometry of the radioactive signal of phosphorylated ScaANBS1. A heat-inactivated (KD)
wild-type extract (boiled at 100� for 10 min) was used as a negative control for the ScaANBS1 phosphorylation reaction (Figure
C, bottom).
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upon washout, growth did not resume using the original
polarity axis. Instead, in 79% of tested hyphae (n¼ 300;
two independent experiments), a new axis was estab-
lished in the subapical region of the hyphal tip cell,
thereby producing a new lateral branch (Figure 6B).
Moreover, 16% of the tested DatmA hyphae failed to
resume growth, which was never observed in CA-treated
wild-type hyphae. These results imply that the morpho-
genetic machinery is not stably localized at the hyphal
tip of DatmA mutants. We propose that this reflects the

failure to properly utilize positional cues at the hyphal
tip or the loss of these cues altogether.

AtmAATM regulates microtubule organization at hy-
phal tips: In A. nidulans, the FITC-conjugated lectin
WGA can be used to detect sites of cell-wall deposition
(Harris et al. 1999). At a concentration of 5 mg/ml,
FITC–WGA staining is solely confined to the tips of wild-
type hyphae (Figure 7A). InDatmAmutants, FITC–WGA
stained hyphal tips as well, but prominent spore body
staining was also observed (Figure 7B). This observation

Figure 6.—DatmA mutants fail to re-
establish a lost polarity axis. Hyphae
were incubated with cytochalasin A
to disrupt polarized growth and cause
tip swelling (arrows). Upon return to
drug-free medium, wild-type hyphae re-
sumed polarized growth along the orig-
inal axis (A, arrow). By contrast, DatmA
mutants established new axes that be-
came lateral branches (B, arrow). Bar,
10 mm.

Figure 5.—Morphological defects
caused by theDatmAmutation. Wild-type
hyphae grown on YG (A) or M-glycerol
(B) media. DatmA mutant grown on YG
(C and D) or M-glycerol (E) media. Note
the zig-zag or curled hyphae in C and D
and the failure to establish polarity in
E. Wild-type (F) and DatmA (G) hyphae
growing on the surface of a YG plate.
Note that wild-type hyphae radiate out-
ward in a linear fashion, whereas mutant
hyphae do not and frequently curl back-
ward. (H) Germination pattern of wild-
type and DatmA conidiospores. Spores
were allowed to germinate on YG media
for 11 hr. Spores possessing two germ
tubes were classified as displaying (left
to right) bipolar, quarterpolar, or ran-
dom germination patterns. N ¼ 200.
Bar, 10 mm.
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suggests that a pool of vesicles carrying precursors for
cell-wall biosynthesis was inappropriately retained
within the spore body. Wild-type hyphae grown in the
presence of the microtubule-depolymerizing agent ben-
omyl exhibit a similar intense localization of FITC–WGA
to the spore body (Figure 7C), although in this case
staining of the hyphal tip is not observed. Accordingly,
we propose that a defect in microtubule-dependent
vesicle transport underlies the aberrant cell-wall de-
position pattern in DatmA mutants.

Immunofluorescence microscopy with anti-b-tubulin
antibodies was used to examine the state of cytoplasmic
microtubules in the DatmA mutant. When viewed using
laser-scanning confocal microscopy, wild-type hyphae fea-
tured longitudinal arrays of cytoplasmic microtubules
that terminated at a discrete site within the hyphal
tip (Figure 8, A–D). By contrast, in the DatmA mutant,
microtubule arrays typically did not terminate at a
discrete site and instead appeared to be splayed out in
a random manner (Figure 8, E–H). Quantification of
these phenotypes revealed that 51% of DatmA hyphae
possessed cytoplasmic microtubules that failed to con-
verge at a discrete site, compared to only 9.5% of wild-
type hyphae (n ¼ 100; two independent experiments;
Figure 8I). These observations suggest that the mor-
phogenetic defects observed in DatmA mutants reflect
the inability to specify a site of cortical microtubule
capture at hyphal tips.

DISCUSSION

ATM and ATR are paralogous PIKKs that orchestrate
the DNA damage response in eukaryotic cells (Shiloh
2001; McKinnon 2004). These kinases possess both
overlapping and distinct roles in the regulation of this
response. In A. nidulans, we have previously shown that
UvsBATR regulates the DNA damage checkpoint re-
sponse, inhibits septation in predivisional hyphae that
have experienced DNA damage, and controls both the
expression and the localization of proteins involved in
the processing and repair of DNA damage (Harris and
Kraus 1998; Hofmann and Harris 2000; Fagundes

et al. 2005). In this study, we present the first analysis of
ATM in a filamentous fungus. Like other ATM kinases,
we show that AtmAATM modulates DNA damage check-
point responses and phosphorylates the downstream
target ScaANBS1. However, we also demonstrate that
AtmAATM has an additional role in the formation of
stable axes of polarized hyphal growth. In this respect,
AtmA may share a pivotal function with its homologs in
other highly polarized cell types such as neurons.

Role of AtmAATM in the DNA damage response: Our
results demonstrate that AtmAATM prevents mitotic entry
when DNA is damaged during S or G2 phases of the cell
cycle. To some extent, this may account for the DNA
damage sensitivity of the DatmA mutant, because dor-
mant conidiospores, in which the checkpoint is dispens-
able, display wild-type levels of resistance to some forms
of DNA damage. On the other hand, AtmAATM likely has
additional roles in promoting DNA repair. Like other
eukaryotes, one such function may be to regulate the
activity of the MRN complex (D’Amours and Jackson
2002). Homologs of each component of this complex
have been characterized in A. nidulans (i.e., MreA ¼
Mre11, SldI ¼ Rad50, and ScaA ¼ Nbs1) and shown to
be involved in multiple facets of the DNA damage
response (Bruschi et al. 2000; Semighini et al. 2003;
Malavazi et al. 2005). Notably, UvsBATR regulates both
the expression and the nuclear localization of ScaANBS1

(Fagundes et al. 2005), whereas AtmAATM controls the
level of ScaANBS1 phosphorylation. These distinct regu-
latory inputs could potentially confer ATR- and ATM-
specific functions on the A. nidulans MRN complex.
Alternatively, they could act in concert to ensure that the
complex is fully activated in response to the presence of
damaged DNA. A more detailed analysis of the inter-
actions between the MRN complex and both UvsBATR

and AtmAATM is needed to address these possibilities.
UvsBATR inhibits septum formation in predivisional

hyphae that have been exposed to low levels of DNA
damage (Harris and Kraus 1998). Although this effect
is mediated by AnkWEE1-dependent Tyr-15 inhibitory phos-
phorylation of NimXCDK1 (Kraus and Harris 2001), the
mechanism by which UvsBATR may influence the Tyr-15

Figure 7.—Growth is not confined to the hyphal tip in DatmA mutants. Hyphae were stained with FITC-conjugated wheat germ
agglutinin to localize sites of active cell-wall deposition. Growth occurs at the tips of wild-type hyphae (A, arrow). In DatmA mutants
(B), growth is also observed in the spore body (arrow). In wild-type hyphae that were germinated in the presence of 5 mg/ml
benomyl, growth is largely confined to the spore body (C). Bars, 10 mm.
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phosphorylation state of NimXCDK1 has not been de-
termined. By contrast, AtmAATM does not appear to be
involved in the inhibition of septum formation. Instead,
the DatmA mutation exacerbates the septation block.
This could simply reflect an increase in the strength of
the DNA damage signal caused by loss of AtmAATM.
However, an intriguing possibility is that AtmAATM may
directly promote septum formation during recovery
from the DNA damage response. We have previously
shown that this function requires the A. nidulans RecQ/
BLM helicase homolog MusNBLM (Hofmann and Harris

2001). Because extensive interactions between ATM and
BLM have been characterized in animal cells (Beamish
et al. 2002), it is tempting to speculate that similar
interactions could trigger recovery from the DNA re-
sponse in predivisional hyphae.

Role of AtmAATM in polarized hyphal growth: The
observation that AtmAATM is required for the formation
of a stable axis of hyphal polarity was unexpected. In
yeast cells, ATM function has never been linked to the
establishment or maintenance of cell polarity. More-
over, only in human and mouse Purkinje cells has ATM
been implicated in functions related to cellular morpho-

genesis (Barlow et al. 2000). Accordingly, our results
raise the interesting possibility that ATM possesses a
unique and previously uncharacterized role in the for-
mation of stable polarity axes that is specific to highly
polarized cells such as hyphae and neurons. Further-
more, we propose that failure to complete this function
causes morphological defects that disrupt neuronal dif-
ferentiation and thus contribute to the disease pathol-
ogy of A-T.

Our observations suggest that AtmA is required to
specify the growth zone at hyphal tips. In the filamentous
fungi, an apical cluster of vesicles and cytoskeletal
elements termed the Spitzenkorper plays a critical role
in defining the growth zone (summarized by Harris et al.
2005). Notably, interactions between cytoplasmic micro-
tubules and the cell cortex appear to play an important
role in maintaining the position of the Spitzenkorper
within the middle of the growth zone (Konzack et al.
2005). We propose that AtmA-dependent phosphoryla-
tion may influence these interactions, thereby helping
to define a discrete zone for the cortical recruitment of
cytoplasmic microtubules. The absence of this zone in
the DatmA mutant would presumably lead to random

Figure 8.—Microtubules
fail to converge at the hy-
phal tip in DatmA mutants.
Wild-type (A–D) and DatmA
(E–H) hyphae were exam-
ined by immunofluores-
cence microscopy. (A and
E) Nuclei visualized using
Hoechst 33258. (B and F)
Microtubules visualized
with an anti-b-tubulin anti-
body. (C and G) merged im-
age. (D and H) Brightfield
images (single section,
whereas all other images
are maximum projection
of Z stacks). (I) The micro-
tubule organization at the
hyphal tip is enlarged to
highlight the defect. Bars,
5 mm.
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interactions between microtubules and the cortex at
hyphal tips, which would in turn affect Spitzenkorper
position and the maintenance of a stable polarity axis.
Consistent with this hypothesis, Horio and Oakley

(2005) demonstrate that although microtubules are
not strictly required for polarized growth, they are rate
limiting for the growth of hyphal-tip cells. What proteins
at the hyphal tip could be the targets of ATM-dependent
regulation? Potential candidates include proteins that
associate with the plus ends of cytoplasmic micro-
tubules, such as dynactin, which has been suggested
as a possible ATM target (O’Neill et al. 2000), or plus-
end-directed kinesins involved in the transport of these
proteins. One such kinesin, KipA, has already been
shown to regulate Spitzenkorper position (Konzack
et al. 2005). Alternatively, homologs of known cortical
microtubule-anchoring proteins from budding or
fission yeast (i.e., Kar9, Tea1, Tea4) may be ATM targets.
Finally, fungal b-adaptins, whose animal homologs
are known substrates of ATM, may be AtmA targets that
control the trafficking of a landmark protein that
specifies a cortical zone for microtubule interactions.
Proteomic approaches designed to identify AtmA-
interacting partners should ultimately reveal the rele-
vant target.
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