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ABSTRACT
We test models for the evolution of helical regions of RNA sequences, where the base pairing constraint

leads to correlated compensatory substitutions occurring on either side of the pair. These models are of
three types: 6-state models include only the four Watson-Crick pairs plus GU and UG; 7-state models
include a single mismatch state that combines all of the 10 possible mismatches; 16-state models treat all
mismatch states separately. We analyzed a set of eubacterial ribosomal RNA sequences with a well-established
phylogenetic tree structure. For each model, the maximum-likelihood values of the parameters were
obtained. The models were compared using the Akaike information criterion, the likelihood-ratio test,
and Cox’s test. With a high significance level, models that permit a nonzero rate of double substitutions
performed better than those that assume zero double substitution rate. Some models assume symmetry
between GC and CG, between AU and UA, and between GU and UG. Models that relaxed this symmetry
assumption performed slightly better, but the tests did not all agree on the significance level. The most
general time-reversible model significantly outperformed any of the simplifications. We consider the
relative merits of all these models for molecular phylogenetics.

THERE are several classes of RNA molecules where in the helical regions of tRNA see Figure 1 of Higgs
sequences are available over a wide range of species (1998).

and where multiple sequence alignments are well estab- The mathematical theory of compensatory mutations
lished, e.g., transfer RNA, 5S ribosomal RNA, small and was first discussed by Kimura (1985), who showed that
large subunit ribosomal RNA, and ribonuclease P RNA. compensatory changes can occur rapidly if the two sites
Secondary structure is strongly conserved over long time are closely linked. The theory was developed by Iizuka
periods, indicating that selection is acting to maintain and Takefu (1996) and was studied specifically in the
a structure that is essential for the function of these context of RNA helices by Stephan (1996). These arti-
molecules. The helical regions of the molecule are often cles treat mutation as irreversible and calculate the time
quite variable in sequence. This shows that the precise until fixation of the double mutant as a function of the
sequence of bases within the helical regions is of rela- mutation rate, the population size, and the strength
tively little importance as long as the positioning of of selection against the intermediate (single mutant).
these regions within the secondary structure is correct. Higgs (1998) has considered the same problem in the

The mode of evolution within the helical regions is case of reversible mutations and has calculated fre-
via pairs of compensatory neutral mutations; i.e., a muta- quency distributions for the different possible paired
tion on one side of a pair disrupts the structure and is states.
slightly deleterious, but a second mutation of the other RNA sequences are often used in constructing molec-
side of the pair restores the pairing ability. Compensa- ular phylogenies (e.g., Olsen and Woese 1993). If the
tory pair changes form the basis of the comparative phylogenies are constructed using the helical regions
method for deducing RNA secondary structures (Woese of RNA molecules then an understanding of the way in
and Pace 1993; Gutell 1996) and have also been the which these parts of the sequences evolve is important
subject of several evolutionary studies (Wheeler and if reliable estimates of distances are to be obtained.
Honeycutt 1988; Rousset et al. 1991; Vawter and Typically Markov models are used to represent the sub-
Brown 1993; Gatesy et al. 1994; Kirby et al. 1995). For stitution process in the sequences. With 16 possible pairs
an illustrative example of the degree of variability seen that can be formed with four bases a 16-state Markov

model, with a 16 3 16 rate matrix to describe relative
rates from one state to another, is needed to study the
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UG, and CG occur frequently in helices, whereas the to and from mismatch states with any accuracy. Hence
it is not clear a priori whether 16-state models give anyother 10, so-called mismatch, pairs occur rarely, presum-

ably because they are deleterious mutations that destabi- advantage.
A third important issue is whether double substitu-lize the secondary structure. Since the mismatch states

are rare, it is reasonable to consider 6-state models that tions should be permitted in the rate matrix. It is fre-
quently observed that pairs of closely related speciesallow only the 6 matching pairs, as was done by Tillier

(1994) and Tillier and Collins (1995). A third alter- differ by a pair of compensatory substitutions; e.g., a GC
in one species is replaced by an AU in the other. Sincenative, rather than ignore mismatches completely, is to

group all the 10 mismatch (MM) pairs together into a mutation rates are very low in real organisms it is un-
likely that these two changes occurred in a single organ-single state. This gives a 7-state model (Tillier and

Collins 1998; Higgs 2000). ism in a single generation. There were presumably some
individuals with single mutant genotypes (in this caseThere is now a large variety of slightly different mod-

els. The principle aim of this article is to compare these probably GU) at some point in time. From the popula-
tion genetics viewpoint the compensatory change canalternatives to see which is best able to describe real

sequence data. Some of these models involve a relatively happen in two ways. The first is by fixation of the slightly
deleterious mutation (i.e., GU sequences rise to a highsmall number of parameters and make assumptions

about the symmetry of the rate matrix. This allows ana- frequency in the population) followed by fixation of the
second mutation, which is now slightly advantageouslytical solution of the rate equations in several cases.

More complex models are straightforward to construct. (i.e., AU sequences arise and replace the GU se-
quences). The second method is by the compensatoryIncreasing the complexity of a model will, in general,

improve the quality of the fit to the data. However, very substitution mechanism discussed by Kimura (1985),
Stephan (1996), and Higgs (1998). In this case, slightlylarge numbers of parameters are sometimes not justified

because the extra parameters simply fit noise in the data deleterious single mutant sequences are created contin-
ually by recurrent mutations, but their frequency is keptrather than any underlying trends. We therefore require

statistical techniques for this model selection process. very low by selection. If one of these sequences under-
goes a second mutation this can create a sequence thatComparison of models of differing complexity has been

carried out for models of single nucleotide substitution is almost neutral with respect to the majority of the
population. For example, GC sequences are in the ma-by Yang et al. (1994), and here we carry out a similar

comparison for paired-site models. We analyze a set of jority, GU sequences are created in very small numbers,
and one of these mutates to an AU. The neutral variantribosomal RNA sequences using 18 different models.

For each model we obtain the maximum-likelihood solu- can then sometimes replace the original dominant vari-
ant due to drift in gene frequencies. In this exampletion for the frequency of the states, the rate matrix, and

the branch lengths of an example phylogenetic tree. the consensus sequence would change from GC to AU
in a single step, and the GU sequences would remainStatistical tests are then used to compare the maximum-

likelihood values of the different models. as a minor variant throughout.
In phylogenetic studies, there is usually only one se-The most important issues to be considered when

comparing models are introduced at this point. First, quence available for each species, and there is no infor-
mation available on minor sequence variants that mightwe might expect that the frequency of GC pairs should

be equal to that of CG, that the frequency of GU should exist in the population. The substitution rates therefore
represent changes in the consensus sequence of thebe equal to that of UG, and that the frequency of AU

should be equal to that of UA. We refer to this as “base population and do not represent rates of mutation in
individual copies of a gene. Thus it is perfectly reason-pair reversal symmetry.” We wish to determine whether

models that allow arbitrary base pair frequencies fit the able to allow double substitutions in the rate matrix,
even though double mutations in single genes probablydata significantly better than models that assume base

pair reversal symmetry. Note that the first-mentioned almost never occur. Tillier and Collins (1998) and
Higgs (2000) have used models that allow double sub-base in the pair is the one closer to the 59 end of the

molecule. Thus, for example, it is possible to unambigu- stitutions and find that the observed values of double
substitution rates appear to be high. In this article weously distinguish a GC from a CG pair by this rule, and

the equivalence of GC and CG pairs does not follow as use likelihood methods to determine if models that
permit double substitutions fit the data significantly bet-a trivial point.

Second, we wish to determine how to treat mis- ter than models that disallow double substitutions.
matches. The 6- and 7-state models clearly throw away
information by ignoring mismatches or by treating them

MATERIALS AND METHODSin a simplified way. However, since the mismatch states
are rare, it may be that they give very little phylogenetic Definition of models: A model is defined by the matrix r,
information in any case, and it may be difficult to esti- where each element, rij, gives the rate of substitution to state

j given that the base pair is currently in state i. The theoreticalmate the parameters determining the rates of change
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TABLE 1

Definitions of models

Model Frequency Rate Free
ID no. parameters parameters Constraints parameters Reference

6A 6: p1, p2 . . . p6 15: aij 2 19
6B 6: p1, p2 . . . p6 3: as, ad, b 2 7
6C 3: p1, p2, p3 3: as, ad, b 2 4 Tillier (1994)
6D 3: p1, p2, p3 2: as, b 2 3 Tillier (1994)
7A 7: p1, p2 . . . p7 21: aij 2 26 Higgs (2000)
7B 4: p1, p2, p3, p7 21: aij 2 23
7C 7: p1, p2 . . . p7 10: aij 2 15
7D 7: p1, p2 . . . p7 4: as, ad, b, g 2 9 Tillier and Collins (1998)
7E 7: p1, p2 . . . p7 2: as, g 2 7 Tillier and Collins (1998)
7F 4: p1, p2, p3, p7 4: as, ad, b, g 2 6
16A 10: p1 . . . p16 5: as, ad, b, g, ε 2 19
16B 16: p1, p2 . . . p16 1: m 2 15 Schöniger and von Haeseler (1994)
16C 7: p1 . . . p6, pm 5: as, ad, b, g, ε 2 10
16D 4: pA, pC, pG, pU 4: a, b, l, φ 2 6
16E 4: pA, pC, pG, pU 3: a, b, l 2 5 Muse (1995) modified HKY
16F 4: pA, pC, pG, pU 3: a, b, l 2 5 Muse (1995) GU model
16G 0 3: a, b, g 1 2 Rzhetsky (1995)
16H 0 2: m, l 1 1 Muse (1995)

treatment of rate matrices has been developed in the context parameters minus the number of constraints. The constraints
are Equation 4, for all models, and Equation 3, where appro-of single site models (see, for example, Li and Gu 1996; Li

1997; Waddell and Steel 1997). The rate equations used priate. The models are assigned identification codes A, B, C,
etc. in order of decreasing numbers of free parameters. In allhere are equivalent to those used for single site models, with

the exception that the number of states is 6, 7, or 16, instead the models, states 1–6 refer to the principal paired states in
the following order: AU, GU, GC, UA, UG, CG. In 7-stateof 4. The probability Pij(t) that a base pair is in state j at time

t given that its ancestor was in state i at time zero satisfies models, state 7 is MM. In 16-state models, states 7–16 refer to
the 10 possible mismatch states in alphabetical order.

A general reversible model is the most general matrix of adPij

dt
5 o

k
Pikrkj. (1)

given number of states that satisfies Equation 5 (Li and Gu
1996; Waddell and Steel 1997). The most general reversibleThe diagonal elements of the matrix must satisfy 7-state model, labeled 7A, has 26 free parameters and is shown
in Figure 1. This model was used by Higgs (2000), but hasrii 5 2o

j?i
rij (2)

not previously been used with maximum-likelihood methods.
Since this model has many parameters we wish to considerto conserve probability, and this constraint is included in the
whether simpler models will fit the data equally well. Onedefinition of the models. At large times Pij(t) tends to pj, the
natural simplification to make is to impose base pair reversalequilibrium frequency of state j, irrespective of the initial state
symmetry on model 7A by setting p4 5 p1, p5 5 p2, and p6 5i. In some models the equilibrium frequencies are parameters
p3. This gives model 7B. Another possible simplification is toof the model; hence when fitting data we need to apply the
set all the a parameters corresponding to double substitutionsconstraint
to zero, giving model 7C. Changes to and from the MM state

o
i

pi 5 1. (3) are treated as single substitutions and are not set to zero in
7C. Tillier and Collins (1998) have also defined a 7-state
model, here called 7D, and shown in Figure 1. This has 7In other models, the frequencies are defined as functions of
frequency parameters and allows double substitutions. Theother parameters, in which case constraint (3) applies auto-
many independent aij parameters in 7A are simplified to just 4:matically. When comparing models it is useful to have a com-
as controls the single substitution rate, ad controls the doublemon time scale. We choose the time scale so that an average
substitution rate, b controls the double transversion rate, andof one substitution event per base pair happens in 1 time unit,
g controls substitutions to and from the mismatch state. Fol-hence the constraint
lowing the usual convention, we define a transition as a substi-

o
i

pi o
j?i

rij 5 1. (4) tution from one purine to another, or one pyrimidine to
another, and a transversion as a substitution from a purine

This constraint can be imposed by multiplication of all ele- to a pyrimidine or vice versa.
ments of the matrix by a constant factor. In addition, all the The three models 7B, 7C, and 7D are nested in model 7A;
models considered here are time reversible; i.e., they satisfy i.e., the simpler models are special cases of the more general

model obtained by setting some parameters equal or somepirij 5 pjrji. (5)
parameters to zero. Further simplifications of these models
are possible. If the double substitutions are set to zero in 7D,Table 1 shows the models tested and summarizes the param-
we obtain 7E. If base pair reversal symmetry is imposed oneters involved. The number of free parameters in a model is

the number of frequency parameters plus the number of rate 7D, we obtain 7F. The relationship between all these models



402 N. J. Savill, D. C. Hoyle and P. G. Higgs

Figure 1.—Definition of the rate matrix for models 7A
and 7D.

is shown in Figure 2, where an arrow indicates that the model
Figure 2.—Relationships between the three groups of mod-at the head of the arrow is nested in the model at the tail.

els. Each of the solid arrows indicates that the model at theThe 6-state models are similar to the 7-state models, except
head of the arrow is nested within the model at the tail.that they lack the MM state. Model 6A is the general reversible
Statistical tests are made for each pair of models related in6-state model. Models 6B and 6C are obtained by eliminating
this way. The dashed arrow indicates that a statistical test isthe MM state from models 7D and 7F, respectively. Model 6D
made between the models that does not require the modelsis obtained by setting double transitions to zero in 6C. These
to be nested.6-state models form a simple nested series, as shown in Figure

2. Models 6C and 6D were originally proposed by Tillier
(1994).

Muse (1995) proposed three models. The simplest, 16H,In principle we could define a general reversible 16-state
has only one free parameter after scaling the time. The secondmodel with 134 free parameters; however, we do not believe
model, 16E, was termed the “modified Hasegawa-Kishino-Yanosuch a complex model would be practical, and we have not
(HKY) model” as it has several features in common with theattempted this. To facilitate comparison between the 6- and
model of Hasegawa et al. (1985) for single site evolution. It7-state models and the 16-state models we have introduced
distinguishes between transition and transversion rates andmodels 16A and 16C, which are similar in spirit to model 7D.
allows the frequencies of the four bases to differ. The thirdThe full matrix for 16A is shown in Figure 3. There are 16
model, 16F, is similar to 16E, but differs in its treatment offrequency parameters for the 16 states. The rate parameters
GU and UG pairs. In 16E, GU and UG pairs behave exactlyfor the 6 principal states are the same as those in 7D. Rates
as mismatches, whereas in 16F they behave exactly as Watson-of single substitutions to and from mismatch states are con-
Crick pairs. In natural RNA sequences, GU and UG frequen-trolled by a parameter g, and rates of single substitutions
cies are considerably lower than the Watson-Crick states, butbetween mismatch states are controlled by a parameter ε.
considerably greater than the mismatch states. We have there-Model 16C further simplifies the treatment of mismatches
fore introduced a model 16D by adding an extra parameterby setting the frequencies of all 10 mismatches to a single
φ that enables the GU and UG pairs to have intermediateparameter pm. Models 16A and 16C are the only 16-state mod-
frequencies. The full rate matrix for 16D is given in Figureels that allow a nonzero rate of double substitutions.
4. The equilibrium frequency pXY of a base pair XY is relatedIn the model proposed by Schöniger and von Haeseler
to the frequencies of the two bases pX and pY by pXY 5 kpXpYl

2(1994), the rates are defined as rij 5 pj if states i and j differ
if X and Y form a Watson-Crick pair; pXY 5 kpXpY φ2 if X andby a single substitution and zero otherwise. To apply Equation
Y are GU or UG; pXY 5 kpXpY if X and Y form a mismatch.4 we introduce an extra factor m, so that rij 5 mpj, and then
The constant k is determined byscale m to satisfy (4). This model, termed 16B, is identical to

that of Schöniger and von Haeseler (1994), except for the 1/k 5 2(l2 2 1)(pApU 1 pGpC) 1 2(φ2 2 1)pGpU 1 1. (6)
timescale. Since the timescale does not affect the maximum-
likelihood value, the statistical tests on 16B also apply to the This model reduces to 16E if φ 5 1 and to 16F if φ 5 l. In

addition, model 16E reduces to model 16H if all the fourmodel as originally defined.
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Figure 3.—Definition of
the rate matrix for model
16A.

bases have equal frequency and there is no difference between confirmed the tree topology using the dnaml and dnapars
programs in the Phylip package (Felsenstein 1995).transitions and transversions.

Rzhetsky (1995) also proposed a 16-state model, labeled The sequence alignments and the positions of the conserved
secondary structures given by van de Peer et al. (1998) were16G. This model is a simplification of 16B, which is obtained

by setting the frequencies of the four Watson-Crick states to taken to be correct. This analysis uses only the paired regions
of the sequence and ignores the loop regions. We have pre-be equal, the frequencies of GU and UG to be equal, and the

frequencies of the mismatch states to be equal. The relation- viously analyzed the frequencies of base pairs in a set of over
400 sequences from the same database that includes a repre-ship between the 16-state models is shown in Figure 2.

The maximum-likelihood calculation: A set of eubacterial sentative from each genus of eubacteria (Higgs 2000). In
general it is found that GU and UG pairs have low frequencies,small subunit ribosomal RNA sequences was obtained from

the rRNA database (van de Peer et al. 1998). The object is not as would be expected if they are slightly deleterious. However,
a small fraction of the paired sites have a GU or UG pair into test the tree topology but to test the evolutionary models;

therefore we chose five species for which the rRNA phylogeny a majority of sequences. This suggests that these pairs are
positively selected when they occur at particular points in theis well established. Bacillus subtilis is a member of the gram-

positive bacteria and is an outgroup to the remaining four structure (see also Rousset et al. 1991; Gautheret et al. 1995).
Such sites violate the assumptions of all the models discussed inproteobacteria. Rhodomicrobium vannielii and Sphingomonas cap-

sulata are examples of the alpha proteobacteria subdivision, this article, which treat GU and UG pairs as slightly deleterious
alternatives to Watson-Crick pairs. For this reason, paired siteswhile Escherichia coli and Pseudomonas aeruginosa are examples

of the gamma proteobacteria subdivision. The tree is shown at which the observed GU frequency or UG frequency in the
full set of sequences was .50% were excluded from the analy-in Figure 5 in unrooted form. This tree is the one given

by both the National Center for Biotechnology Information sis carried out in this article. The analysis was carried out on
296 pairs (i.e., 592 sites) that satisfied these criteria. The effecttaxonomy browser (Leipe and Soussov 1995) and the Ribo-

somal Database Project (Maidak et al. 1999). In addition we of inclusion vs. exclusion of these pairs is discussed in more

Figure 4.—Definition of the rate matrix for model 16D.
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to the rates and frequencies were discarded. Checks were
made that the algorithm converged to the same optimal pa-
rameter values from different starting points. For some of the
models we also checked the results from our optimization
algorithm against results obtained using a simple simulated
annealing algorithm (Kirkpatrick et al. 1983; Kirkpatrick
1984) to locate the maximum-likelihood values of times and
model parameters. No significant differences were found be-
tween the results of our hill climbing algorithm and the simu-
lated annealing algorithm, indicating that the hill climbing
algorithm was indeed adequate for the task. For each set ofFigure 5.—The phylogenetic tree used for testing the
rates, the optimum times were calculated to the nearest 0.001models.
unit for the 6- and 7-state models, and to the nearest 0.01 unit
for the 16-state models, since these required greater computer
time to calculate.detail by Higgs (2000), using a different method of sequence

Statistical tests: Having estimated the maximum-likelihoodanalysis. Elimination of these unusual pairs does not favor any
parameter set for each of the models, we have a likelihoodone model over any other and therefore does not influence
value L for each model, which is the likelihood of the giventhe model selection criteria in this article.
sequences on the given tree assuming the optimized valuesWhen testing the models we assumed that the topology of
of the parameters. In general a larger L indicates a better fitthe tree was fixed, but not the branch lengths. For each model
of the model to the data; however, in choosing between modelswe obtained the parameter set that maximized the likelihood
it is not sufficient to select the one with the highest L. Thereof observation of the given sequences on the given tree. Meth-
is a tendency for models with more parameters to give higherods of calculating the likelihood are discussed by Felsenstein
L values. In fact, in cases where models are nested, the one(1981), Swofford et al. (1996), and Li (1997). In our case,
with the larger number of parameters will always give thethe adjustable parameters consist of the parameters defining
higher L. However, the use of additional parameters is some-the model (as defined in the previous section and in Table
times not justified statistically.1) and the seven branch lengths in the unrooted tree (as

A criterion often used to compare models is the Akaikeshown in Figure 5).
information criterion (AIC; Linhart and Zucchini 1986),When using the six-state models, a decision had to be made
defined as AIC 5 2ln L 1 number of free parameters (oras to what to do with the mismatch states that do actually
sometimes as twice this). Theory suggests that the model withoccur in the real sequences. Positions where there are many
the lowest AIC is to be preferred. The AIC thus penalizesmismatches do not count as paired sites in the consensus
models with too many parameters.secondary structure in the database, and therefore these sites

The likelihood-ratio test (LRT) makes a direct comparisonare not considered. However, there remain sporadic mis-
between two models H0 and H1, where H0 is the simpler modelmatches occurring rather randomly throughout the sequence
nested within the more general model H1. If L0 is the likelihoodalignment in positions where almost all the other sequences
of the data according to H0, and L1 is the likelihood of theare properly paired. We did not wish to discard the complete
data according to H1, then the LRT proceeds by calculatingcolumn of data from the sequence alignment, simply because
the logarithm of the likelihood ratio: d 5 ln(L1/L0). Even ifa single sequence in the set had a mismatch at that position.
H0 is perfectly valid d will still be positive, since H1 has a largerTherefore, any mismatch states that occurred were treated as
number of parameters with which to fit the data. Theory showsbeing the same as the Watson-Crick pair that has the same 59
(Linhart and Zucchini 1986) that if the simpler model isbase; i.e., AA, AC, and AG are treated as AU, while GA and
true then 2d will be distributed according to a x2 distributionGG are treated as GC, etc. In this way the mismatch states are
with the number of degrees of freedom equal to the differencedistributed roughly equally between the four main states.
in the number of parameters between the two models. As aThe maximum-likelihood values of the parameters for each
significance test we can calculate the probability P that 2dmodel were calculated as follows. An initial estimate of the
from the x2 distribution will be greater than the observedstate frequencies was obtained by measuring the average fre-
value of 2d. A small P indicates that the observed result isquencies in the data. The initial rate matrix was estimated by
unlikely to occur by chance if H0 is an adequate model, andcalculating the frequency of changes of states between pairs
hence that H1 is a significantly better fit to the data. A largeof sequences. The individual rates were estimated by calculat-
P indicates that introduction of the extra parameters in H1ing the number of differences of each type between sequence
does not significantly improve the fit given by H0.pairs and normalizing using Equation 4. The rates were then

The proofs of the AIC and LRT rely on the asymptoticaveraged over all pairs of sequences. The initial times were
assumption, i.e., that there is a very large amount of data.estimated by finding the maximum-likelihood divergence time
For the case of phylogenetic methods this means that thefor pairs of sequences given the initial estimation of the rate
sequences should be extremely long. Goldman (1993) hasmatrix.
cast doubt on the validity of these asymptotic tests for analysisOnce initial values of the parameters had been estimated
of biological sequences of realistic length and has proposedan iterative algorithm was used to calculate the maximum
that Cox’s test should be used instead. This test (Cox 1962)likelihood of the data. The algorithm was iterated until the
works by calculating d for two models as in the LRT. Althoughmaximum likelihood converged (typically 1000–2000 itera-
the distribution of d cannot be calculated analytically if thetions but this depends on the model being studied). At each
asymptotic results do not apply, it can still be simulated numer-iteration a small random change was made to a single rate
ically. After fitting the real data and calculating the maximum-parameter and a single frequency parameter. Pij(t) was solved
likelihood parameters according to both models, a large num-by numerical integration of Equation 1 and the maximum-
ber of sets (typically 100) of simulated sequences are generatedlikelihood values of the times were calculated by a hill climbing
using the model H0. Each of the simulated sets is then refittedmethod in time-space. If the new value of the maximum likeli-
using both models, and a histogram of d values is obtainedhood was greater than the best value found so far, the new

parameter values were retained. Otherwise, the changes made for the simulated sets. The significance probability P is the
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TABLE 2 three groups of models because the states are different,
and the sequence data are treated in a different way.Maximum-likelihood and AIC values
The more possible states there are, the smaller the likeli-
hood of change between any two individual states.Model ID no. 2ln L AIC
Hence models with more states have lower likelihoods

6A 1154.95 1180.95 and higher AICs, but this does not tell us anything about
6B 1180.76 1194.76

the relative merits of the three groups of models.6C 1185.00 1196.00
Table 3 shows the outcomes of the statistical tests6D 1201.56 1211.56

between the model pairs. Tests are carried out for pairs7A 1200.41 1233.41
7B 1205.27 1235.27 of models linked by arrows in Figure 2. The number of
7C 1222.51 1244.51 degrees of freedom (d.f.) for each test is also given. The
7D 1228.87 1244.87 significance values for the LRT are P values obtained
7E 1243.36 1257.36 from a x2 table. For all but two of the Cox tests, 100
7F 1233.07 1246.07

replicates were performed. In many cases there wereNP 911.60 NA
no simulated d values greater than the real value, and16A 1246.24 1272.24
we quote this as a significance of P , 1/100. For cases16B 1274.12 1296.12

16C 1261.03 1278.03 where there were n simulated values higher than the
16D 1274.60 1287.60 real value out of m replicates we have quoted P , (n 1
16E 1291.04 1303.04 1)/m. Where the level of significance P was small and
16F 1308.42 1320.42 the outcome of the Cox test critical in affecting our final
16G 1850.62 1859.10

choice of model, we have performed a larger number of16H 1365.52 1373.52
replicates to reduce the expected error in the estimated

NA, not applicable. level of significance obtained from the Cox test. This
was the case for the comparison of 16A and 7A, where
we performed 270 replicates, and for the comparisonfraction of the simulated sets that have d higher than the
of 7B and 7A, where we performed 200 replicates.observed value for the real data. This test is to be preferred

over the other two since it involves no assumptions on the We discuss the 6- and 7-state models together, since
distribution of d; however, it requires very much greater com- the conclusions are very similar. The question of
puter time. In cases where the tree topology is not known, it whether base pair reversal symmetry is valid is addressed
is usual to estimate the maximum-likelihood tree topology for

by the comparison 7B-7A in Table 3. The more generalboth the real data and each set of simulated data when doing
model gives a significantly better fit with P , 0.025the Cox test. We did not do this. When fitting the simulated

data the tree topology was kept fixed while the branch lengths according to the LRT and a marginally significant better
and rate parameters were varied, in the same way as was done fit with P , 0.055 according to the Cox test. The distribu-
for fitting the real data. As long as the same procedure is used tions are shown in Figure 6. Once again the more gen-
for fitting the real and the simulated data, the statistical test

eral model has the lower AIC and consequently overallis valid.
we consider 7A to be a better model than 7B. The sameThe adequacy of the most general models cannot be tested

by comparison to any of the other models. However, they question is also addressed by the comparisons 7F-7D
can be compared to a nonparametric (NP) model (Goldman and 6C-6B. In both these cases the more general model
1993). A position along the aligned sequences will exhibit a has the lower AIC, suggesting that we should not make
combination C of states called a pattern. This pattern occurs

the assumption of base pair symmetry. However, thewith a certain frequency in the aligned sequences. The maxi-
two tests for 7F-7D and 6C-6B give P 5 4 or 5%, whichmum-likelihood solution for the NP model takes the form
is only marginally significant. Higgs (2000) has also

L 5 p
C

(NC/N)NC, (7)
observed that GC frequency is considerably higher than
CG frequency in several large datasets of RNA se-where NC is the number of occurrences of the pattern C in
quences, but it is not clear what the cause of this couldthe aligned sequences. We carried out the Cox test for model

7A vs. the seven-state NP model. be. Thus, taken together, the results suggest that there
may be some effect present that breaks the symmetry
between these apparently equivalent states, but in ab-

RESULTS
sence of a theory as to why this should happen, and in
view of the borderline statistical significance, it is notThe values of the log-likelihood and the AIC statistical

test as well as the optimal phylogenetic tree times for possible to rule out that the apparent loss of base pair
reversal symmetry is a result of chance alone.each model are shown in Table 2. Since the lowest AIC

is to be preferred, we see that the general reversible The comparison 7C-7A tests whether double substitu-
tion rates may be set to zero. The answer is clearly no:6-state model 6A is the best of the 6-state models, the

general reversible 7-state model is the best of the 7-state 7A is a better fit than 7C with very significant P values
according to both pairwise tests. Also, the AIC is lowermodels, and model 16A is the best of the 16-state models.

Note that AIC values cannot be compared between the for 7A than 7C; hence all three tests are in agreement.
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TABLE 3

Likelihood-ratio and Cox’s tests

Model comparison

H0 H1 d.f. d 5 ln L1 2 ln L 0 P(LRT) P(Cox)

6B 6A 12 25.81 ,0.001 ,1/100
6C 6B 3 4.24 ,0.04 ,5/100
6D 6C 1 16.56 ,0.001 ,1/100
7B 7A 3 4.83 ,0.025 ,11/200
7C 7A 11 22.10 ,0.001 ,1/100
7D 7A 17 28.46 ,0.001 ,1/100
7E 7C 6 20.85 ,0.001 ,1/100
7E 7D 2 14.49 ,0.001 ,1/100
7F 7B 17 27.82 ,0.001 ,1/100
7F 7D 3 4.20 ,0.042 ,4/100
7A NP NA 288.81 NA ,1/100
16B 16A 4 27.88 ,0.001 —
16C 16A 9 14.80 ,0.007 —
16G 16B 13 576.51 ,0.001 —
16E 16D 1 16.44 ,0.001 —
16F 16D 1 33.82 ,0.001 —
16H 16E 4 58.78 ,0.001 —
16D 16A NA 28.36 NA ,1/100
16A 16D NA 228.36 NA ,100/100
16A 7A NA 45.82 NA ,21/270
16A 7D NA 17.37 NA ,28/100
16A 6A NA 92.29 NA ,45/100
16A 6B NA 65.48 NA ,59/100

NA, not applicable.

The histogram of d values from Cox’s test is shown in have assumed equal rates of substitution at each site.
Relaxing this assumption may give better models butFigure 6, in comparison to the 1⁄2x2 distribution (ex-

pected according to the LRT) and to the real value in also may increase the number of parameters to fit. Com-
parison with the NP model is a very stringent test, andthe data (denoted by an arrow). It can be seen that

the real value is completely outside the range of the it seems unlikely that any reasonably tractable model
would ever pass the test when applied to real sequencedistribution, hence P is very much ,1% and it would

require many more than 100 replicates to estimate a data. This test is rather unhelpful since it tends to reject
models without proposing any better alternative.true P value. The question of zero vs. nonzero rates of

double substitutions is also addressed by the comparison One point that can be seen for all the results with
the 6- and 7-state models is that the Cox test with numeri-of 7E-7D, in which the parameters ad and b are set to

zero, and 6D-6C in which ad is set to zero (note that b cal simulation of the d distribution always gives very simi-
lar results to the much simpler LRT. The conclusioncannot be zero in the 6-state model, otherwise the states

are divided into two inaccessible subsets of three). In reached on significance is the same in every case, and
the simulated distributions differ rather little (if at all)both these two comparisons the model with the nonzero

rates gives a much better fit (very low P values) and also from the 1⁄2x2 distributions assumed by the LRT. There-
fore it would seem that the LRT is an appropriate testgives a lower AIC.

Model 7D is of interest because it is the most complex for analysis of these sequences despite the original
doubts that there may not be sufficient data to be inof the models for which an analytical solution is available

(Tillier and Collins 1998). Model 7D has 17 fewer the asymptotic regime. It was also found that the Cox
test on the 16-state models was extremely slow (note thatparameters than 7A, which gives it a large advantage on

the AIC test. Nevertheless, the general model has a much every comparison requires 200 runs of the maximum-
likelihood program). For these two reasons we did notlower AIC. It can also be seen (Figure 6 and Table 3)

that 7A gives a highly significant improvement over 7D. perform a Cox test for every pair of 16-state models and
decided to rely on the results of the LRT. The CoxEven though the general model 7A outperforms the

alternatives, comparison with the nonparametric model test was only performed for the 16D-16A and 16A-16D
comparisons, for which the LRT is not valid becausein Table 3 indicates that it is still not an adequate de-

scription of the data. A likely reason for this is that we the models are not nested.
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Figure 6.—Distributions
of d for four of the pairwise
comparisons between mod-
els. The histograms indicate
distributions simulated by the
Cox test. The continuous dis-
tributions in the first three
graphs are 1⁄2x2 distributions.
Observed values of d are indi-
cated by arrows.

The two best 16-state models according to the AIC significantly better than 16D (P , 0.01)]. The simulated
distribution of d values is shown in Figure 6, from whichare 16A and 16C. These are the two models that have

nonzero rates of double substitution. The model of it can be seen that the majority of simulated values are
negative; i.e., if 16D were the true model, then 16ASchöniger and von Haeseler (1994), 16B, is nested

in 16A (by setting ad and b to zero and as 5 g 5 ε). would usually not fit the data better than 16D. In con-
trast, d is positive for the real data, indicating that it isModel 16A is significantly better than 16B by the LRT

and the AIC. Model 16C also performs less well than better explained by 16A. This test can also be performed
in the reverse direction by using 16A to simulate the16A, although it is still better than any of the other 16-

state models. In model 16C the frequencies of all the data. In this case d is negative for the real data, and
none of the simulated data give a d as low as this (i.e.,mismatch states are set equal to one another. This result

shows that there is a significant improvement in the P , 100/100). Thus if 16A were the true model then
it would be highly unlikely that the difference in likeli-likelihood if all the mismatch frequencies are allowed

to vary independently. hood between the two models would be as high as it is.
From this point of view we can conclude that 16A isOf the two models 16E and 16F proposed by Muse

(1995), 16E is the better. We proposed model 16D as not an entirely adequate description of the real data.
Nevertheless it is still better than any of the alternativesa generalization of both of these two to allow the LRT

to be performed. The comparisons 16E-16D and 16F- considered.
Through use of the Cox test we can compare the16D by the LRT indicate that 16D is a significant im-

provement over both the others. The maximum-likeli- performance of models with differing numbers of states.
We have performed Cox tests between the best modelshood values of the parameters in 16D were l 5 13.41

and φ 5 2.93. The fact that φ is closer to 1 than to l in each class, i.e., between 16A and 7A, and between
16A and 6A. We have also compared 16A with 7D andindicates that the GU and UG pairs are closer in behav-

ior to the mismatch pairs than to Watson-Crick pairs 6B, since these two models have exactly the same form
of the matrix for the principal states as 16A. The testsaccording to this model.

The AIC suggests that all three models 16D, 16E, and give P values between 7 and 59%; i.e., there is no evi-
dence for rejecting 16A. The 7% value for the 16A-7A16F perform less well than 16A and 16C. This cannot

be checked by the LRT because the models are not comparison is the smallest of these four values, which
gives some degree of support to choosing 7A as thenested. We therefore performed a Cox test between

16D and 16A [in Table 3, with the result that 16A is single best model. It is unfortunate that these tests can-
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TABLE 4

Branch lengths

Model
ID no. T1 T2 T3 T4 T5 T6 T7

6A 0.306 0.043 0.071 0.160 0.162 0.143 0.126
6B 0.296 0.050 0.079 0.162 0.153 0.144 0.132
6C 0.295 0.049 0.081 0.163 0.151 0.145 0.130
6D 0.597 0.120 0.172 0.380 0.351 0.337 0.277
7A 0.338 0.050 0.084 0.195 0.150 0.143 0.144
7B 0.335 0.050 0.086 0.193 0.144 0.146 0.140
7C 0.887 0.141 0.244 0.520 0.409 0.437 0.390
7D 0.330 0.053 0.090 0.194 0.132 0.145 0.149
7E 0.673 0.109 0.201 0.366 0.290 0.300 0.303
7F 0.329 0.052 0.093 0.195 0.130 0.147 0.147
16A 0.60 0.02 0.17 0.37 0.24 0.29 0.32
16B 0.98 0.16 0.32 0.67 0.43 0.49 0.49
16C 0.35 0.06 0.10 0.21 0.14 0.15 0.16
16D 0.85 0.12 0.27 0.49 0.39 0.41 0.33
16E 0.83 0.12 0.27 0.48 0.37 0.38 0.30
16F 1.06 0.15 0.36 0.64 0.47 0.52 0.49
16G 0.44 0.09 0.12 0.25 0.26 0.25 0.19
16H 0.78 0.04 0.15 0.41 0.32 0.33 0.31

not be performed in the reverse direction. If 7-state wherever there have been compensatory changes this
counts as two changes in state. In the other models amodels are used to generate the data, then the data will

contain MM states that cannot be treated properly in double substitution usually occurs as a single step. The
same effect shows up in the 7-state models, where the16-state models or in 6-state models. If 6-state models

are used to generate the data, there will be no mismatch branch lengths are apparently much larger in models
7C and 7E where double substitution rates are zero.states of any kind, hence there will be no point in fitting

the simulated data to 7-state and 16-state models. Thus The times are also larger for 7-state models and corre-
sponding 6-state models (e.g., 7A and 6A) because thewe cannot reject 16A in favor of any of the other models,

but, equally, we cannot reject the others in favor of 16A. 7-state models count changes to and from mismatch
states that are not counted in 6-state models. In termsThese tests are therefore not very helpful in deciding

how many states to use. of relative branch lengths, however, there is not much
difference between the 6- and 7-state models. It is theWhen choosing a rate model for molecular phyloge-

netics, it is not just the likelihood value that needs to relative values of the lengths that are most important,
because the absolute values only have a meaning if abe taken into account, but also the speed of calculation.

Sixteen-state models require considerably more time for molecular clock calibration is used to assign times to
the different branch points on the tree (which we havelikelihood calculations; therefore, since we have been

unable to demonstrate a clear advantage for any of the not attempted with these data). For the 16-state models,
there is considerable difference in the branch lengths16-state models, we propose not to use them in our future

phylogenetic studies. Our preference is for model 7A, according to the different models. This is another rea-
son why we prefer the 6- and 7-state models to the 16-from the results of the above tests, and model 7D, since

this is the best of the models that is analytically solvable. state models.
The analytical solution again allows savings in computer
time in ML methods and easy calculations of pairwise

DISCUSSIONdistances for use in distance matrix methods.
The ML values of the seven branch lengths of the The work in this article was begun as a statistical

tree are given in Table 4. Since the rates are normalized support for the study of RNA helix evolution by Higgs
so that there is one substitution event per unit time on (2000), which analyzes large sequence datasets of
average, these branch lengths are the mean number of tRNAs, rRNAs, and ribonuclease P RNAs using model
substitution events per base pair on each branch. Here 7A. The emphasis in the previous article was on under-
an “event” is either a single or double substitution. The standing the mechanism of evolution and the effects of
sets of branch lengths are almost identical for the first thermodynamics on sequence evolution, whereas this
three 6-state models, but for 6D they are all much larger. article emphasizes model selection. Since 7A has been

shown to be one of the best models for the small set ofThis is because 6D disallows double substitutions; hence
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TABLE 5

Maximum-likelihood values of the parameters in model 7A

Base pair Frequency Mutability

GC 0.362 0.49
CG 0.298 0.63
AU 0.113 1.34
UA 0.180 1.03
GU 0.015 4.13
UG 0.019 7.07
MM 0.013 8.00

Elements of the rate matrix

Base pair 1 2 3 4 5 6 7

AU GU GC UA UG CG MM
1 AU — 0.10 0.54 0.35 0.09 0.13 0.13
2 GU 0.73 — 2.0 0.00 0.90 0.38 0.12
3 GC 0.17 0.08 — 0.01 0.07 0.12 0.04
4 UA 0.22 0.00 0.03 — 0.20 0.46 0.12
5 UG 0.53 0.72 1.27 1.87 — 1.10 1.58
6 CG 0.05 0.02 0.15 0.28 0.07 — 0.06
7 MM 1.18 0.14 1.03 1.74 2.44 1.47 —

sequences used here, we compare these results to those the method given in Higgs (2000) efficiently uses infor-
mation from very many sequences, even though it is lessin the previous article. The complete maximum-likeli-

hood rate matrix for 7A is also shown in Table 5, to- rigorous than the ML method. We emphasize that the
results obtained in this article support the conclusionsgether with the maximum-likelihood values of the fre-

quencies and the mutabilities. The mutability of a state given in the previous article regarding the relative rates
of different types of substitution and the influence ofis the net rate of substitution from that state to all other

states (i.e., it is the negative of the element on the diago- thermodynamics on the substitution process.
The ranking order of the models given by the testsnal of the rate matrix). A mutability of 1.0 indicates

that the state changes at the average rate for the whole used here applies only to the particular set of sequences
used and should therefore be treated with some caution.sequence.

It can be seen that GC and CG pairs have low mutabili- However, we believe that very similar selective effects
are occurring in helical regions of many types of RNA,ties and high frequencies, that AU and UA pairs have

moderate frequencies and mutabilities, and that GU, as was discussed fully by Higgs (2000). Therefore we
expect that the models that perform best in this analysisUG, and MM pairs have low frequencies and high muta-

bilities. The order of the base frequencies is the same will also generally be the best models for describing
other RNAs with conserved structure. This will be testedas that of the thermodynamic stability of stacking inter-

actions. This shows that sequences are selected to in- in further work.
Although it is clear from the statistical analysis thatcrease the thermodynamic stability of the secondary

structure. It can also be seen that rates of double transi- general models such as 7A give significantly higher likeli-
hoods than analytically tractable models like 7D, thetions are large; e.g., AU to GC and UA to CG are actually

higher than the rates of the single transitions AU to GU analysis does not say why this is. However, it is not diffi-
cult to see why there should be a lack of symmetry inand UA to UG. This shows that the single-step compen-

satory mutation mechanism is occurring frequently in the rate matrix. First, real molecules may be subject to
mutational bias, such that new bases do not arise withthese sequences. The five sequences used here are a

subset of the rRNA-1 set used by Higgs (2000). The equal frequency. Second, there are many different selec-
tive effects. As discussed above, we believe that doublevalues of the parameters are close to those obtained for

the rRNA-1 set but not identical because of the method substitutions are occurring via a single-step compensa-
tory mechanism. The rate at which this occurs is stronglyof fitting the model to the data. The ML method used

here has the advantage of allowing rigorous statistical influenced by the fitness of the intermediate state. Dou-
ble transitions between Watson-Crick pairs occur via GUtests, but is limited to a small number of sequences

because of the computer time required. We consider it and UG intermediates, whereas double transversions
have to pass via true mismatches like GG or CC. Truean open question which of these methods gives a more

accurate estimation of the true rate parameters, since mismatches have a much greater destabilizing effect on
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