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ABSTRACT
This article proposes a quick method for computing approximate threshold levels that control the

genome-wise type I error rate of tests for quantitative trait locus (QTL) detection in interval mapping
(IM) and composite interval mapping (CIM). The procedure is completely general, allowing any population
structure to be handled, e.g., BC1, advanced backcross, F2, and advanced intercross lines. Its main advantage
is applicability in complex situations where no closed form approximate thresholds are available. Extensive
simulations demonstrate that the method works well over a range of situations. Moreover, the method is
computationally inexpensive and may thus be used as an alternative to permutation procedures. For given
values of the likelihood-ratio (LR)-profile, computations involve just a few seconds on a Pentium PC.
Computations are simple to perform, requiring only the values of the LR statistics (or LOD scores) of a
QTL scan across the genome as input. For CIM, the window size and the position of cofactors are also
needed. For the approximation to work well, it is suggested that scans be performed with a relatively small
step size between 1 and 2 cM.

MAPPING of quantitative trait loci (QTL) is of mulas for approximate critical thresholds in BC1 and F2

populations, which are applicable in the intermediategrowing interest to both breeders and geneticists
(Liu 1998; Lynch and Walsh 1998; Kao et al. 1999). map density case. They demonstrated good perfor-

mance of these thresholds using simulations (see alsoQTL mapping procedures such as interval mapping
(IM; Lander and Botstein 1989) and composite inter- Doerge and Rebaı̈ 1996). The authors also indicated

that the results of Davies (1977, 1987) are potentiallyval mapping (CIM; Jansen 1993; Zeng 1993, 1994) in-
volve tests of the null hypothesis that a QTL is absent. useful for deriving critical thresholds in other popula-

tions and exemplified this for the case of a diallel cross.For a putative QTL position, the likelihood-ratio (LR)
Dupuis (1994) gave another approximation, which intest statistic asymptotically follows a x2-distribution with
simulations by Doerge and Rebaı̈ (1996) has beendegrees of freedom equal to the number of associated
shown to be somewhat less accurate than that of Rebaı̈QTL effects. Since the QTL position is not known, multi-
et al. (1994), leading to slightly inflated type I errors. Aple tests are performed in small steps across the whole
different approach to deriving critical threshold is thegenome. To control the genome-wise type I error rate,
permutation test procedure advocated by Churchillsome form of adjustment of the critical threshold value
and Doerge (1994) and Doerge and Churchillof the test statistic is necessary. Lander and Botstein
(1996). The great advantage of this approach is its con-(1989, 1994) have provided formulas for approximate
ceptual simplicity, its distribution-free nature, and thecritical thresholds in IM for a backcross (BC1) popula-
general applicability in different population structures.tion, which are appropriate under the assumption of
A serious drawback is the computational workload. Foran infinitely dense map. Feingold et al. (1993) sug-
example, to compute a critical threshold for a genome-gested an approximation, which works well for rather
wise type I error rate of 0.01, at least 10,000 permuta-dense maps (Rebaı̈ et al. 1994). Further approximations
tions are required to obtain a reasonably accurate esti-for dense (,1 cM) and sparse maps are given by Dupuis
mate of the threshold (Doerge and Rebaı̈ 1996). Forand Siegmund (1999). Lander and Botstein (1989),
a type I error of 0.05, a sample of 1000 permutations isvan Ooijen (1992), and Darvasi et al. (1993) provided
usually regarded as sufficient (Churchill and Doergesimulation-based critical values for a number of settings
1994). In routine applications, where many traits needin the intermediate map density case. Using results of
to be analyzed, permutations can pose a formidableDavies (1977, 1987), Rebaı̈ et al. (1994) provided for-
workload.

The purpose of this article is to suggest a quick method
to compute approximate threshold values for both IM
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allows any population structure to be handled easily. A need for simulation to compute the approximate thresh-
old is not mentioned by Davies (1987), however. Infurther advantage is computational speed, which is only

of the order of a few seconds, given the LR or LOD fact, his quick procedure requires only very elementary
calculations using the values of the test statistic for aprofile. The thresholds obtained for real data are com-

pared to those derived by permutation. A simulation is fine grid of positions across the chromosome. Davies
did use simulations to verify that his procedure does,conducted to check the appropriateness of the approxi-

mation. in fact, control the type I error rate and has good power.
Because of its simplicity and generality, Davies’ quick
procedure promises to be very useful for computing

THEORY
approximate thresholds for a wide variety of experimen-
tal populations such as advanced backcrosses, for whichThe most common approach to the multiple testing

problem is a Bonferroni adjustment of the significance the more refined approximations are difficult to obtain.
In what follows, application of Davies’ quick method tolevel (Hochberg and Tamhane 1987). When per-

forming M tests, each individual test is assigned a com- IM and CIM is outlined.
Controlling the chromosome-wise error rate: In thisparison-wise significance level of a/M, which guarantees

the overall type I error rate to be below a. This method article, it is assumed that QTL are mapped by either
IM or CIM using the ML method (Lander andworks fine so long as the number of tests is small. In

QTL mapping the number of tests is bounded only by Botstein 1989; Zeng 1994). Thus, LR tests are per-
formed across a grid of locations on the chromosome,the step size chosen as we scan across the genome. When

the step size tends to zero, the number of tests (M) so the problem is to find a critical threshold for the LR
test statistic that will control the chromosome-wise typeapproaches infinity, and the Bonferroni approach

breaks down. Essentially this is because correlations I error rate. The proposed method is completely general
and not restricted to a particular type of population.among tests at adjacent points on the chromosome are

not exploited. The underlying model assumes a mixture of normal
distributions with constant variance and location param-A key to finding a useful procedure is to realize that

in significance testing for QTL, we are in a situation eters depending on the QTL effects. The mixing pro-
portions are given by the genotype frequencies and willwhere a nuisance parameter, i.e., the position of the

QTL, is present only under the alternative hypothesis be specific to the particular population structure under
study:(Rebaı̈ et al. 1994, 1995). Since the nuisance parameter

is not known even under the alternative, a profile of
T(u) is the LR test statistic at the putative QTL positionthe test statistic across the permissible interval for the

u in centimorgans; LOD(u) 5 T(u)/[2 log(10)].nuisance parameter is constructed, and we choose the
a is the chromosome-wise type I error rate.maximum of that profile to perform just one test. Under
C is the critical threshold value for LR test statistic.the null hypothesis, the nuisance parameter (QTL posi-
k is the number of genetic effects for the putative QTLtion) is undefined, so that standard techniques are not

(k depends on the population being studied. Exam-applicable for deriving the null distribution of the test
ples: For a backcross population, k 5 1, i.e., one allelicstatistic unconditionally on the nuisance parameter. For
substitution effect. For an F2 population, k 5 2, i.e.,the situation of testing a hypothesis when the nuisance
one additive and one dominance effect).parameter is present only under the alternative, Davies

(1977, 1987) provided an upper bound to the type I It is assumed that T(u) is a continuous function of u,
error rate, which is based on the assumption that the except for a finite number of jumps in the first derivative
series of tests for different values of the nuisance param- with respect to u. A further assumption is that condi-
eter form a chi-square process. An evaluation of the tional on the QTL position T(u) follows a x2-distribution
upper bound provides an approximate critical thresh- with k d.f. To detect QTL, the chromosome is scanned
old. Rebaı̈ et al. (1994, 1995) found an explicit formula and the maximum of T(u) is determined over a grid
for the upper bound in case of QTL mapping for a BC1 for u [max T(u), say]. The null hypothesis of no QTL
and an F2 population. The derivations are algebraically on a given chromosome is rejected when max T(u) .
quite involved, however, even for the simplest case of a C. For a given critical value C, the chromosome-wise
BC1 population, and extension to other, more complex, type I error rate is bounded above by
designs seems rather complicated.

Davies (1987) had also suggested a “quick calculation a 5 Pr(x2
k . C) 1 5#L

0
E|]√T(u)/]u|du6C (1/2)(k21)

of significance” (Equations 2.4 and 3.4) on the basis of
an approximation of his upper bound, which is consid-

3 exp121
2
C222(1/2)k/G112k2, (1)ered by Rebaı̈ et al. (1994) as a useful method for simula-

tion-based calculation of the significance value for any
where Pr(x2

k . C) is the cumulative distribution functionexperimental design, particularly when an explicit ex-
pression for the upper bound is difficult to obtain. A of x2 with k d.f. and G(·) is the Gamma function. The
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upper bound in (1) is derived, taking into account the even though only a fraction of points will correspond
to real turning points. Thus, to compute V, we simplyfact that test statistics T(u) computed at adjacent posi-

tions u are stochastically dependent and in fact form a compute the absolute differences between successive
square roots of T(u) on the grid and sum these acrossstochastic process. For details of derivation the reader

is referred to Davies (1977, 1987). Note that if we the chromosome.
Davies (1987) notes regarding the one-parameterdropped the second term on the right-hand side of (1),

C would just be the critical value for a conditional test case (k 5 1) that the second term in (3) will be impor-
tant when T(u) scans across a range of widely differingat a given QTL position u. Thus, it can be said that the

second term takes care of the fact that multiple tests hypotheses and then values of T(u) might tend to be
independent for separated values of u. This matchesare performed and we need to consider the unconditional

distribution of max T(u) across the chromosome, rather the situation of a scan across a whole chromosome,
where tests .50 cM apart are virtually independent. Hethan the conditional distribution of T(u) for a specific

u. Thus, the resulting threshold for a prespecified a will further conjectured that in this case the law of large
numbers applies so that V gives a good estimate ofbe higher than that for the conditional test. Davies

(1987) suggested estimating eL
0E|]√T(u)/]u|du in (1) by eL

0E|]√T(u)/]u|du. His simulations confirmed this con-
jecture. From this we expect the approximation to work

V 5 #
L

0
|]√T(u)/]u|du well for QTL mapping. A small-scale simulation is per-

formed to check the appropriateness of the approxima-
5 |√T(0) 2 √T(u1)| 1 |√T(u1) 2 √T(u2)| tion.

Controlling the genome-wise error rate in IM: To guar-1 . . . 1 |√T(ur) 2 √T(L)|, (2)
antee a genome-wise type I error rate, Rebaı̈ et al. (1994)

where u1, . . . , ur are the successive turning points (points proposed choosing the same a for each chromosome,
of inflection) of √T(u), i.e., the values of u, where the using the formula ai 5 1 2 (1 2 g)1/n, where ai is the
first derivative ]√T(u)/]u changes sign. This change of chromosome-wise error rate for the ith chromosome.
sign occurs at the local minima and maxima of This allocation assumes that test statistics for different
√T(u). A sign change can (but need not) occur at the chromosomes are stochastically independent, which
markers. The advantage of (2) is that it can be computed they are not, since the same phenotypic data are used
from the LR (LOD) profile alone, i.e., from the T(u) for all chromosomes. The effect of dependence will
values computed from the data for a grid of values for usually be small, but, nevertheless, we prefer to use the
u, and does not require further theoretical calculations. Bonferroni inequality (see below), which is guaranteed
Using (2) in place of the integral in (1), the upper to control g, even when the test statistics are dependent.
bound of the chromosome-wise type I error rate is esti- A problem for the practitioner is that a separate
mated by threshold needs to be used for each chromosome when

the same ai is chosen for each chromosome. Rebaı̈ et al.
(1994) suggested that ai “could be chosen by a mannera 5 Pr(x2

k . C) 1 VC (1/2)(k21) exp12 1
2
C222(1/2)k/G112k2.

which takes into account the relative lengths of all chro-
mosomes.” This suggestion is taken up here. To com-(3)
pute an overall type I error g, we use the Bonferroni

For given a, C may be found from (3) by numerical inequality (Hochberg and Tamhane 1987), from
methods. The problem in practice is to find the turning which it follows that choosing ai so that
points u1, . . . , ur. In most cases, this will have to be
done numerically. Usually a grid search is done over all o

n

i51

ai 5 g, (4)
u, so the turning points can only be determined to the
accuracy given by the step size of the grid. We therefore where n is the number of chromosomes, will ensure
suggest using a relatively fine grid, e.g., between 1 cM that the overall type I error rate is at most g. Inserting
and 2 cM. The analysis is simplified by pretending that the approximation (3) into (4), we find
every point on the grid is a turning point. To see this,
assume that u1, u2, and u3 are three successive positions g 5 n Pr(x2

k . C) 1 1o
n

i51

Vi2C (1/2)(k21)

on the chromosome and that T(u) is monotonically
increasing in the interval (u1, u3) so that u2 is not a

3 exp12 1
2
C222(1/2)k/G112k2, (5)turning point. Due to the monotonic increase of T(u)

we have
where Vi is the value of V for the ith chromosome.|√T(u1) 2 √T(u2)| 1 |√T(u2) 2 √T(u3)| 5 |√T(u1) 2 √T(u3)|.
Instead of choosing the same ai for each chromosome,
we suggest that a common critical value C be used forIt is clear from this result that by pretending that every

point on the grid is a turning point, application of (2) all chromosomes, while ai may be different on each
chromosome. Using a numerical search procedure suchwill yield the correct result (to the accuracy of the grid),
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TABLE 1as bisection, C is chosen to satisfy (5) for the desired g.
The resulting chromosome-wise ai can be inferred from List of rice traits used for QTL mapping
(3), though this is not necessary in practice. Assuming (P. Moncada, personal communication)
uniform coverage of the genome by markers, ai will be

Trait label Description Experimentarelatively large for longer chromosomes. This seems a
perfectly natural allocation of error rates. 11 Days to heading 1

Extension to CIM: In CIM, cofactors are used to re- 16 Plant height 1
duce residual variation by controlling for the genetic 17 Plant height 2
background (Jansen 1993; Zeng 1993, 1994). Cofactors 19 Panicle length 1

20 Panicle length 2are determined by model selection procedures such
22 No. of panicles per plant 1as forward selection and backward elimination. When
23 No. of panicles per plant 2scanning the chromosome, a certain window size is im-
31 Percentage sterility 1

posed around a putative QTL. Cofactors within the win- 32 Percentage sterility 2
dow are ignored when computing T(u). Thus, as we 37 No. of grains per plant 1
scan the chromosome, the set of cofactors changes at 38 No. of grains per plant 2

40 1000 grain weight 1points bordering the window around the markers used
41 1000 grain weight 2as cofactors. These points correspond to jumps in T(u)
43 Plant yield 1(and its first derivative). The method of Davies (1987)
44 Plant yield 2

is not directly applicable to CIM because of the disconti-
a 1, Monoculture; 2, rice crop following pasture (Brachi-nuities in T(u).

aria).A simple solution to this problem is to consider in
turn coherent intervals on a chromosome, for which
the same set of cofactors is used in the analysis, so that EXAMPLE
T(u) is continuous within the interval, and to control

We used data from an Oryza sativa 3 O. rufipogonthe interval-wise type I error rate. The genome-wise type
BC2F2 population evaluated in an upland environmentI error rate may then be controlled using a Bonferroni
to exemplify the method and compare it to the permuta-adjustment. Thus, the upper bound for the genome-
tion method. The data were obtained in two experi-wise type I error rate is estimated as
ments, one with rice grown in monoculture and one
with rice intercropped with Brachiaria. Details of these

g 5 p Pr(x2
k . C) 1 1o

p

i51

Vi2C (1/2)(k21)
experiments are described in Moncada et al. (2000).
The traits used for QTL mapping are described in Table
1. IM and CIM results obtained using QTL Cartographer3 exp12 1

2
C222(1/2)k/G(k/2), (6)

(Basten et al. 1997) were kindly provided by the au-
thors. The step size of the QTL scans was 2 cM. A step-

where p is the number of coherent intervals having a wise selection procedure with a P value of 0.01 for F-to-
constant set of cofactors. Note that the summation in enter and F-to-drop was used to select cofactors for CIM.
the second term on the right-hand side of (6) is over The maximum number of cofactors was fixed at five.
the p coherent intervals. Also, the integration limits in The window size was 10 cM. In permutations for CIM,
Vi according to (2) are now the borders of the coherent the same cofactors were used as those identified in the
intervals. Thus, for the border of two adjacent intervals, original analysis. Permutation thresholds at the 0.05
the LR statistic T(u) has to be computed twice, once significance level were estimated on the basis of 1000
for each of the two intervals, i.e., once with the set of permutations using the procedure of Churchill and
cofactors for the one interval and once with the set of Doerge (1994).
cofactors for the other interval. IM can be regarded as From the output of QTL Cartographer, we did not
a limiting case of CIM, in which each chromosome have available the value of T(u) at the borders of coher-
forms a coherent interval with no cofactors, so that p 5 ent intervals. Thus, in computing the sum Rp

i51Vi in (6),
n, where n is the number of chromosomes. For CIM, we ignored the discontinuity in T(u) at the borders. The
we will have p . n. Except when a cofactor is less than effect of this is a slightly too liberal critical threshold. We
half the window size away from one end of the chromo- set p 5 n 1 2nc in the term p Pr(x2

k . C) on the right-
some, each cofactor will increase the number of coher- hand side of (6), where n is the number of chromosomes
ent intervals by two. Otherwise the increase is by one and nc is the number of cofactors, which is a conservative
interval. Application of the Bonferroni procedure to choice. The critical LR thresholds for IM and CIM at
combine intervals from the same chromosome will re- g 5 0.05 as computed by permutation and the quick
sult in a conservative threshold, because the correlation method are shown in Tables 2 and 3. The medians
structure among tests in different intervals, but on the across traits are similar for both methods. With IM, the

median threshold by the quick method is slightly largersame chromosome, is not exploited.
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TABLE 2 There is a relatively large variation among permutation
thresholds across traits, which cannot be explained byCritical LR threshold values for IM at g 5 0.05 obtained by
sampling variation alone (see confidence limits), whilepermutation (Churchill and Doerge 1994) and by
thresholds computed by the quick method are relativelythe quick method (Davies 1987)
stable. The more pronounced variability of permutation

95% confidence thresholds is partly due to the fact that the permutation
limits for distribution is unique for each trait, since it is condi-

permutation tional on the observed trait values. Thus, some variation
thresholdb

in thresholds is expected, even if all traits are sampled
Traita Quick method Permutation Lower Upper from a normal distribution. It should be stressed that

despite the larger variation among traits in thresholds11 14.18 15.31 14.58 16.09
obtained by permutation, it is guaranteed by the theory16 14.23 13.06 12.47 13.61
of permutation tests (Lehmann 1986) that the proce-17 14.59 13.70 12.89 14.59
dure will control the genome-wise type I error. Both19 13.84 13.18 12.91 13.89

20 14.09 13.19 12.61 13.74 the permutation procedure and the quick method are
22 13.81 14.77 14.12 15.63 adequate in the case of approximate normality. Note
23 13.68 13.62 13.07 14.63 that differences of thresholds for a particular realized
31 14.14 23.00 22.14 23.81 sample do not imply that over many experiments the32 13.70 13.63 12.92 14.28

two methods give widely different controls of type I37 13.86 14.25 13.42 15.04
error. Clearly, any two test procedures may yield differ-38 13.73 13.73 12.78 14.12
ent results in a specific sample and yet give exactly the40 14.12 23.63 22.57 24.91

41 13.76 13.52 12.89 14.18 same type I error control over repeated samples, pro-
43 13.92 15.33 14.74 15.85 vided the distributional assumptions are met. Traits 31
44 13.70 13.47 12.80 14.25 and 40 have comparatively large permutation thresh-
Median 13.86 13.70 olds. Inspection of the data revealed that for these traits,

a For trait description see Table 1. marked nonnormality and/or presence of outliers were
b Ninety-five percent confidence interval computed from a problem. In these cases, the permutation thresholds

937th and 964th order statistic of permutation distribution seem preferable, since the quick method is based on
(see Mood et al. 1974).

the normality assumption.

than by permutation, while for CIM the situation is
SIMULATION

reversed. By both methods the median threshold is
larger for CIM than for IM. A 95% confidence limit We simulated the chromosome-wise type I error a for

IM in a BC1 population of 200 individuals under thearound the permutation threshold was computed using
standard procedures (Mood et al. 1974, Chap. XI). global H0 of no QTL. Equal spacing of markers along

TABLE 3

Critical LR threshold values for CIM at g 5 0.05 obtained by permutation (Churchill
and Doerge 1994) and by the quick method (Davies 1987)

95% confidence limits
for permutation thresholdb

No. of
Traita cofactors Quick method Permutation Lower Upper

11 5 13.99 15.49 14.61 16.23
16 5 14.02 13.52 12.91 13.98
17 5 14.29 14.53 13.75 15.05
19 4 13.93 13.35 12.71 13.93
20 5 14.21 13.32 12.65 14.12
22 5 13.99 14.74 14.25 15.34
23 3 13.64 14.11 13.65 14.83
31 5 14.11 23.24 22.42 24.09
32 5 13.71 14.01 13.51 14.42
Median 14.11 14.74

a For trait description see Table 1.
b Ninety-five percent confidence interval computed from 937th and 964th order statistic of permutation

distribution (see Mood et al. 1974).
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TABLE 4

Simulation of chromosome-wise type I error a for IM in a BC1 population

Empirical type I errors

Quick method Rebaı̈ et al. (1994)
Step

Ma Distributionb size a 5 0.01 a 5 0.05 a 5 0.01 a 5 0.05

Thresholds by
Rebaı̈ et al. (1994)

a 5 0.01 a 5 0.05

100 N(0, 1) 1 0.0056 0.0306 0.0053 0.0278 12.97 9.76
50 N(0, 1) 1 0.0080 0.0331 0.0077 0.0325 12.30 9.09
20 N(0, 1) 1 0.0082 0.0415 0.0088 0.0437 11.42 8.22
10 N(0, 1) 1 0.0085 0.0419 0.0099 0.0464 10.76 7.58

5 N(0, 1) 1 0.0075 0.0412 0.0096 0.0492 10.10 6.93
5 N(0, 1) 2 0.0065 0.0418 0.0085 0.0491 10.10 6.93
5 N(0, 1) 5 0.0074 0.0402 0.0094 0.0460 10.10 6.93

100 U(0, 1) 1 0.0073 0.0318 0.0068 0.0296 12.97 9.76
100 x2

1 1 0.0036 0.0262 0.0030 0.0204 12.97 9.76
20 x2

1 1 0.0047 0.0316 0.0054 0.0320 11.42 8.22

Equal spacing of markers is assumed. Simulation is based on 10,000 replications. Length of chromosome 5
100 cM.

a M, No. of intervals on a chromosome.
b N(0, 1), standard normal; U(0, 1), uniform; x2

1, chi square with 1 d.f.

a 100-cM chromosome and absence of interference was by crossing two inbred lines and then proceeding by
random mating for several generations. Thus, insteadassumed. The number of crossovers per chromosome

was simulated according to a Poisson distribution with of stopping at F2, we continue up to an Ft population.
This provides increasing probability of recombinationparameter equal to the length of the chromosome in

morgans, which is in accordance with Haldane’s map- and hence increased mapping resolution. We studied
an F3 population. The settings (map length, markerping function. The LR statistic for the null hypothesis

of no QTL was computed using the expectation-maximi- spacing, error distribution, step size, etc.) used for these
three types of population (F2, BC2, F3) are the same as forzation (EM) algorithm (Lynch and Walsh 1998). The

step size was 1 cM in most simulations, but was also BC1. Mapping was done by the EM algorithm assuming
absence of interference and Haldane’s mapping func-varied for some simulations to study the effect of step

size. On each of 10,000 simulation runs, we determined tion. The results reported in Table 5 show that the
approximation works well across different populationthe threshold by (5) and checked if H0 was rejected at

levels a 5 0.01 and a 5 0.05 anywhere in the genome. types.
For comparison, we also assessed the number of rejec-
tions based on thresholds by Rebaı̈ et al. (1994). The

DISCUSSION
percentage of rejections was recorded to give an esti-
mate of the actual genome-wise type I error rates (Table This work was motivated by the high computational

workload of permutations encountered in practical ap-4). The results indicate that the quick method controls
the type I error, tending to yield slightly more conserva- plications. The method advocated here for computing

approximate thresholds is fast and easy to use. Imple-tive thresholds than those of Rebaı̈ et al. (1994). Also,
the quick method was rather insensitive to the choice mentation into existing packages for QTL mapping

should be possible with minimal effort. Simulations haveof step size between 1 and 5 cM. The approximation
performs better for wider marker spacing. For two non- shown that the approximate thresholds provide reason-

able, though somewhat conservative, control of the ge-normal distributions (uniform and x2
1), the empirical

type I error was on the conservative side. nome-wise type I error rate in a wide variety of popula-
tion structures. Due to the generality of the method,To broaden the scope of the study, simulations were

also performed for an F2 population, an advanced back- any population structure can be accommodated. The
method is especially useful in more complex designs,cross population (Tanksley and Nelson 1996), and a

population of advanced intercross lines (AIL; Darvasi where closed form thresholds are not available (ad-
vanced backcross, advanced intercross lines, etc.). Theand Soller 1995). Advanced backcrossing involves re-

peated backcrossing to one of the parental lines. This rice example has demonstrated that the quick method
yields thresholds similar to those obtained by permuta-strategy is especially useful for the discovery and transfer

of valuable QTL alleles from unadapted donor lines into tion. The method is reasonably robust to nonnormality,
but should probably be used with caution if departureestablished elite breeding lines (Tanksley and Nelson

1996). We studied a BC2 population. AIL are obtained from normality is marked. Approximate thresholds can
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TABLE 5

Simulation of chromosome-wise type I error a by quick method for IM in an advanced backross line (BC2),
an F2 population, and an advanced intercross population (F3)

BC2 F2 F3
Step

Ma Distributionb size a 5 0.01 a 5 0.05 a 5 0.01 a 5 0.05 a 5 0.01 a 5 0.05

100 N(0, 1) 1 0.0067 0.0315 0.0072 0.0333 0.0086 0.0395
50 N(0, 1) 1 0.0063 0.0330 0.0072 0.0374 0.0100 0.0414
20 N(0, 1) 1 0.0099 0.0389 0.0096 0.0426 0.0101 0.0436
10 N(0, 1) 1 0.0087 0.0414 0.0093 0.0444 0.0085 0.0461

5 N(0, 1) 1 0.0081 0.0447 0.0099 0.0480 0.0087 0.0456
5 N(0, 1) 2 0.0093 0.0425 0.0090 0.0443 0.0075 0.0440
5 N(0, 1) 5 0.0071 0.0448 0.0083 0.0429 0.0083 0.0454

100 U(0, 1) 1 0.0069 0.0345 0.0071 0.0328 0.0092 0.0425
100 x2

1 1 0.0066 0.0334 0.0064 0.0309 0.0075 0.0329
20 x2

1 1 0.0081 0.0348 0.0090 0.0362 0.0088 0.0382

Equal spacing of markers is assumed. Simulation is based on 10,000 replications. Length of chromosome 5
100 cM.

a M, No. of intervals on a chromosome.
b N(0, 1), standard normal; U(0, 1), uniform; x2

1, chi square with 1 d.f.

replace thresholds obtained by permutation if comput- quick method was robust to nonnormality of errors.
Also, in simulations by Doerge and Rebaı̈ (1996), theing time is a limiting factor, e.g., when many traits need

to be analyzed. Note that with permutation thresholds, approximate thresholds of Rebaı̈ et al. (1994), which
are based on the same upper bound (1) as Davies’ quickthe workload increases drastically as the type I error is

reduced, since permutation sample size needs to be method, proved to be relatively insensitive to nonnor-
mality.increased to attain reasonable accuracy. By contrast, the

quick method has the same small workload, regardless Rebaı̈ et al. (1994) have used the quick method of
Davies (1987) to derive simulation-based thresholds forof the targeted type I error. In summary I recommend

using the quick method preferably in the following situa- the case of F3 progenies derived from a diallel cross
between four inbred lines. However, they erroneouslytion: (i) a permutation test is computationally too ex-

pensive; (ii) approximate normality can be assumed; assumed that turning points of √T(u) occur only at the
and (iii) closed form critical thresholds are not readily marker positions, which is implicit from their Equation
available. 10. First, turning points need not occur at the markers.

In this article, we have used the maximum-likelihood Second, further turning points will occur at local min-
method for computing T(u). The method should work ima and maxima of √T(u) between markers. For exam-
equally well with IM and CIM methods on the basis of ple, in a BC1 population, a turning point of √T(u) occurs
multiple regression (Haley and Knott 1992; Marti- whenever the ML estimate of the QTL effect changes
nez and Curnow 1992). These methods also yield test sign, corresponding to a local minimum. The omission
statistics, which asymptotically follow a x2-distribution of turning points may explain the liberal thresholds
conditional on the putative QTL, so that the theory of obtained by Rebaı̈ et al. (1994) for their diallel example.
Davies (1977, 1987) applies. The method may also be Furthermore, it does not seem necessary to use simula-
used with IM/CIM on the basis of models that are ex- tions in deriving approximate thresholds. Our simula-
tended to account for several random sources of varia- tions indicate that computation of V from the data set
tion, e.g., random effects due to genetic correlation and at hand, i.e., not using simulations, gives reasonable,
genotype-by-environment interaction (Piepho 2000a). though somewhat conservative, results. Some improve-
Moreover, Davies’ method has been used successfully for ment may be possible by using simulations, as suggested
marker difference regression (Lynch and Walsh 1998; by Rebaı̈ et al. (1994), though this can no longer be
Piepho 2000b), a viable alternative to IM and CIM. called a quick method. Also, if one is prepared to use

When errors follow a normal distribution, the permu- simulation in routine applications, it seems better to
tation procedure and the quick method are expected simulate exact thresholds rather than approximate
to yield similar thresholds, provided the null hypothesis thresholds. The associated computation costs are the
is true. An advantage of permutation tests relative to same and the results are more accurate.
the quick method is that normality of the errors under I thank Pilar Moncada for providing the output from QTL Cartogra-
the null hypothesis need not be assumed. Note, how- pher for the rice data. Thanks are also due to Hugh Gauch Jr. for

very helpful discussions on the article. This article was written whileever, that in our small simulation study, Davies’ (1987)
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