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ABSTRACT
Reconstructing a physical map of a chromosome from a genomic library presents a central computational

problem in genetics. Physical map reconstruction in the presence of errors is a problem of high computa-
tional complexity that provides the motivation for parallel computing. Parallelization strategies for a
maximum-likelihood estimation-based approach to physical map reconstruction are presented. The estima-
tion procedure entails a gradient descent search for determining the optimal spacings between probes
for a given probe ordering. The optimal probe ordering is determined using a stochastic optimization
algorithm such as simulated annealing or microcanonical annealing. A two-level parallelization strategy
is proposed wherein the gradient descent search is parallelized at the lower level and the stochastic
optimization algorithm is simultaneously parallelized at the higher level. Implementation and experimental
results on a distributed-memory multiprocessor cluster running the parallel virtual machine (PVM) envi-
ronment are presented using simulated and real hybridization data.

GENERATION of entire chromosomal maps has netic map of the same chromosome, i.e., 10–100 kb
(Brody et al. 1991). Physical maps have provided funda-been a central problem in genetics right from its

early years (Sturtevant 1913). These maps are central mental insights into gene development, gene organiza-
tion, chromosome structure, recombination, and theto the understanding of the structure of genes, their

function, their transmission, and their evolution. Recent role of sex in evolution and have also provided a means
for the recovery and direct molecular manipulation ofadvances in molecular genetics have led to a wealth of

DNA markers along a chromosome and also eased the genes of interest (Prade et al. 1997).
Several techniques exist for generation of physicalprocess by which these markers can be assayed. Conse-

quently, the focus of current research has shifted from maps from contig libraries. These techniques are spe-
cific to an experimental protocol and the type of datadata collection to the computational problem of map
collected, for example, mapping by nonunique probesassembly.
(Alizadeh et al. 1995), mapping by unique probes (Ali-Chromosomal maps fall into two broad categories—
zadeh et al. 1994; Greenberg and Istrail 1995; Jaingenetic maps and physical maps. Genetic maps represent
and Myers 1997), mapping by unique endprobesan ordering of genetic markers along a chromosome
(Christof et al. 1997), mapping using restriction frag-where the distance between two genetic markers is re-
ments (Fasulo et al. 1997; Jiang and Karp 1997), map-lated to their recombination frequency. Genetic maps
ping using radiation-hybrid data (Ben-Dor and Chorare typically of low resolution, i.e., 1–10 Mb (Lander
1997; Slonim et al. 1997), and optical mapping (Muthu-and Green 1987). While genetic maps enable a scientist
krishnan and Parida 1997; Karp and Shamir 1998;to narrow the search for genes to a particular chromo-
Lee et al. 1998). Likewise, several computation tech-somal region, it is a physical map that ultimately allows
niques based on deterministic optimization and stochas-the recovery and molecular manipulation of genes of
tic optimization have been reported in the literature ininterest. A physical map is defined as an ordering of
the context of physical mapping. Examples of stochasticdistinguishable (i.e., sequenced) DNA fragments called
optimization algorithms include simulated annealingclones or contigs by their position along the entire chro-
(Cuticchia et al. 1992, 1993; Mott et al. 1993; Aliza-mosome where the clones may or may not contain ge-
deh et al. 1994, 1995) and the random cost algorithmnetic markers. The physical mapping problem is there-
(Wang et al. 1994a) whereas those of deterministic opti-fore one of reconstructing the order of clones and
mization algorithms include linear programming (Jaindetermining their position along the chromosome. A
and Myers 1997), integer programming (Christof etphysical map has a much higher resolution than a ge-
al. 1997), integer linear programming with polyhedral
combinatorics (Christof and Kececioglu 1999), and
semidefinite programming (Chor and Sudan 1995).
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Figure 1.—An example
of clone-probe ordering
along a chromosome.

1991; Zhang and Marr 1993; Balding 1994; Nelson 3 and Hij 5 0 otherwise. Table 1 shows the clone-probe
hybridization data in the absence of errors resultingand Speed 1994; Xiong et al. 1996; Wilson et al. 1997).

The physical mapping protocol: The physical mapping from the example depicted in Figure 1. If the probes
in 3 were ordered with respect to their position alongprotocol essentially determines the nature of clonal data

and the probe selection procedure. The physical map- a chromosome, then by selecting from H a common
overlapping clone for each pair of adjacent probes inping protocol adhered to in this project is the one based

on sampling without replacement (Fu et al. 1992). This 3 a minimal set of clones and probes that covers the
entire chromosome (i.e., a minimal tiling) could beprotocol has been used successfully in physical mapping

of Aspergillus nidulans (Brody et al. 1991; Prade et al. obtained. Note that a common overlapping clone be-
tween two adjacent probes would hybridize to both1997), Schizosaccharomyces pombe (Mizukami et al. 1993),
probes. The minimal tiling in conjunction with the se-and Pneumocystis carinii (Arnold and Cushion 1997)
quencing of each individual clone/probe in the tilingand is currently being used in physical mapping projects
and a sequence assembly procedure that determines theof A. flavus and Neurospora crassa (Aign et al. 2001;
overlaps between successive sequenced clones/probesKelkar et al. 2001) under the Fungal Genome Initiative
in the tiling (Kececioglu and Myers 1995) could then(Arnold 1997; Bennett 1997).
be used to reconstruct the DNA sequence of the entireThe protocol that generates the probe set 3 and the
chromosome.clone set # is an iterative procedure that can be de-

In reality, the hybridization experiments are rarelyscribed as follows. Let #i and 3i be the clone set and
error free. The hybridization matrix H could be ex-the probe set, respectively, at the ith iteration. The initial
pected to contain false positives and false negatives. Theclone set #0 consists of all the clones in the library
matrix element Hij would be a false positive if Hij 5 1whereas the initial probe set 30 5 φ. The clones in
(denoting hybridization of the ith clone with the j th#0 are designed to be of the same length and to be
probe) when in fact Hij 5 0. Conversely, Hij would be aoverlapping so that each clone samples a fragment of
false negative if Hij 5 0 when in fact Hij 5 1. Otherthe chromosome and the coverage of the entire chromo-
sources of error include chimerism wherein a singlesome is made possible. At the ith iteration a clone c is
clone samples two or more distinct regions of a chromo-chosen at random from #i and added to 3i. Clone c is
some, deletions wherein certain regions of the chromo-hybridized to all the clones in #i. The subset of clones
some are not sampled during the cloning process, and#c that hybridize to clone c are removed from #i so that
repeats wherein a clone samples a region of the chromo-#i11 5 #i 2 #c. Note that c P #c since a clone hybridizes
some with repetitive DNA structure. In this article, weto itself. The hybridization experiment entails ex-

tracting complementary DNA from both ends of a
probe, washing the DNA over the arrayed plate, and

TABLE 1recording all clones in the library to which the DNA
sticks (i.e., hybridizes). The above procedure is halted An example of clone-probe hybridization data

in the absence of errorsat the kth iteration when #k 5 φ. The final probe set is
given by 3 5 3k and the clone set by # 5 #0 2 3k. In

Probesthe absence of errors, the probe set 3 represents a
maximal nonoverlapping subset of #0 since any clone Clones 31 32 33 34 35
that overlaps with a given probe would hybridize to

#1 1 0 0 0 0one end of that probe and be effectively removed from
#2 1 1 0 0 0consideration in future iterations of the aforemen-
#3 1 1 0 0 0

tioned iterative procedure. Figure 1 depicts the probes #4 0 1 0 0 0
and clones along the length of a chromosome where #5 0 1 1 0 0
the clones and probes are numbered from left to right. #6 0 0 1 0 0

#7 0 0 1 1 0The clone-probe overlap pattern is represented in the
#8 0 0 0 1 0form of a binary hybridization matrix H where the ma-
#9 0 0 0 1 1trix element Hij denotes the hybridization of the ith
#10 0 0 0 0 1

clone P # to the j th probe P 3. The matrix element #11 0 0 0 0 1
Hij 5 1 if the ith clone P # hybridizes to the j th probe P
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confine ourselves to errors in the form of false positives ordering P 5 (p1, p2, . . . , pn) of the probes and also
the correct spacing Y 5 (Y1, Y2, . . . , Yn) between theand false negatives. Since the clones (and probes) in the

mapping projects that use the aforementioned protocol probes. The ordering P is a permutation of
(1, . . . , n) that gives the labels (indices) of the probesare generated using cosmids, which makes them suffi-

ciently small (z40 kb), chimerism and deletions do not in left-to-right order across the chromosome. In the
interprobe spacing vector Y, Y1 denotes the space be-pose a serious problem. However, repeats do pose a

problem but are not explicitly addressed here; rather tween the left end of the first probe Pp1
and the left

end of the chromosome, and Yi the spacing betweenthey are treated as multiple isolated incidences of false
positives. the right end of probe Ppi21

and the left end of probe
Ppi

(where 2 # i # n). The spacing between the rightIn this article we present a maximum-likelihood (ML)
estimator (Shete 1998; Kececioglu et al. 2000) that end of probe Ppn

and the right end of the chromosome
is given by Yn11 5 N 2 nM 2 Rn

i51 Yi, where N is lengthdetermines the ordering of probes in the probe set 3
and the interprobe spacings under a probabilistic model of the chromosome and M is the length of each clone/

probe. Note that our protocol requires that all probesof hybridization errors consisting of false positives and
false negatives. The estimation procedure involves a and clones be of the same length.

The problem as stated above is ill posed in the precisecombination of discrete and continuous optimization,
where determining the probe ordering entails discrete sense as defined by Hadamard (1923). A problem is

deemed well posed when its solution exists and is(i.e., combinatorial) optimization, whereas determining
the interprobe spacings for a particular probe ordering unique. A problem is ill posed when no solution exists

or, if a solution does exist, it is not unique. In our case,entails continuous optimization. We propose a two-level
parallelization strategy for efficient implementation of the problem is ill posed since the underlying constraints

do not imply a unique solution. Any probe ordering Pthe above estimator. The upper level consists of parallel
discrete optimization using simulated annealing or mi- and any interprobe spacing vector Y that satisfies the

requirements that Yi $ 0; 1 # i # n and N 2 nM 2crocanonical annealing whereas the lower level consists
of the parallel conjugate gradient descent procedure. Rn

i51 Yi $ 0, constitute a valid solution. Hence the prob-
lem is formulated as one of determining a probe order-The resulting parallel algorithms are implemented on

a distributed-memory multiprocessor cluster using the ing and the interprobe spacings that maximize the likeli-
hood of the observed hybridization matrix H givenparallel virtual machine (PVM) environment (Sunde-

ram 1990; Geist et al. 1994). Convergence, speed-up, predefined probabilities for false positives and false neg-
atives.and scalability characteristics of the parallel algorithms

are examined and discussed. Mathematical notation: The mathematical notation
used in the formulation of the maximum-likelihood esti-
mator is given below:

MATERIALS AND METHODS
N, length of the chromosome;

Cosmid libraries used to construct the physical map of N.
M, length of a clone/probe;crassa discussed in this article are described in Kelkar et al.
n, number of probes;(2001). The physical mapping data were generated by DNA

hybridization described in Kelkar et al. (2001). Assignments k, number of clones;
of markers to physical and genetic maps was achieved by com- r, probability of false positive;
plementation, hybridization, and cosmid end sequencing as h, probability of false negative;
described in Kelkar et al. (2001).

H 5 ((hi,j))1#i#k, 1#j#n; clone-probe hybridization matrix,
where

MATHEMATICAL FORMULATION
OF THE ML ESTIMATOR hi,j 5





1 if clone #i hybridizes with probe 3j

0 otherwise;
In this section we present a brief synopsis of the ML

estimator proposed in Kececioglu et al. (2000) and Hi, ith row of the hybridization matrix;
P 5 (p1, . . . , pn), permutation of {1, 2, . . . , n},Shete (1998). The estimator reconstructs the ordering

of probes in the probe set 3 and the interprobe spacings which denotes the probe labels in the ordering when
scanned from left to right along the chromosome;under a probabilistic model of hybridization errors con-

sisting of false positives and false negatives. pi 5 Rn
j51 hij, number of 1’s in Hi;

P 5 Rk
i51 pi , total number of 1’s in H, Y 5 (Y1, Y2, . . . ,The probe ordering problem can be formally stated

as follows. Given a set 3 5 {P1, P2, . . . , Pn} of n probes Yn), vector of interclone spacings, where Yi is the spac-
ing between the right end of Ppi21

and the left endand a set # 5 {C1, C2, . . . , Ck} of k clones generated using
the sampling-without-replacement protocol described of Ppi

(2 # i # n), and Y1 is the spacing between the
left end of Pp1

and the left end of the chromosome;earlier and the k 3 n clone-probe hybridization matrix
H containing both false positives and false negatives and

^ # 5n, set of feasible interprobe spacings Y 5 {Y1, . . . ,with predefined probabilities, reconstruct the correct
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Figure 2.—Interprobe
spacings: Case 1.

Yn} such that Yi $ 0, 1 # i # n, and N 2 nM 2 Rn
i51 Length of the Both region between probes Ppj

and
Yi $ 0. Ppj11

The model: Given a vector of interprobe spacings Y 5
(Y1, . . . , Yn), there are 2n11 possible cases to consider 5





0 if Yj11 . M

M 2 Yj11 if Yj11 # Mdepending on whether 0 # Yi # M or Yi . M, where
0 # i # n 1 1. Without loss of generality, we present 5 M 2 min(Yj11, M), (1)
the maximum-likelihood model for n 5 3 and illustrate

and for j 5 1, . . . , n,3 of the 24 5 16 possible cases.
Case 1: 0 # Y1 # M, 0 # Y2 # M, 0 # Y3 # M, and

Length of the Only region of probe Ppj0 # Y4 # M as depicted in Figure 2.
Case 2: 0 # Y1 # M, 0 # Y2 # M, 0 # Y3 # M, and

Y4 . M as depicted in Figure 3.
Case 3: Y1 . M, 0 # Y2 # M, 0 # Y3 # M, and 0 #

Y4 # M as depicted in Figure 4. 5








Yj 1 Yj11 if Yj # M and Yj11 # M

M 1 Yj if Yj . M and Yj11 # M

Yj 1 M if Yj # M and Yj11 . M

2M if Yj . M and Yj11 . M
In Case 1 above, if the left end of a clone falls in

regions A, C, or E, then the clone will hybridize only
with Pp1

, Pp2
, or Pp3

, respectively (Figure 2). Similarly, if
5 min(Yj, M) 1 min(Yj11, M), (2)the left end of a clone falls in region B or D, then the

clone will hybridize with both Pp1
and Pp2

or Pp2
and and for j 5 0, . . . , n,

Pp3
, respectively (Figure 2). In Case 2 above, if the left

end of a clone falls in region E, then the clone will Length of the None region after probe Ppj

hybridize with only Pp3
and if it falls in region F, then

the clone will not hybridize with any of the probes (Fig-
5





Yj11 2 M if Yj11 . M

0 if Yj11 # Mure 3). Similarly, in Case 3 above, if the left end of a
clone falls in region A, the clone will not hybridize with

5 Yj11 2 min(Yj11, M). (3)any of the probes (Figure 4). Therefore, from the above
three cases it is easy to see that, in general, there will We assume that the left ends of the clones are uniformly
be three different types of regions, namely, distributed over the interval [0, N 2 M]; i.e., the probes

are uniformly distributed across the length of the chro-Type 1: Both region between probe Ppj
and Ppj11

, for j 5
mosome. Therefore it can be shown that for j 5 1, . . . ,1, . . . , n 2 1. An intervening clone hybridizes to
n 2 1, the probability PBoth that a randomly chosen cloneboth probes if its left end falls in this region.
will fall in the Both region of probes Ppj

and Ppj11
is givenType 2: Only region of probe Ppj

, for j 5 1, . . . , n. A
byclone will hybridize to Ppj

only if its left end falls in
this region.

Type 3: None region after probe Ppj
, for j 5 0, . . . , n. PBoth 5

M 2 min(Yj11, M)

N 2 M
; (4)

A clone will hybridize to no probe if its left end falls
in this region. Here probe Pp0

is referred to as the for j 5 1, . . . , n the probability POnly that a randomly
beginning of the chromosome. chosen clone will fall in the Only region of probe Ppj

is
given byIt can be shown that for j 51, . . . , n 2 1,

Figure 3.—Interprobe
spacings: Case 2.
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POnly 5
min(Yj, M) 1 min(Yj11, M)

N 2 M
, (5) hi,pj11

5




0 with probability h

1 with probability (1 2 h), (12)

and for j 5 0, . . . , n the probability PNone that a randomly and for k 5 1, . . . , n, where k ? j, j 1 1,
chosen clone will fall in the None region after probe
Ppj

is given by hi,pk
5





0 with probability (1 2 r)

1 with probability r. (13)

PNone 5
Yj11 2 min(Yj11, M)

N 2 M
. (6) Hence,

P(Hi | P, Y, Bi,j) 5 (1 2 h)(hi,pj
1 hi,pj11

) · h(22hi,pj
2hi,pj11

)

The conditional probability of observing a clonal sig-
nature Hi (i.e., the ith row in the hybridization matrix · r(pi2hi,pj

2hi,pj11
) · (1 2 r)(n22)2(pi2hi,pj

2hi,pj11
).

H), given a probe ordering P and an interprobe spacing
(14)vector Y, is given by

Finally, for a given probe ordering P and interprobe
P(Hi | P, Y) 5 o

n

j11

P(Hi | P, Y, Oi,j)P(Oi,j | P, Y) spacing vector Y, event Ni,j implies that all the elements
of row Hi should be equal to 0. That is, for k 5 1, . . . , n,

1 o
n21

j51

P(Hi | P, Y, Bi,j)P(Bi,j | P, Y)
hi,pk

5




0 with probability (1 2 r)

1 with probability r. (15)
1 o

n

j50

P(Hi | P, Y, Ni,j)P(Ni,j | p, Y), (7)
Hence,

where Oi,j is the event that the clone i will fall in the P(Hi | P, Y, Ni,j) 5 rpi · (1 2 r)(n2pi). (16)
Only region of probe Ppj

, Bi,j is the event that the clone
From Equations 4–16,i will fall in the Both region of probes Ppj

and probe
Ppj11

, and Ni,j is the event that the clone i will fall in the
P(Hi | P, Y) 5 o

n

j51
3(1 2 h)hi,pj · h(12hi,pj

) · r(pi2hi,pj
) · (1 2 r)(n21)2(pi2hi,pj

)
None region after probe Ppj

.
For a given probe ordering P and interprobe spacing

·
min(Yj, M) 1 min(Yj11, M)

N 2 M 4vector Y, event Oi,j implies that only hi,pj
5 1, and all the

remaining entries in row Hi should be equal to 0. In
other words, hi,pj

? 1 implies a false negative and a 1 in 1 o
n21

j51
3(1 2 h)(hi,pj

1hi,pj11
) · h(22hi,pj

2hi,pj11
) · r(pi2hi,pj

2hi,pj11
)

any other column position in the row Hi implies a false
positive. That is,

·
M 2 min(Yj11, M)

N 2 M 4
hi,pj

5




0 with probability h

1 with probability (1 2 h), 1 o
n

j50
3rpi · (1 2 r)(n2pi) ·

Yj11 2 min(Yj11, M)
N 2 M 4 . (17)(8)

and for k 5 1, . . . , n, where k ? j, We assume that the clones P # are independently dis-
tributed along the chromosome; i.e., each row of H is
independent of the other rows. Hencehi,pk 5





0 with probability (1 2 r)

1 with probability r. (9)
P(H | P, Y) 5 p

k

i51

P(Hi | P, Y). (18)
Assuming that the false positive and false negative errors
at different positions along the clonal signature Hi are

From Equations 17 and 18,independent of each other,

P(H | P, Y) 5 p
k

i51

Ci




Ri 2 o

n11

j51

(ai,pj
2 1)(ai,pj21

2 1)min(Yj, M)



,P(Hi | P, Y, Oi,j) 5 (1 2 h)hi,pj · h(12hi,pj

) · r(pi2hi,pj
)

(19)· (1 2 r)(n21)2(pi2hi,pj
). (10)

where
Similarly, for a given probe ordering P and in-

terprobe spacing vector Y, event Bi,j implies that only
hi,pj

and hi,pj11
should be equal to 1 and all the remaining

entries of row Hi should be equal to 0. That is,
ai,j 5








h

(1 2 r)
if ji,j 5 0 and j 5 1, . . . , n

(1 2 h)
r

if hi,j 5 1 and j 5 1, . . . , n

0 otherwise,
hi,pj

5




0 with probability h

1 with probability (1 2 h), (11) (20)
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Figure 4.—Interprobe
spacings: Case 3.

and ŶP̂ are termed the ML estimates (MLEs) of the true
Ci 5

rpi(1 2 r)(n2pi)

N 2 M
, (21) probe ordering and the interprobe spacings, respec-

tively.
and Computation of ŶP: A region $ # 5n is deemed to be

convex if for any pair of points p, q P $, all points along
Ri 5 N 2 nM 1 M o

(n21)

j51

ai,pj
ai,pj11

. (22) the line segment ap 1 (1 2 a) q P $, where 0 # a #
1. A function h: $ → 5 defined on a convex set $ is

The goal, therefore, is to determine P and Y that max- deemed convex if for all points ap 1 (1 2 a) q P $,
imize P(H | P, Y) as given in Equation 19, that is, deter- where 0 # a # 1, h (ap 1 (1 2 a)q) # ah(p) 1 (1 2
mine (P̂, Ŷ), where a)h(q). Alternatively, if (d 2/da2)h $ 0 along the line

segment ap 1 (1 2 a)q, then function h can be shown to
(P̂, Ŷ) 5 arg max

(P, Y )
P(H | P, Y). (23) satisfy the above condition for convexity (Shete 1998).

Furthermore, a region $ # ^ is considered good if for
all Y P $, Yi ? M, 1 # i # n 1 1. The significance ofAlternatively, consider the negative log-likelihood

function f(P, Y) given by a good region is that fP (Y) is differentiable within it.
The objective function fP(Y) (Equation 27) can be

f(P, Y) 5 2ln P(H | P, Y)
expressed as

5 C 2 o
k

i51

ln



Ri 5 o

n11

j51

(ai,pj
2 1)(ai,pj21

2 1)min(Yj, M)



, fP(Y) 5 C 2 o

k

i51

ln fi(Y), (29)

(24)
where fi(Y) 5 Ri 2 Rn11

j51 (ai,pj
2 1)(ai,pj21

2 1)Yj. Con-
where C is a constant given by sider a good convex region $ # ^, where Yj ? M for

1 # j # n. Consider all points Y 5 P 1 sV for s . 0,
C 5 k ln(N 2 M) 2 P ln

r

(1 2 r)
2 nk ln(1 2 r) which lie on a ray originating at a given point P P #

in the direction V. In # the derivative of f along the ray
(25) is given by

and p0 5 pn11 5 0. Since ln x is a monotonically increas- d
ds

fP(Y) 5 2o
k

i51

1
fi(Y)

d
ds

fi(Y), (30)ing function of x for all x . 0, it follows that

where(P̂, Ŷ) 5 arg max
(P, Y )

P(H | P, Y) 5 arg min
(P, Y )

f(P, Y).

(26) d
ds

fi(Y) 5 o
n

j51

Vj(2(ai,pj
2 1) (ai,pj21

2 1)
Computation of the ML estimate: Computing the val-

ues of P̂ and Ŷ (Equation 26) involves a two-stage proce- · I(Yj) 2 (ai,pn
2 1)I(Yn11)) (31)

dure.
Stage 1: First determine the optimal spacing ŶP for a and I(x) is a unit step function defined as

given probe ordering P; i.e., determine ŶP 5 (Ŷ1, . . . ,
Ŷn) such that for a given P,

I(x) 5






1 if x , M,

0 if x . M,

undefined if x 5 M.
f(P, ŶP) 5 min

Y
f(P, Y) 5 min

Y
fP(Y). (27)

(32)
Here the minimum is taken over all feasible solutions

Using the fact that (d 2/ds2)fi(Y) 5 0 along the ray, itY that satisfy the constraints Yi $ 0; i 5 1, . . . , n and
can be shown that

Rn
i51 Yi # N 2 nM.
Stage 2: Second determine P̂ for which d 2

ds2
fP(Y) 5 o

k

i51
1 1
fi(Y)

d
ds

fi(Y)2
2

$ 0. (33)

f(P̂, ŶP̂) 5 min
P

f(P, ŶP) 5 min
P

f ŶP
(P). (28)

This implies that fP(Y) is convex in every good convex
region $ and therefore possesses a unique local mini-Here the minimum is taken over all P, where P is a

permutation of {1, . . . , n}. The resulting values of P̂ mum that is also a global minimum. Consequently this
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minimum can be reached using continuous local search-
I(x) 5





1 if x # M

0 otherwise.based techniques such as gradient descent (i.e., steepest (37)
descent) or conjugate gradient descent (Dorny 1980;

The current value of Ŷ 5 Ŷold is updated by movingKincaid and Cheney 1991).
along the downhill gradient direction U 5 2=f(P, Ŷ)Consider the four disjoint subregions ^11,11, ^11,21,
|Y5Ŷold. The new value of Ŷ 5 Ŷnew is given by^21,11, and ^21,21 within ^, where

Ŷnew 5 Ŷold 1 sU. (38)^a,b 5
D

{Y P ^ : aY1 # aM; Yi # M, 2 # i # N; bYn11 # bM}.
(34) The problem, therefore, is to find an optimal value of

s, say s*, such that
Each of these regions is convex since they result from
the intersection of half spaces. Also, since the derivative f(P, Ŷ 1 s*U) 5 misn f(P, Ŷ 1 sU). (39)
of fP(Y) is defined in the interior of each subregion,

Here,
each subregion is good. Note that we can define the
derivative on the boundary of each subregion ^a,b, a, b P

f (P, Ŷ 1 sU ) 5 C 2 o
k

i51

ln




Ri 2 o
n11

j51

(ai,pj
21)(ai,pj21

2 1)min(Ŷj 1 sUj, M )




,{21, 11}, on the basis of the direction in which the
boundary point is approached. Thus by selecting a start- (40)
ing point in each of the subregions (or as many subre-

where Ŷn11 5 N 2 nM 2 Rn
i51 Ŷi.gions as possible without violating any feasibility con-

Having obtained the value of s*, then the new in-straints), one can compute a local minimum for fP(Y)
terprobe spacings are given byin each of the subregions and select the minimum of

these local minima to be the global minimum of fP(Y) Ŷnew 5 Ŷold 1 s*U. (41)
(Kececioglu et al. 2000).

To determine an optimal value of s 5 s*, considerThe local minimum of fP(Y) in each of the aforemen-
tioned four disjoint subregions within ^ can be reached ]f(P, Ŷ 1 sU)

]susing continuous local search-based methods such as
the steepest descent technique or the conjugate gradi-
ent descent technique (Dorny 1980; Kincaid and 5 o

k

i51

Rn11
j51 (ai,pj

2 1)(ai,pj21
2 1)UjI(Ŷj 1 sUj)

Ri 2 Rn11
j51 (ai,pj

2 1)(ai,pj21
2 1)min(Ŷj 1 sUj, M)

,
Cheney 1991). The steepest descent technique is a sim-
ple iterative procedure that consists of three steps: (i) (42)
Determine the initial value of Y,(ii) compute the down-

where Un11 5 2Rn
i51 Ui. The convexity of fP(Y) implieshill gradient at Y, and (iii) update the current value of

that the local optimum for s is also a global optimum.Y using the computed value of the downhill gradient.
Also note that we have the following boundary condi-Steps (ii) and (iii) are repeated until the gradient van-
tions: (i) Ŷj 1 sUj $ 0, for j 5 1, . . . , n; i.e., all theishes. The point at which the gradient vanishes is consid-
spacings are nonnegative; and (ii) Rn

j51(Ŷj 1 sUj) # N 2ered to be the desired local minimum. In practice, the
nM, which is a constraint imposed by the length of thesteepest descent procedure is halted when the magni-
chromosome and the length of each clone.tude of the gradient is less than a prespecified threshold.

The above constraints impose bounds on s given byThe initial value of Y 5 (Y1, . . . , Yn) can be determined
in one of several ways; the simplest solution is to assign
(N 2 nM)/(n 1 1) to each of Yi’s, i.e., distribute the 0 # s # min





min
jP(1,...,n11):Uj,0




2Ŷj

Uj





, min
jP(1,...,n11):Uj,0




M 2 Ŷj

Uj









.
value of N 2 nM equally among the (n 1 1)Yi’s. Having
obtained an initial value for Ŷ, the gradient of the nega- (43)
tive log-likelihood function is computed. A function

Given the upper and lower bounds on the values of sdecreases most rapidly in the direction of the local nega-
and the convexity of f(P, Ŷ 1 sU) with respect to s, thetive (i.e., downhill) gradient. The local downhill gradi-
bisection method (Kincaid and Cheney 1991) can beent is given by
used to find the optimal value of s. The number of
iterations of the bisection method required to localize2 =f(P,Ŷ) 5 2 1]f(P,Y)

]Y1

, . . . ,
]f(P,Y)

]Yn
2|Y5Ŷ

the minimum within a given tolerance ε is given by n 5
log2[(b 2 a)/P].5 (U1 , . . . , Un)|Y5Ŷ, (35)

The gradient computation and the solution update
where steps of the steepest descent method are continued until

the gradient vector attains a magnitude less than a pre-
Ul 5 o

k

i51

2(ai,pl
2 1)(ai,pl21

2 1)I(Yl) 2 ((ai,pn
2 1)I(Yn11))

Ri 2 Rn11
j51 (ai,pj

2 1)(ai,pj21
2 1)min(Yj, M)

, defined threshold. During this iterative process, it may
happen that the current value of Y is on one or more

(36)
of the boundaries of the feasible region in which the
solution is located. These boundaries are defined byand
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the constraints on the Yi’s for i 5 1, . . . , n as discussed which is to be minimized, is systematically perturbed to
yield another candidate solution xj. Here, the probeearlier. The fact that the current value of Y lies on one

or more of the boundaries of the feasible region and ordering is systematically perturbed by reversing the
ordering within a block of probes where the endpointsdownhill gradient vector is determined to point outside

the feasible region would normally force the value of s of the block are chosen at random. In the evaluate
phase, E(xj) is computed. Here, the function f(P,ŶP)to be equal to zero and hence stop the iterative proce-

dure even though the gradient vector has not vanished. (Equation 27) is computed. In the decide phase, xj is
accepted and replaces xi probabilistically, using a stochas-The above difficulty can be overcome by projecting

the downhill gradient vector U onto the feasible region. tic decision function. The stochastic decision function
is annealed in a manner such that the search processNote that all the boundary conditions on the Yi’s for

i 5 1, . . . , n are hyperplanes. Suppose that U is directed resembles a random search in the earlier stages and a
greedy local search or a deterministic hill-climbingoutside the feasible region, and we have k hyperplanes

(corresponding to k boundary conditions) that force s search in the latter stages. The major difference between
simulated annealing and microcanonical annealingto be equal to zero. In this situation one needs to project

U onto the intersection of these hyperplanes. Let arises from the difference in the stochastic decision
function used in the decision phase. Their commonN

→
1, . . . , N

→
k be the normal vectors to these hyperplanes.

If the boundary conditions are not redundant, then feature is that, starting from an initial solution, they
generate, in the limit, an ergodic Markov chain of solu-{N

→
1, . . . , N

→
k} constitutes a linearly independent set of

vectors. The set {N
→

1, . . . , N
→

k} can be transformed into tion states that asymptotically converges to a stationary
Boltzmann distribution (Aarts and Korst 1989). Thea mutually orthonormal set of vectors given by

{N
→

1, . . . , N
→

9k } using the Gram-Schmidt orthonormaliza- Boltzmann distribution asymptotically converges to a
globally optimal solution when subjected to the anneal-tion procedure (Dorny 1980). The projected vector

Uproj is then given by: ing process (Geman and Geman 1984).
Simulated annealing: In the decide phase of SA, the

Uproj 5 U 2 (U · N
→

91)N
→

91 2 . . . 2 (U · N
→

9k)N
→

9k . (44)
new candidate solution xj is accepted with probability
p, which is computed using the Metropolis functionThe minimization procedure then proceeds along Uproj

instead of U. In the limiting case when k 5 n, the minimi- (Metropolis et al. 1953)
zation procedure has reached an extremal vertex of the
admissible region and Uproj 5 0. In this case, the extremal
vertex is the desired minimum within the admissible p 5






1 if E(xj) , E(xi)

exp 12 E(xj) 2 E(xi)
T 2 if E(xj) $ E(xi)region. Thus, the minimization procedure is halted

(45)when U vanishes or when an extremal vertex is reached
(i.e., Uproj vanishes) depending on which situation is en- or, using the Boltzmann function B(T),
countered first.

Computation of P̂: Determining the optimal clone or-
p 5 B(T) 5

1
1 1 exp([E(xj) 2 E(xi)]/T)

(46)dering P̂ entails a combinatorial search through the
discrete space of all possible permutations of {1, . . . ,

(Aarts and Korst 1989) at a given value of temperaturen}. The problem of coming up with such an optimal
T, whereas xi is retained with probability (1 2 p).ordering is isomorphic to the classical nondeterministic

The Metropolis function and the Boltzmann functionpolynomial-complete optimal linear arrangement (OLA)
give SA the capability of climbing out of local minima.problem for which no polynomial-time algorithm for
Several iterations of SA are carried out for a given valuedetermining the optimal solution is known (Garey and
of T and are referred to as an annealing step. The valueJohnson 1979). Heuristic search algorithms that are
of T is systematically reduced using an annealing func-capable of arriving at near-optimal solutions in polyno-
tion. As can be seen from Equations 45 and 46, at suffi-mial time on average are therefore desirable. However,
ciently high temperatures SA resembles a completelydeterministic hill-climbing (i.e., “local” or “greedy”)
random search, whereas at lower temperatures it ac-search algorithms have a tendency to get trapped in a
quires the characteristics of a deterministic hill-climbinglocal optimum that may be far from a desirable global
(i.e., local or greedy) search.optimum. An attractive alternative is to use a stochastic

SA generates an asymptotically ergodic (and hencehill-climbing search algorithm such as simulated anneal-
stationary) Markov chain of solution states at a givening (SA; Kirkpatrick et al. 1983; Geman and Geman
temperature using Equations 45 and 46. Logarithmic1984) or microcanonical annealing (MCA; Creutz
annealing schedules of the form Tk 5 R/log k for some1983), both of which are known to be robust in the
value of R . 0 have been shown to be asymptoticallypresence of local optima in the solution space.
good (Geman and Geman 1984); i.e., they ensure asymp-A single iteration of a stochastic hill-climbing search
totic convergence to a global minimum with unit proba-algorithm consists of three phases: (i) perturb, (ii) evalu-
bility in the limit k → ∞ (Geman and Geman 1984).ate, and (iii) decide. In the perturb phase, the current

solution xi to a multivariate objective function E(x), The convergence criterion used here was the fact that
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the value of the objective function had not changed Level 1: Parallel computation of the optimal interprobe
spacing ŶP for a given probe ordering P (Equationfor the past k annealing steps. A geometric annealing

schedule of the form Tk11 5 aTk was used where a 5 27). This entails parallelization of the gradient de-
scent search procedure for constrained optimization0.9. Although the geometric annealing schedule does

not strictly ensure asymptotic convergence to a global in the continuous domain.
Level 2: Parallel computation of the optimal probe or-optimum as does the logarithmic annealing schedule,

it is much faster and has been found to yield very good dering (Equation 28). This entails parallelization of
the stochastic hill-climbing search procedure (SA orsolutions in practice (Romeo and Sangiovanni-

Vincentelli 1991). MCA) for optimization in the discrete domain.
Microcanonical annealing: MCA models a physical sys-

Both levels of parallel computation were imple-tem whose total energy, i.e., the sum of kinetic energy
mented on PVM (Sunderam 1990), which is a softwareand potential energy, is always conserved. The potential
environment designed to exploit parallel/distributedenergy of the system is the multivariate objective func-
computing across a variety of computing platforms.tion E(x) to be minimized, whereas the kinetic energy
PVM is based on a distributed-memory message-passingEk . 0 is represented by a demon or a collection of
paradigm of parallel computing. The interested readerdemons. In the latter case, the total kinetic energy is
is referred to Geist et al. (1994) for a more detailedthe sum of all the demon energies. The demon energy
description of PVM.(or energies) serve(s) to provide the system with an

Parallel stochastic hill-climbing search: Parallelizationextra degree (or degrees) of freedom thus enabling
of annealing algorithms has been attempted by severalMCA to escape from local minima.
researchers especially in the area of computer-aided de-In the decide phase of MCA, if E(xj) , E(xi), then xj
sign, image processing, and operations research (Green-is accepted as the new solution. If E(xj) $ E(xi), then
ing 1990; Azencott 1992). Parallelization strategies forxj is accepted as the new solution only if Ek $ E(xj) 2
the SA and MCA algorithms can be categorized as fol-E(xi). If E(xj) $ E(xi) and Ek , E(xj) 2 E(xi) then the
lows:current solution xi is retained. In the event that xj is

accepted as the new solution, the kinetic energy demon A. Functional parallelism within a move where the task
is updated to En11

k 5 En
k 1 [E(xi) 2 E(xj)] to ensure the of evaluating each move is decomposed into subtasks

conservation of the total energy. The kinetic energy that are performed in parallel by multiple processors
parameter Ek is annealed in a manner similar to the (Wong and Fiebrich 1987).
temperature parameter T in SA. MCA can also be shown B. Control parallelism with multiple active iterations
to converge to a global minimum with unit probability with processors engaged in speculative computation
given a logarithmic annealing schedule (Bhanot et al. (Witte et al. 1991).
1984). C. Control parallelism with parallel Markov chain gen-

In the context of probe ordering, a kinetic energy eration using a systolic algorithm (Aarts et al. 1986;
demon is assigned to each distinct pair of probes. A Greening 1990; Kim and Kim 1990; Azencott
square symmetric matrix Ek of size n 3 n, where n is the 1992).
number of probes, is used to store the demon energy D. Control parallelism with multiple searches of the
for each probe pair. Thus, an entry Ek(i, j) refers to the solution space where the searches could be inter-
kinetic energy of the demon associated with the ith and acting, in which case the processors exchange data
j th probe. As in the case of SA, the convergence crite- periodically, or noninteracting in which case the
rion used was the fact that the value of the objective processors proceed independently of each other
function had not changed for the past k annealing (Azencott 1992; Lee 1995).
steps. A geometric annealing schedule of the form E. Data parallelism with the state variables in a multivar-
Em11

k (i, j) 5 aEm
k (i, j) was used where a 5 0.9. iate solution vector distributed among the individual

In spite of the robustness of SA and MCA to the processors in the multiprocessor architecture accom-
presence of local minima in the solution landscape, the panied by either (1) parallel evaluation of multiple
annealing schedule needed for asymptotic convergence moves with acceptance of a single move (Casotto
is computationally intensive. This provides the motiva- et al. 1987), or (2) parallel evaluation of multiple
tion for the parallel computation of the maximum-likeli- moves with acceptance of multiple noninteracting
hood estimator. moves (Jayaraman and Rutenbar 1987), or parallel

evaluation and acceptance of multiple moves (Ban-
erjee et al. 1990).PARALLEL COMPUTATION OF THE

MAXIMUM-LIKELIHOOD ESTIMATOR The authors’ earlier work in chromosome reconstruc-
tion involved ordering clones, i.e., rows of the hybridiza-Computation of the maximum-likelihood estimator
tion matrix H as shown in Table 1 for physical mapentails two levels of parallelism corresponding to the
generation (Cuticchia et al. 1992, 1993). The clonestwo stages of optimization discussed in the previous

section: were ordered on the basis of minimization of the total
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pairwise Hamming distance between the binary hybrid- lar to their NILM counterparts except for one major
difference. Just before the parameter T or Ek is updatedization signatures of successive clones in a given permu-

tation. This clone ordering problem was also shown using the annealing function, the best candidate solu-
tion from among those in all the processors is selectedto be isomorphic to the optimal linear arrangement

problem (Garey and Johnson 1979), and SA and MCA and duplicated on all the other processors. The goal of
this synchronization procedure is to focus the search inwere used to arrive at the optimal clone ordering, which

was represented by a global minimum of the total pair- the more promising regions of the solution space. This
suggests that the PILM PSA or PILM PMCA algorithmwise Hamming distance objective function.The authors’

efforts at parallelizing SA and MCA in the context of should be potentially superior to its NILM counterpart.
It should be noted that in the case of all four algorithms,the aforementioned clone ordering problem showed

control parallelism based on multiple searches to be PILM PSA, PILM PMCA, NILM PSA, and NILM PMCA,
a single Markov chain of solution states is generatedthe most promising for implementation on a distributed

memory multiprocessor platform such as PVM (Bhand- entirely within a single processor. The PILM model is es-
sentially that of multiple periodically interacting searchesarkar et al. 1996a,b, 1998; Bhandarkar 1997; Bhand-

arkar and Machaka 1997). Since a candidate solution as described in item (D) above.
In the case of all the four algorithms, NILM PSA,in the serial SA or MCA algorithm can be considered

to be an element of an asymptotically ergodic first-order NILM PMCA, PILM PSA, and PILM PMCA, a master
process is used as the overall controlling process. TheMarkov chain of solution states, two models of parallel

SA (PSA) and parallel MCA (PMCA) algorithms were master process runs on one of the processors within the
PVM system. The master process spawns child processesformulated and implemented based on the distribu-

tion of the Markov chain of solution states on a work- on each of the other processors within the PVM system,
broadcasts the data subsets needed by each child pro-station cluster running PVM. These models incorporate

the parallelization strategies discussed under item (D) cess, collects the final results from each of the child
processes, and terminates the child processes. The mas-above and are described below:
ter process, in addition to the above-mentioned func-

The noninteracting local Markov chain (NILM) PSA
tions for task initiation, task coordination, and task ter-

and PMCA algorithms.
mination, also runs its own version of the SA or MCA

The periodically interacting local Markov chain (PILM)
algorithm just as does any of its child processes.

PSA and PMCA algorithms.
In the case of the PILM PSA and the PILM PMCA

algorithms, before the parameter T or Ek is updated,In the NILM PSA and NILM PMCA algorithms, each
processor within the PVM system runs an independent the master process collects the results from each child

process along with its own result, broadcasts the bestversion of the serial SA or MCA algorithm. In essence,
there are as many Markov chains of solution states as result to all the child processes, and also replaces its own

result with the best result. The master process updates itsthere are physical processors within the PVM system.
Each Markov chain is local to a given processor and at temperature or kinetic energy value using the annealing

schedule and proceeds with its local version of the SAany instant each processor maintains a candidate solu-
tion that is an element of its local Markov chain of or MCA algorithm. On convergence, the master process

collects the final results from each of the child processessolution states. The serial SA and MCA algorithms run
asynchronously on each processor; i.e., at each tempera- along with its own, selects the best result as the final

solution, and terminates the child processes.ture value or kinetic energy value each processor iterates
through the perturb-evaluate-accept cycle concurrently Each of the child processes in the PILM PSA and the

PILM PMCA algorithms receives the initial parameters(but asynchronously) with all the other processors.
The perturbation function uses a parallel random from the master process and runs its local version of

the SA or MCA algorithm. At the end of each annealingnumber generator to generate the Markov chains of
solution states. By assigning a distinct seed to each proc- step, each child process conveys its result to the master

process, receives the best result thus far from the masteressor at the start of execution, it is ensured that each
processor contains a Markov chain of solution states process, and replaces its result with the best result thus

far before proceeding with the next annealing step. Onthat is independent from those in most or all of the
other processors. The evaluation function and the deci- convergence, each child process conveys its result to the

master process. The master process and child processsion function are executed concurrently on the solution
state within each processor. On termination of the an- for the PILM PSA and the PILM PMCA algorithms are

depicted in Figures 5 and 6, respectively.nealing processes on all the processors, the best solu-
tion is selected from among all the solutions available The master and child processes for the NILM PSA

and NILM PMCA algorithms are similar to those of theiron the individual processors. The NILM model is essen-
tially that of multiple independent (i.e., noninteracting) PILM counterparts except for the absence of the process

coordination phase (Figures 5 and 6) in the former.searches as described in item (D) above.
The PILM PSA and PILM PMCA algorithms are simi- Note that it is during the process coordination phase
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Figure 5.—The master
process for the PILM PSA/
PMCA algorithm.

at the end of each annealing step that the master process fastest in the class of gradient descent-based optimiza-
tion methods (Hestenes 1980; Hestenes and Stiefeland the child processes interact in the PILM PSA and

PILM PMCA algorithms. 1952).
The conjugate gradient descent procedure is very sim-Parallel gradient descent: Deterministic optimization

techniques such as steepest descent and conjugate gradi- ilar to the steepest descent procedure with the only
difference that different directions are followed whileent descent are generally used for unconstrained opti-

mization in the continuous domain (Polak 1997). How- minimizing the objective function. Instead of consis-
tently following the local downhill gradient (i.e., theever, the steepest descent procedure in this case needs

to be adapted to the fact that the solution space of the direction of steepest descent), a set of n mutually ortho-
normal (i.e., conjugate) direction vectors are generatedinterprobe spacings is constrained, since 0 # Yi # M

for i 5 1, . . . , n. One of the well-known problems from the downhill gradient vector where n is the dimen-
sionality of the solution space. The orthonormality con-with the steepest descent method is that it takes several

small steps while descending a valley in the solution dition ensures that minimization along any given direc-
tion vector does not jeopardize the minimization alonglandscape, which usually causes it to be much slower

compared to other techniques in its class (Polak another direction vector within this set. Unlike the
steepest descent algorithm, the conjugate gradient de-1997). The conjugate gradient descent (CGD) proce-

dure, on the other hand, is known to be one of the scent algorithm guarantees convergence to a local mini-
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Figure 6.—The child
process for the PILM PSA/
PMCA algorithm.

mum within n steps. For this reason, the conjugate gradi- sors. Here, |Yloc| 5 |Y |/Nproc and |Gloc| 5 |G|/Nproc, where
Nproc is the number of processors in the virtual machine.ent descent algorithm was chosen instead of the steepest

descent algorithm in the current implementation. The This entails some interprocessor communication and
synchronization overhead since the individual subvec-serial conjugate gradient descent algorithm is depicted

in Figure 7. The Hessian matrix is usually required to tors have to be periodically scattered (i.e., distributed)
among the processors and also periodically gatheredgenerate a set of conjugate vectors to minimize a par-

ticular objective function (Dorny 1980; Kincaid and (i.e., combined) to compute a global value. For example,
in the bisection procedure (i.e., procedure for minimiz-Cheney 1991). However, the conjugate gradient de-

scent algorithm presented in Press et al. (1988) de- ing along the direction G) one needs to evaluate the
objective function and compute its one-dimensional de-scribes a method for generating conjugate direction

vectors without the need for evaluating the Hessian ma- rivative with respect to s during each iteration. Both of
these operations require gathering of data (i.e., subvec-trix. The conjugate gradient descent algorithm depicted

in Figure 7 is an adaptation of the one presented in tors) within the different processors.
PVM permits one to define a group of processes suchPress et al. (1988).

Due to its inherently sequential nature, data parallel- that reduction, scattering, and gathering operations can
be performed selectively on the processes within theism was deemed to be the appropriate parallelization

scheme for the conjugate gradient descent algorithm. group. The pvm_scatter and pvm_gather primitives
were used to scatter and gather the Y and G vectorsThe Y and G vectors are distributed among the different

processors constituting the virtual machine. Each proc- among the different processors, respectively. It is to be
noted, however, that scatter and gather operations inessor performs the required operations on its local Yloc

and Gloc subvectors concurrently with the other proces- PVM are collective calls and need to be performed by
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Figure 7.—Serial conju-
gate gradient descent algo-
rithm.

all the processors concurrently. Synchronizing the proc- pertains to the computation of P̂ using the NILM or
PILM, PSA or PMCA algorithm for discrete stochasticessors, therefore, is necessary before any such call is

initiated, thereby increasing the parallelization over- optimization as discussed previously. The two-level par-
allelization scheme is depicted in Figure 10.head. The parallelization scheme for the conjugate gra-

dient descent algorithm follows the master-child model At the coarser level, the user has a choice of any
of the four parallel stochastic hill-climbing algorithms:used for the PSA and PMCA algorithms. The master

and child processes are depicted in Figures 8 and 9, PILM PSA, NILM PSA, PILM PMCA, or NILM PMCA.
The parallelization of the conjugate gradient descentrespectively.

A two-level parallelism approach for computation of algorithm at the finer level is transparent to the parallel
stochastic hill-climbing algorithms at the coarser level.the maximum-likelihood estimator: To ensure a scalable

implementation, two levels of parallelism were incorpo- In other words, the communication and control scheme
for the parallel stochastic hill-climbing algorithms israted in the computation of the maximum-likelihood

estimator. The finer or lower level of parallelism per- independent of that of the parallel conjugate gradient
descent algorithm. This enhances the modularity andtains to the computation of Ŷ for a given probe ordering

P using the parallel conjugate gradient descent algo- flexibility of the system. For example, one could use
the serial or parallel version of the conjugate gradientrithm for continuous optimization as discussed pre-

viously. The coarser or upper level of parallelization descent algorithm or, for that matter, any other serial
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Figure 8.—Master pro-
cess for the parallel conju-
gate gradient descent algo-
rithm.

or parallel algorithm for continuous deterministic opti- tic hill-climbing process, a new set of child conjugate
gradient descent processes is spawned on the availablemization at the finer level without having to make any

changes to the parallel stochastic hill-climbing algo- processors, whereas the master conjugate gradient de-
scent process runs on the same processor as the stochas-rithms at the coarser level.

The interaction between the master and child stochas- tic hill-climbing process (master or child). The master
and child conjugate gradient descent processes cooper-tic hill-climbing (i.e., annealing) processes (NILM/

PILM PSA/PMCA) is shown with the double-headed ate to evaluate and minimize the value of the objective
function for a specific probe ordering P. Once thearrows between the larger components in Figure 10. A

parallel conjugate gradient descent algorithm is embed- objective function is evaluated, the child conjugate gra-
dient descent processes terminate, and the correspond-ded within each of the stochastic hill-climbing processes.

When the parallel conjugate gradient descent proce- ing processors are available for future computation. The
interaction between the master and child conjugate gra-dure is invoked from within the master or child stochas-
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Figure 9.—Child process
for the parallel conjugate
gradient descent algorithm.

dient descent processes is depicted by the double- stochastic hill-climbing processes, and the second level
is the group of processors that run the child conjugateheaded arrows within each of the major components in

Figure 10. gradient descent processes. The processors that run the
child conjugate gradient descent processes are con-The two-level parallelism approach can be seen to

induce a logical tree-shaped interconnection network nected to the processor running the parent stochastic
hill-climbing process but are independent of the proces-on the processors in the PVM system. The first level is

the group of processors that run the (master and child) sors running other stochastic hill-climbing processes.
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Figure 10.—The two-level parallel computation of the maximum-likelihood estimator.

EXPERIMENTAL RESULTS when the maximum number of iterations was reached
or when the number of successful perturbations equaledExperimental results on simulated data: The parallel
10 · n (i.e., 10% of the maximum number of iterations),algorithms were implemented on a dedicated PVM clus-
whichever was encountered first. The temperature orter of 200-MHz PentiumPro processors running Solaris-
demon energy values were systematically reduced at thex86 and tested with artificially generated clone-probe
end of each annealing step, using a geometric annealinghybridization data (Shete 1998). Two sets of artificial
schedule with the annealing factor a 5 0.95. The algo-data were used with the specifications outlined in Table
rithm was terminated (and deemed to have reached a2. The artificial data were generated using a program
global optimum) when the number of successful pertur-described in Shete (1998), which generates clonal data
bations in any annealing step equaled 0.of a given length with the left endpoints of the clones

In the case of the parallel stochastic hill-climbing algo-and probes uniformly distributed along the length of
rithms (NILM PSA, PILM PSA, NILM MCA, and PILMan artificial chromosome.
MCA) the product of Nproc and the maximum numberThe serial stochastic hill-climbing algorithms (SA and
of iterations D performed by a processor in a singleMCA) were implemented with the following parame-
annealing step was kept constant, i.e., D 5 (100 · n)/ters: the initial value for the temperature or demon
Nproc. This ensured that the overall workload remainedenergy was chosen to be 0.5, and the maximum number
constant as the number of processors was varied, thusof iterations D for each annealing step was chosen to
enabling one to examine the scalability of the speed-be 100 · n. The current annealing step was terminated
up and efficiency of the algorithms for a given problem
size with increasing number of processors. The other

TABLE 2 parameters for the parallel stochastic hill-climbing algo-
rithms were identical to those of their serial counter-Specifications of the artificially generated
parts. In the NILM PSA and NILM PMCA algorithms,clone-probe hybridization data
each process was independently terminated when the
number of successful perturbations in any annealingr h
step for that process equaled 0. In the PILM PSA andData set n k N M (%) (%)
PILM PMCA algorithms, each process was terminated

Data set 1 10 100 180 15 2 2
when the number of successful perturbations in an an-Data set 2 30 400 680 20 2 2
nealing step equalled 0 for all the processes i.e., the
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TABLE 3

Run-time results (in minutes) for the parallel conjugate gradient descent algorithm

Parallel conjugate gradient descent
Steepest descent:

n Nproc 5 1 Nproc 5 1 Nproc 5 2 Nproc 5 4 Nproc 5 8

100 28.82 17 9.27 13.80 19.95
200 49.62 38.57 33.90 21.13 26.05
300 834.75 301.23 215.57 136.72 121.82

Nproc, number of processors; n, number of probes.

master process and all the child processes. This condi- values of Nproc , 8. In summary, the payoff in the paral-
lelization of the conjugate gradient descent algorithmtion was checked during the synchronization phase at

the end of each annealing step. is realized only for large values of n (i.e., large problem
sizes). This is a natural consequence of the networkThe parallel conjugate gradient descent algorithm

was tested on artificial data sets with a varying number latency inherent in PVM systems that are comprised of
a network of workstations.of probes (n 5 100, 200, and 300). Table 3 shows the

run-time results for the parallel conjugate gradient de- The total number of iterations of the serial and paral-
lel versions (with different Nproc values) of the conjugatescent algorithm with varying number of processors Nproc

and varying number of probes n. Table 3 also shows the gradient descent algorithm prior to convergence was
also examined (Table 5). As can be seen in Table 5,run-time results for the serial steepest descent algorithm

on the same data sets. As can be seen from Table 3, the the number of iterations prior to convergence varies
significantly between the serial and the parallel versionsserial version of the conjugate gradient descent algo-

rithm is significantly faster than the serial version of of the conjugate gradient descent algorithm. On closer
examination, we were able to conclude that this was duethe steepest descent algorithm. Moreover, Table 3 also

shows how the performance of the parallel conjugate to numerical errors introduced by the parallelization
process. Since the objective function is mathematicallygradient descent algorithm scales with an increasing

number of processors and increasing problem size. involved, and since the order in which numbers are
added in the serial implementation and each of theThe speed-up results for Table 3 are shown in Table

4. For n 5 100, the best speed-up is attained for Nproc 5 parallel versions (with different Nproc values) is different,
a numerical error is introduced. This error is the differ-2 with a degradation in speed-up for Nproc . 2. For n 5

200, the results show the best speed-up for Nproc 5 4 ence in the objective function values computed by the
serial and parallel versions of the conjugate gradientwith a degradation in speed-up for Nproc . 4. As for n 5

300, the best speed-up is seen for Nproc 5 8. These results descent algorithm in a given iteration having started
from the same initial point. It was noted that the numeri-are in conformity with expectations, since the interproc-

essor communication overhead and synchronization cal error is initially insignificant. However, due to the
iterative nature of the conjugate gradient descent algo-overhead tend to increasingly dominate the overall exe-

cution time with increasing number of processors Nproc rithm, the results of the ith iteration depend entirely
on the results of the (i 2 1)th iteration, thereby causingfor a problem of given size (i.e., for a given value of

n). The interprocessor communication overhead and the error to build up throughout the computation. Also,
to ensure convergence to a global minimum very high-synchronization overhead as a percentage of the compu-

tational load are higher for smaller problem sizes, which precision thresholds have been used to test for conver-
gence. For instance, the bisection method terminatesexplains why the maximum speed-up obtained is for

TABLE 5TABLE 4

Speed-up results for the parallel conjugate gradient Total number of iterations before convergence for the serial
and parallel conjugate gradient descent algorithmsdescent algorithm from Table 3

Parallel conjugate gradient descent Conjugate gradient descent

n Nproc 5 1 Nproc 5 2 Nproc 5 4 Nproc 5 8 n Nproc 5 1 Nproc 5 2 Nproc 5 4 Nproc 5 8

100 231 138 200 173100 1.00 1.83 1.23 0.85
200 1.00 1.14 1.83 1.48 200 260 306 271 285

300 594 552 576 578300 1.00 1.40 2.20 2.47

Nproc, number of processors; n, number of probes. Nproc, number of processors; n, number of probes.
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TABLE 8TABLE 6

Average number of iterations per minute for the serial and Speed-up results for the parallel conjugate gradient
descent algorithm from Table 7parallel conjugate gradient descent algorithms

Conjugate gradient descent Conjugate gradient descent

n Nproc 5 1 Nproc 5 2 Nproc 5 4 Nproc 5 8 n Nproc 5 1 Nproc 5 2 Nproc 5 4 Nproc 5 8

100 1.00 1.10 1.07 0.64100 13.59 14.89 14.49 8.67
200 6.74 9.03 12.83 10.94 200 1.00 1.34 1.90 1.62

300 1.00 1.30 2.14 2.41300 1.97 2.56 4.21 4.74

Nproc, number of processors; n, number of probes. Nproc, number of processors; n, number of probes.

results in Tables 4 and 8 are shown in Figures 11 andonce the value of the objective function varies by ,10210.
12, respectively.The conjugate gradient descent algorithm itself is

In the case of the parallel stochastic hill-climbing algo-deemed to have converged to a global minimum when
rithms, experiments were conducted on problem sizesthe value of the objective function varies by ,1025 (if
of n 5 10 and n 5 30 probes. All four algorithms—NILMthe gradient vector has not vanished by then). Conse-
PSA, PILM PSA, NILM PMCA, and PILM PMCA—werequently, all three factors, i.e., the different order of
tested using the MLE objective function. Since the valueexecution of arithmetic operations, the data depen-
of n (i.e., problem size) is small, the serial version ofdency between successive iterations, and the high-preci-
the conjugate gradient descent algorithm was used. Thesion thresholds, contribute to the discrepancy in the
run-time results for these algorithms are shown in Tablenumber of iterations prior to convergence between the
9. It can be observed that the serial and parallel versionsserial and parallel versions (with different Nproc values)
of the MCA algorithm took longer to converge when

of the conjugate gradient descent algorithm. The final
compared to their SA counterparts. As Table 10 shows,

results of the serial and the parallel versions of the
the average run time per annealing step of the serial or

conjugate gradient descent algorithm are equivalent up any of the parallel versions (with different Nproc values)
to a precision of 1024. of the SA algorithm is higher than that of its MCA

Table 6 shows the average number of iterations per counterpart. The higher run time of the PMCA algo-
minute for both the serial and parallel versions of the rithms is attributable to the fact that they took a larger
conjugate gradient descent algorithm. This information number of iterations to converge to a globally optimal
is derived from the overall execution time (Table 3) solution.
and the number of iterations prior to convergence (Ta- The speed-up results for the PSA and PMCA algo-
ble 5). Table 7 shows the average time (in seconds) rithms are shown in Table 11. The corresponding speed-
per iteration for the serial and parallel versions (with up curves for n 5 10 and n 5 30 are shown in Figures
different Nproc values) of the conjugate gradient descent
algorithm. Table 8 shows the speed-up values for the
parallel conjugate gradient descent algorithm for vary-
ing values of Nproc based on the results in Table 7. Al-
though the speed-up results in Table 8 compare well
with those in Table 4, one can observe greater unifor-
mity and consistency in the results presented in Table
8. The speed-up curves corresponding to the speed-up

TABLE 7

Average time (in seconds) per iteration for the serial and
parallel conjugate gradient descent algorithms

Conjugate gradient descent

n Nproc 5 1 Nproc 5 2 Nproc 5 4 Nproc 5 8

100 4.42 4.03 4.14 6.92
200 8.90 6.65 4.68 5.48
300 30.43 23.43 14.24 12.65

Figure 11.—Speed-up curves for the parallel conjugate gra-
dient descent algorithm from Table 4.Nproc, number of processors; n, number of probes.
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of N, the total length of the chromosome. The absolute
and percentage RMSE values for the PSA and PMCA
algorithms for n 5 10 and n 5 30 are shown in Table
12. From the statistical theory underlying the maximum-
likelihood estimation procedure it can be shown that
the percentage RMSE value asymptotically approaches
0 in the limit n → ∞ (Lehman 1983; Hogg and Craig
1995). This trend can be observed in the percentage
RMSE values in Table 12.

Experimental results on real data: The parallel imple-
mentation of the MLE-based physical mapping algo-
rithm was also tested on real probe-clone hybridization
data from linkage group VII of the fungal genome N.
crassa. The data were comprised of 105 probes and 1678
clones. The physical map was generated by first ordering
the probes and estimating the interprobe distances us-
ing the MLE procedure. The intervening clones were
then inserted between pairs of successive probes to gen-

Figure 12.—Speed-up curves for the parallel conjugate gra-
erate a physical map of the chromosome. The result-dient descent algorithm from Table 8.
ing physical map exhibiting a total of 39 contig breaks
can be viewed on the Genetics web site at http://www.
genetics.org/supplemental/. The 1’s in the physical13 and 14, respectively. As can be observed, the PSA
map that do not conform to the consecutive 1’s propertyand PMCA algorithms exhibit consistent and scalable
(Booth and Lueker 1976) are identified as false posi-speed-up with increasing Nproc values. As expected, the
tives and replaced by *9s. However, due to the inherentspeed-up scales better with increasing Nproc values for
sparsity of the clone-probe hybridization matrix H, it islarger problem sizes (i.e., larger values of n). The PSA
not possible to identify the false negatives (Christofand PMCA algorithms arrived at the correct probe or-
and Kececioglu 1999). A parallel version of the MLE-dering in all cases but for one exception. In the case
based physical mapping procedure that used the NILMn 5 30 and Nproc 5 8, the PMCA algorithm came up
PSA algorithm in conjunction with the serial CGD algo-with the reverse probe ordering (i.e., PR instead of P),
rithm exhibited a speed-up of 1.5 on a cluster of threewhich is expected since the likelihood function is
SUN UltraSparc1 workstations (350 MHz, 128 MB RAM)unique only up to reversal in the probe ordering. Conse-
connected via 100 Mbs fast Ethernet. Although the re-quently, the MLE procedure is capable of recovering
sults are encouraging, the speed-up of the parallel MLE-the correct probe ordering only up to reversal.
based physical mapping procedure leaves room for im-The absolute root mean squared error (RMSE) x
provement.between the true interprobe spacings Y and the esti-

mated interprobe spacings Ŷ is defined as

CONCLUSIONS AND DISCUSSIONx 5 !|Y 2 Ŷ|2

n
. (47)

In this article, a MLE-based approach to physical map
reconstruction under a probabilistic model of hybridiza-The RMSE value can also be expressed as a percentage

TABLE 9

Run-time results (in minutes) for the PSA and PMCA algorithms

Algorithm n Nproc 5 1 Nproc 5 2 Nproc 5 4 Nproc 5 8

NILM PSA 33.48 17.28 9.90 5.60
PILM PSA 10 33.48 17.42 9.93 5.76
NILM PMCA 38.43 19.32 10.35 5.79
PILM PMCA 38.43 19.47 10.43 5.88

NILM PSA 198.57 100.56 52.92 28.72
PILM PSA 30 198.57 102.43 53.77 29.11
NILM PMCA 217.72 110.65 56.24 30.85
PILM PMCA 217.72 113.58 58.30 32.06

Nproc, number of processors; n, number of probes.
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TABLE 10 and the stochastic hill-climbing algorithm was simulta-
neously parallelized at the higher level. The parallelAverage time per annealing step Tstep (in minutes)
algorithms were implemented on a distributed-memoryfor the PSA and PMCA algorithms
multiprocessor cluster running the PVM environment.
A data parallel approach, where the components of theAlgorithm n Tstep

gradient vector are distributed among the individual
NILM PSA 16.40 processors in the PVM system, was deemed more suit-PILM PSA 10 16.40

able for the parallelization of the conjugate gradientNILM
descent procedure. A control parallel scheme wherePMCA 12.83
individual processors perform noninteracting or period-PILM PMCA 12.83
ically interacting searches was deemed more suitableNILM PSA 49.17
for the parallelization of the combinatorial stochasticPILM PSA 30 49.17
hill-climbing procedures.NILM

Experimental results on artificial clone-probe dataPMCA 38.77
PILM PMCA 38.77 showed that the payoff in data parallelization of the

conjugate gradient descent procedure was realized onlyn, number of probes.
for large problem sizes (i.e., large values of n). A similar
trend was observed in the case of the parallel stochastic

tion errors consisting of false positives and false nega- hill-climbing algorithms. In all cases, the parallel imple-
tives was presented. The maximum-likelihood estimator mentation of the maximum-likelihood estimator re-
optimizes a likelihood function defined by the ordering sulted in the correct probe ordering, except in one case
of probes and interprobe spacings under an experimen- wherein the probe ordering was reversed. The RMSE
tal protocol wherein clones of equal length are hybrid- between the resulting interprobe distances and the true
ized to a maximal subset of nonoverlapping equal- interprobe distances was computed. The percentage
length clones termed probes. The estimation procedure RMSE was seen to exhibit a decreasing trend with in-
was shown to involve a combination of continuous and creasing problem values of n (i.e., problem size), which
discrete optimization, the former to determine a set of is in conformity with the statistical theory underlying
optimal interprobe spacings for a given probe ordering the MLE procedure. Experimental results on real hy-
and the latter to determine the optimal probe ordering. bridization data from linkage group VII of the fungal
The conjugate gradient descent procedure was used to genome N. crassa yielded a physical map with 39 contig
determine the optimal spacings between probes for a breaks. The parallel MLE-based physical mapping pro-
given probe ordering. The optimal probe ordering was cedure that used a combination of NILM PSA and the
determined using stochastic combinatorial optimization serial CGD algorithm exhibited a speed-up of 1.5 on a
procedures such as SA and MCA. three-workstation cluster interconnected via 100 Mbs

The problem of MLE-based physical map reconstruc- fast Ethernet.
tion in the presence of errors is a problem of high The formulation of the ML model entailed certain
computational complexity, thus providing the motiva- key assumptions. The assumption of a constant probe/
tion for parallel computing. A two-level parallelization clone size is reasonable (Kelkar et al. 2001). The as-
strategy was proposed wherein the conjugate gradient sumption of a uniform distribution of clones along the

length of the chromosome is also reasonable sincedescent procedure was parallelized at the lower level,

TABLE 11

Speed-up results for the PSA and PMCA algorithms

Algorithm n Nproc 5 1 Nproc 5 2 Nproc 5 4 Nproc 5 8

NILM PSA 1.0 1.94 3.38 5.98
PILM PSA 10 1.0 1.92 3.37 5.81
NILM
PMCA 1.0 1.99 3.71 6.64
PILM PMCA 1.0 1.97 3.68 6.65

NILM PSA 1.0 1.97 3.75 6.91
PILM PSA 30 1.0 1.94 3.69 6.82
NILM
PMCA 1.0 1.97 3.87 7.06
PILM PMCA 1.0 1.92 3.73 6.79

Nproc, number of processors; n, number of probes.
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Figure 14.—Speed-up curves for the parallel stochastic hill-Figure 13.—Speed-up curves for the parallel stochastic hill-
climbing algorithms for n 5 30 from Table 9.climbing algorithms for n 5 10 from Table 9.

Kelkar et al. (2001) and Aign et al. (2001) have taken ordering. This assumption permits the use of local
search-based techniques to determine a local minimumsubstantial effort to represent fragments of N. crassa

DNA in multiple cloning vectors. The most difficult (which also happens to be a global minimum) of the
ML objective function for a given probe ordering. Thisassumption is that of a uniform distribution of probes

along the length of the chromosome due to the pres- assumption is valid only when the clone coverage is
sufficiently large. In the absence of this assumption, theence of repeats (Xiong et al. 1996). This has not been

a serious problem in the case of N. crassa thus far, due problem of determining a global minimum of the ML
objective function for a given probe ordering becomesto the paucity of off-diagonal hybridization signals in

the physical maps (Aign et al. 2001; Hall et al. 2001). intractable.
Future research will attempt to improve the perfor-However, in general, the presence of DNA repeats does

pose a serious problem in physical map creation and mance of the parallel MLE-based physical mapping pro-
cedure on real hybridization data. Future research willthe ML model will need to be extended to address this

issue. The ML model will also need to be enhanced to also investigate extensions and enhancements to the
ML objective function to account for errors due to re-take into account hybridization errors due to deletions

and chimerism, especially when longer length clones peat DNA sequences, deletions, and chimerism. The
consistency of the ML estimator needs to be rigorously(and probes) are used in the sampling-without-replace-

ment protocol. Another key assumption in the computa- analyzed. This would entail a proof of the asymptotic
convergence of the inferred physical map to the truetion of the ML estimate is that the n-dimensional space

of interprobe spacings is convex or can be decomposed physical map with probability one as the number of
probes (and clones) grows. Statistical methods need tointo a finite number of convex regions for a given probe

TABLE 12

Root mean squared error (RMSE) values for the interprobe spacings

Nproc 5 1 Nproc 5 2 Nproc 5 4 Nproc 5 8
Algorithm n (%) (%) (%) (%)

NILM PSA 2.712 (1.51) 2.712 (1.51) 2.712 (1.51) 2.712 (1.51)
PILM PSA 10 2.712 (1.51) 2.712 (1.51) 2.712 (1.51) 2.712 (1.51)
NILM PMCA 4.736 (2.63) 4.736 (2.63) 2.712 (1.51) 4.695 (2.61)
PILM PMCA 4.736 (2.63) 4.736 (2.63) 2.712 (1.51) 4.695 (2.61)

NILM PSA 2.306 (0.34) 2.306 (0.34) 2.306 (0.34) 5.359 (0.79)
PILM PSA 30 2.306 (0.34) 2.306 (0.34) 2.306 (0.34) 5.359 (0.79)
NILM PMCA 4.029 (0.59) 4.029 (0.59) 2.306 (0.34) 2.306 (0.34)
PILM PMCA 4.029 (0.59) 4.029 (0.59) 2.306 (0.34) 2.306 (0.34)

Nproc, number of processors; n, number of probes.
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Bennett, J. W., 1997 White paper: genomics for filamentous fungi.be developed to assess the statistical reliability of the
Fungal Genet. Biol. 21(1): 3–7.

ML estimator. The rate of convergence of the inferred Bhandarkar, S. M., 1997 Parallel processing for chromosome re-
construction from physical maps—a case study of MIMD parallel-physical map to the true physical map could be used to
ism on the hypercube. Parallel Algorithms and Applications 12:establish asymptotic confidence levels for links between
231–252.

pairs of probes (or clones) on the physical map (Xiong Bhandarkar, S. M., and S. Machaka, 1997 Chromosome recon-
struction from physical maps using a cluster of workstations. J.et al. 1996). Variational analysis will provide the tools
Supercomput. 11(1): 61–86.for an asymptotic analysis and bootstrap resampling

Bhandarkar, S. M., S. Chirravuri and J. Arnold, 1996a Parallel
techniques (Wang et al. 1994b) could provide a tool computing of physical maps—a comparative study in SIMD and

MIMD parallelism. J. Comput. Biol. 3(4): 503–528.for estimating the statistical measure of confidence in
Bhandarkar, S. M., S. Chirravuri and J. Arnold, 1996b PAR-the links on the physical map. A rigorous sensitivity

ODS—A study of parallel algorithms for ordering DNA se-
analysis is necessary to show the validity and robustness quences. Int. J. Comput. Appl. Biosci. 12(4): 269–280.

Bhandarkar, S. M., S. Chirravuri, S. Machaka and J. Arnold,of the various assumptions underlying the ML model.
1998 Parallel computing for chromosome reconstruction viaExtensions to the ML objective function to be able to
ordering of DNA sequences. Parallel Comput. 24(8): 1177–1204.

integrate ordinal information from probes containing Bhanot, G., M. Creutz and H. Neuberger, 1984 Microcanonical
simulation of Ising systems. Nuclear Phy. B235 (FS11): 417–434.markers anchored to genetic maps (Hall et al. 2001)

Booth, K. S., and G. S. Lueker, 1976 Testing for the consecutivealso need to be investigated. The current PVM imple-
one’s property, interval graphs and graph planarity using pq-tree

mentation of the ML estimator is targeted toward a algorithms. J. Comput. Systems Sci. 13: 335–379.
Brody, H., J. Griffith, A. J. Cuticchia, J. Arnold and W. Tim-homogeneous distributed processing platform such as

berlake, 1991 Chromosome-specific recombinant libraries froma network of identical workstations. Future research will
the fungus Aspergillus nidulans. Nucleic Acids Res. 19: 3105–3109.

explore and address issues that deal with the parallel- Casotto, A., F. Romeo and A. Sangiovanni-Vincentelli, 1987 A
parallel simulated annealing algorithm for the placement ofization of the ML estimator on a heterogeneous distri-
macro cells. IEEE Trans. Computer-Aided Design 1: 838–847.buted processing platform such as a network of work-

Chor, B., and M. Sudan, 1995 A geometric approach to between-
stations that differ in processing speeds. ness, pp. 227–237 in Proceedings of the European Symposium on Algo-

rithms: Springer-Verlag Lecture Notes in Computer Science, Vol. 979.The authors thank Dr. David Lowenthal for access to his PVM
Springer-Verlag, Berlin.workstation cluster. This research was supported in part by a National

Christof, T., and J. D. Kececioglu, 1999 Computing physical maps
Research Initiative Competitive Grants Program (NRICGP) grant by of chromosomes with non-overlapping probes by branch-and-cut.
the U.S. Department of Agriculture to Dr. Suchendra M. Bhandarkar. Proceedings of the ACM Conference on Computational Molecu-

lar Biology, Lyon, France, pp. 115–123.
Christof, T., M. Jünger, J. D. Kececioglu, P. Mutzel and G. Rein-
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