
Copyright  2001 by the Genetics Society of America

Accurate Partition of Individuals Into Full-Sib Families From Genetic Data
Without Parental Information

Bruce R. Smith,* Christophe M. Herbinger† and Heather R. Merry*

*Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada and †Marine Gene Probe Laboratory,
Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada

Manuscript received July 14, 1998
Accepted for publication April 12, 2001

ABSTRACT
Two Markov chain Monte Carlo algorithms are proposed that allow the partitioning of individuals into

full-sib groups using single-locus genetic marker data when no parental information is available. These
algorithms present a method of moving through the sibship configuration space and locating the configura-
tion that maximizes an overall score on the basis of pairwise likelihood ratios of being full-sib or unrelated
or maximizes the full joint likelihood of the proposed family structure. Using these methods, up to 757
out of 759 Atlantic salmon were correctly classified into 12 full-sib families of unequal size using four
microsatellite markers. Large-scale simulations were performed to assess the sensitivity of the procedures
to the number of loci and number of alleles per locus, the allelic distribution type, the distribution of
families, and the independent knowledge of population allelic frequencies. The number of loci and the
number of alleles per locus had the most impact on accuracy. Very good accuracy can be obtained with
as few as four loci when they have at least eight alleles. Accuracy decreases when using allelic frequencies
estimated in small target samples with skewed family distributions with the pairwise likelihood approach.
We present an iterative approach that partly corrects that problem. The full likelihood approach is less
sensitive to the precision of allelic frequencies estimates but did not perform as well with the large data
set or when little information was available (e.g., four loci with four alleles).

WITH the development of numerous informative which pairs of individuals (dyads) are potentially related
from the patterns of allele sharing. In some instances,nuclear DNA markers, particularly microsatel-

lites, there is a growing interest in the possibility of that information is all that is needed. For example, that
approach was used to avoid mating related individualsinferring relatedness among individuals when part or

all of the pedigree information is missing. Paternity in various aquaculture breeding experiments (Her-
binger et al. 1995). However, in most cases one is inter-inference or parentage assignment using such polymor-

phic markers is becoming common in the study of natu- ested in further reconstruction of the pedigree of the
population by allocating the individuals into variousral populations (Double et al. 1997; Fitzsimmons 1998;

Marshall et al. 1998; O’Reilly et al. 1998). However, genetic groupings. Generally, the pedigree of a group
of individuals of unknown relatedness will potentiallythese studies require parental data. Recently, Blouin et

al. (1996), Painter (1997), Herbinger et al. (1997), include a variety of relationships (i.e., full-sibs, half-sibs,
cousins, parent-offspring, uncle-niece, unrelated, etc.).Almudevar and Field (1999), and Thomas and Hill

(2000) explored the possibility of reconstructing sib- In theory, there could thus be an infinite number of
genealogies (pedigree) giving rise to the observed pat-ships from genetic data without parental information.

The ability to reconstruct a pedigree and estimate kin- tern of shared alleles (Thompson 1991). However, there
are many cases in which clusters of individuals areship relationships among individuals in natural popula-
known or supposed to be a mixture of full-sibs or half-tions would have obvious applications to the manage-
sibs (Reeve et al. 1990; Apostol et al. 1993). Similarly,ment of small threatened wildlife populations. It would
Painter (1997) tested his approach on a group of pere-also be important in such fields as behavioral genetics,
grine falcons that were supposed to be an unknownecological genetics, and evolutionary genetics, where it
mixture of full-sibs. Our article presents two methodswould allow for the estimation of gene flow, mating
for partitioning individuals into full sibships when nobehavior, or inclusive fitness of natural populations, for
parental information is available and illustrates theirexample.
accuracy on various real and simulated data sets.The pairwise likelihood score approach developed by

Herbinger et al. (1997) allows for the estimation of
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N }. If a configuration has K full-sib families, the partition is
S(C) � �

i�j
log

P(ai, aj|cij)

P(ai, aj|1 � cij)
. (2)written as c(1), . . . , c(K), where c( j) is the subset of {1, . . .,

N } that identifies those individuals in the jth family. Any parti-
When C specifies the relationship between i and j correctlytion is equivalent to the associated collection of pairwise indi-
the associated summand will be positive, on average, while ifcators cij, i, j � 1, . . . , N, where cij � 1 specifies that i and j
the relationship is incorrectly specified, the summand willare full-sibs and cij � 0 that they are unrelated. The pairwise
typically be negative. Therefore a configuration maximizingrelations must be consistent. For example, if 1 and 2 are full-
S(C) should be a reasonable estimate of the true underlyingsibs and 1 and 3 are full-sibs, then 2 and 3 must be full-sibs.
configuration. The score function S gives rise to the family ofThat is, c1,2 � 1 and c1,3 � 1 imply c2,3 � 1.
probability distributionsThe space of all possible data configurations consisting only

of full-sibs or unrelated individuals is denoted by �. Let S be pS(C) � Ke S(C )/T, C � �,a function that assigns a score to each configuration C � �.
We want to find a function S whose maximizing value provides where K is a normalizing constant and T parameterizes the
a good estimate of the true configuration underlying a set of distribution.
genotypic data. In addition, we want to have efficient methods For fixed T the Hastings-Metropolis algorithm is used to
for maximizing S(C). One approach is direct enumeration, generate samples from pS, with T governing the rate at which
but the enormous size of �, for even moderate N, precludes � is sampled. As t → ∞, the algorithm is guaranteed to sample
this method. all of � for any fixed T, with new configurations being accepted

Another approach is to sample the space of configurations more frequently for larger values of T. However, sampling
using a Monte Carlo approach. The Metropolis-Hastings algo- with fixed T may not be the most efficient method of finding
rithm is a general tool to sample from a state space, in this the configuration that maximizes S. An alternative is to apply
case �. The idea is to define a Markov chain having stationary a stochastic optimization method. One such algorithm is simu-
distribution p(C), C � �. Where Ct denotes the tth configura- lated annealing (Kirkpatrick et al. 1983), in which T (the
tion generated, the algorithm proceeds by simulating a candi- annealing temperature) is allowed to decrease to 0 as t → ∞.
date or proposal value C from a transition distribution q(Ct, Simulated annealing has the desirable theoretical property
C). At the next step, Ct�1 is randomly assigned to be either C that it samples only from the set of global maximizers of p(C)
with probability r(Ct, C) or Ct with probability 1 � r(Ct, C), as T ↓ 0.
where The second distribution p(C) that we considered is the full

joint distribution of the observed alleles given the configura-
tion C [proportional to the likelihood L(C) of the configura-r(Ct,C) � min�p(C)q(C,Ct)

p(Ct)q(Ct,C)
, 1�.

tion], conditional on the allele frequencies. This approach
was extensively investigated by Painter (1997). Where gm( j)

For appropriate choices of q this algorithm is guaranteed to and gp( j) are the maternal and paternal genotypes for the jth
generate samples from p(C) for t large. Conditions under full-sib group, c( j) is the collection of offspring in the jth full-
which this is the case are discussed in Hastings (1970). sib group, gi( j) is the observed genotype of the ith individual

In the examples presented, we set the initial configuration in the jth full-sib group, and p denotes the unknown allele
C0 to “all unrelated” in which there are N families each con- frequencies, we set down the single-locus likelihood for a con-
taining one individual. For the distribution q(Ct, C), we choose figuration consisting of K full-sib groups as
two individuals I and J independently according to a uniform
distribution on {1, . . . , N}. Let cI and cJ denote the full-sib �

K

j�1
�

gm( j )
�

gp( j )
� �

i�c( j )
P(Oi(j)|gm(j), gp(j))�P(gm(j)|p)P(gp(j)|p). (3)

groups in Ct to which I and J belong. If cI � cJ, then the
proposed configuration C is obtained by moving individual I

With several unlinked loci, the likelihood is a product of suchfrom cI to cJ. If cI � cJ then I is removed from cI to a new full-
terms over loci.sib group of size one. This choice of q satisfies the necessary

Where relationships are restricted to full-sib or unrelated,conditions under which the algorithm will generate samples
the single-locus single-family likelihood can be written downfrom the desired distribution p(C). It also ensures that q(Ct,
directly as a polynomial function of the allele frequencies,C) � q(C, Ct), in which case the Metropolis-Hastings algorithm
which effects a substantial computational saving. These single-is the original Metropolis algorithm (Metropolis et al. 1953).
family likelihoods are given in Table 1 for each of the 14We experimented with two distributions p(C) on the con-
possible single-locus genotype configurations of a full-sib fam-figuration space. The first, denoted by pS(C), is based on a
ily. For example, if a family consists of nAA individuals of geno-combination of pairwise likelihood ratios. Let gi be the geno-
type AA and nBB individuals of genotype BB, the single-locustype of individual i, and cij � {0,1} denote the relationship
likelihood of the genotypes is 4p 2

Ap 2
B(1/4)n, where n � nAA �between individuals i and j, restricting the possible pairwise

nBB. The derivation of these formulas is straightforward andrelationships to “full-sib” (cij � 1) or “unrelated” (cij � 0). Let
the results have appeared elsewhere, for example in TableP(gi, gj|cij) be the probability of the genotypes of individuals i
A.2 of Painter (1997). In that case, however, there are mis-and j given their relationship and the population allele fre-
prints in his entries 10 and 13.quencies. The pairwise likelihood ratio for i and j is

In our study we restricted ourselves to the analysis of data
sets without mutations or scoring errors, and so all proposed

log
P(gi, gj|cij)

P(gi, gj|1 � cij)
. (1) genotype configurations are required to be feasible in that

they are compatible with the genotypes of two parents followed
by independent segregation of alleles to offspring.If cij specifies the true relationship between i and j this should

be relatively large, and otherwise small, so that its magnitude Data sets and goodness-of-fit of estimated partitions: Four
measures were used to describe the fit between true and pre-can be taken as evidence for the proposed relationship cij.

Assuming that the parents of i and j are unrelated and nonin- dicted full-sib groups. The number of moves is simply the
smallest number of individuals that need to be moved frombred, the probabilities in (1) can be derived in a straightfor-

ward fashion, as in Thompson (1991), and are functions of their predicted full-sib groups to their real full-sib groups to
get a perfectly matched configuration. This number of movesthe (usually unknown) allele frequencies. We define a pairwise

likelihood score for configuration C as is identical to the number of individuals that must be removed
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(proportion E1 � 0.276) while none of the 100 true unrelatedTABLE 1
pairs are incorrectly classified as full-sibs (proportion E2 � 0).

Single-locus full-sibship likelihoods The following data sets were used in this study to illustrate
the performance of the partitioning algorithms.

Full-sib genotypes Sibship likelihood Example 1: This is a large data set consisting of 759 Atlantic
salmon comprising 12 families typed at four microsatellite

AA p 4
A � 4p 3

ApX(1/2)n � 4p 2
Ap 2

X(1/4)n
loci, with 11, 14, 10, and 8 alleles per locus in the offspring.

AB 2[p 2
Ap 2

B � (1/2)nAB 2(p 3
ApB �p 2

ApBpX � Specific information on the fish, and particularly on parentage
pAp 3

B � pAp 2
BpX) � (1/4)nAB assignment to these offspring based on parental DNA informa-

4(p2
ApBpX � pAp2

BpX � pApBp2
X)] � tion, can be found in O’Reilly et al. (1998) while details of

(1/2)nAB 4p2
Ap2

B the microsatellites used in this study can be found in O’Reilly
AA BB 4p 2

Ap 2
B(1/4)n et al. (1996). The parental genotypes and family sizes are listed

in Table 2, but this parental information was not used in ourAA AB 4p3
ApB(1/2)n � 4p2

Ap2
B(1/4)nAA(1/2)nAB �

estimation of the family configuration. The empirical allele8p2
ApBpX(1/2)n

frequencies of the offspring were used as estimates of the alleleAA AB BB 4p 2
Ap 2

B (1/4)nAA�nBB (1/2)nAB

frequencies, which are required to calculate the likelihood andAA BC 8p 2
ApBpC(1/4)n

pairwise likelihood score.AB AC 4p 2
ApBpC(1/2)n � 8p 2

ApBpC(1/4)n �
Example 2: This data set consists of genotypes at nine loci8pApBpC pX(1/4)n

for nine peregrine falcons. Painter (1997) carried out a full-AA AB AC 8p 2
ApBpC(1/4)n

likelihood analysis for these data, with a variety of assumptionsAA AB BC 8p 2
ApBpC(1/4)n

on the population allele frequencies, and an analysis in whichAB AC BC 8pApBpC(1 � pX)(1/4)n

the likelihood is integrated over a distribution on the popula-AA AB AC BC 8p 2
ApBpC(1/4)n

tion allele frequencies. The resulting marginal distributionAC BD 8pApBpC pD(1/4)n
was maximized approximately using similar algorithms to

AD AC BC 8pApBpC pD(1/4)n
those described above. For this data set we sample both the

AC AD BC BD 8pApBpC pD(1/4)n
likelihood and the pairwise likelihood score (with T � 10)
using sample allele frequencies and running for 100,000 itera-nAB is number of individuals with genotype AB; n is total
tions.number of individuals in the full sibship; pX is the probability

Example 3: Several large-scale simulation studies were car-of all unspecified alleles. For example, for the family consisting
ried out to better assess the sensitivity of the procedures toof nAA individuals with genotype AA, pX � 1 � pA, and for the
various data configurations. A factorial design was set up tosecond last full-sib genotype configuration listed (AB, AC),
investigate the importance of the number of loci, the numberpX � 1 � pA � pB � pC. of alleles at each locus, the distribution of alleles at each
locus, and the independent knowledge of population allele
frequencies. Three levels were used for the number of locifrom the true and estimated configurations to make them
(two, four, or eight), two levels for number of alleles peragree. The number of block moves is a refinement of that
locus (four or eight), and three levels for allele distributionnotion, which distinguishes the movement of N individuals
(equifrequent, nonequifrequent, or mixed). The equifrequentthat were incorrectly assigned to N different groups from mov-
allele distribution assigns equal probability to each allele at aing a block of N individuals that were not assigned to their
locus. The nonequifrequent allele distribution with K allelescorrect group but were nonetheless correctly predicted to be
assigns the relative weights of 1, 2, 3, . . . , K to the alleles atsibs. For example, consider the case of two full-sib families
a locus, and the mixed-allele distribution assigns an equi-(A’s and B’s) of 10 individuals each:
frequent distribution to one-half of the loci and a nonequi-

True configuration: (A A A A A A A A A A) frequent distribution to the other one-half. The fourth factor
has two levels indicating the use of independent population(B B B B B B B B B B)
allelic frequencies or allelic frequencies estimated on the tar-

Prediction 1: (A A A A A A A A B) get sample.
Because of the computational requirements of the simula-(B B B B B B B B A) (A) (B)

tion study, we restricted our simulations to 50 individuals
Prediction 2: (A A A A A A A A A A) each and ran the sampling algorithms for 30,000–100,000

iterations. The optimal configuration was taken to be that
(B B B B B B) (B B B B) which maximized SC or the full likelihood over the prespecified

number of iterations. For a given combination of number ofIn each prediction four moves are needed to get to the
loci, number of alleles, and allele distribution, five unrelatedcorrect grouping. However, prediction 2 is only one block
families of 10 full-sibs each were generated by first randomlymove from the real configuration, which reflects that this
generating five pairs of parents according to the stipulatedprediction uncovered more of the full-sib structure than the
genotype distribution and then randomly sampling the paren-first prediction.
tal alleles according to the rules of Mendelian inheritance.Finally, the number of full-sib pairs incorrectly classified
The data were then fit by the algorithm described, leading toas unrelated pairs (E1) and the number of unrelated pairs
two estimated family configurations, one assuming knowledgeincorrectly classified as full-sib pairs (E2) distinguish between
of the population allele frequencies and the other based solelythese two types of error. In the prior example, with 20 individu-
on sample allele frequencies. The process was repeated 100als for two full-sib families of 10, there are 190 (20 � 19/2)
times at each combination of design parameters, leading todyads (pairs) of which 90 are full-sib pairs and 100 are unre-
a 3 � 2 � 3 � 2 factorial simulation design, with 100 replicateslated pairs. In prediction 1, 34 of the 90 true full-sib pairs are
in each cell.incorrectly classified as unrelated (proportion E1 � 0.378)

A second set of simulations was carried out to assess thewhile 16 of the 100 true unrelated pairs are incorrectly classi-
effect of family distribution. To reduce the overall computa-fied as full-sibs (proportion E2 � 0.16). In prediction 2, 24 of

the 90 true full-sib pairs are incorrectly classified as unrelated tional burden the number of loci was fixed at four, as the
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TABLE 2

Parental genotypes and family sizes of the Atlantic salmon in Example 1

Family No. M/F Ssa202 Ssa171 Ssa197 Ssa85

1 51 F (296, 308) (234, 234) (203, 207) (127, 133)
M (280, 300) (244, 254) (167, 167) (127, 133)

2 31 F (272, 296) (240, 246) (167, 175) (131, 133)
M (248, 280) (240, 240) (171, 183) (127, 133)

3 54 F (304, 328) (240, 244) (167, 175) (133, 133)
M (280, 328) (238, 244) (175, 183) (111, 129)

4 64 F (272, 300) (234, 240) (175, 183) (133, 137)
M (280, 296) (258, 262) (183, 191) (127, 131)

5 59 F (256, 272) (236, 240) (163, 171) (125, 133)
M (300, 300) (234, 240) (167, 199) (111, 127)

6 91 F (300, 300) (234, 242) (171, 175) (111, 133)
M (280, 328) (234, 246) (171, 175) (127, 127)

7 69 F (272, 300) (234, 266) (171, 183) (125, 137)
M (280, 308) (234, 246) (175, 191) (127, 133)

8 10 F (276, 300) (222, 234) (175, 175) (127, 133)
M (280, 292) (234, 238) (175, 175) (127, 127)

9 8 F (296, 304) (234, 248) (163, 207) (127, 127)
M (280, 308) (234, 244) (175, 207) (127, 133)

10 107 F (296, 296) (234, 244) (183, 191) (129, 133)
M (280, 308) (246, 248) (175, 175) (127, 131)

11 140 F (248, 308) (236, 240) (167, 187) (127, 131)
M (300, 300) (234, 244) (167, 171) (135, 137)

12 75 F (300, 308) (246, 276) (167, 207) (127, 133)
M (272, 276) (236, 240) (175, 175) (129, 131)

No., family size; M, male parent; F, female parent.

first simulation indicated this to be sufficient to differentiate equifrequent alleles at each locus. This family configuration
was chosen to ensure bias in the allelic frequencies estimatedamong full-sib families, at least with uniform family distribu-

tions and a moderately large number of alleles per locus. All on the sample alone.
simulations in this second set were carried out with equi-
frequent allele distribution, as the results of the first simulation
showed that the effect of the type of allelic distribution was RESULTS AND DISCUSSION
consistent but very small. Three family configurations (10, 10,
10, 10, 10), (20, 10, 10, 5, 5), and (30, 5, 5, 5, 5) were used, Example 1: We applied the methods described above
each having 50 individuals in five families. Other factors were to a large data set consisting of 759 individuals compris-
as before. ing 12 full-sib families, with data at four loci.

Example 4: The simulation studies showed that with the
pairwise likelihood score approach the estimated configura-

To illustrate the effect of the parameter T when sam-tion is more accurate in many cases when population allele
pling from pS(C), we ran the Markov chain Monte Carlofrequencies are known. Example 4 illustrates a way to improve

the accuracy of the partitioning when population allelic fre- (MCMC) sampler three times using fixed T equal to 3,
quencies are not known and allelic frequencies have to be 10, or 30, running for 106 iterations in each case. As well,
estimated on the target sample itself. A partial solution to this we ran the simulated annealing algorithm five timesproblem is to estimate full sibship in an iterative way. The

with an initial temperature T0 � 30 and an annealingtarget group allelic frequencies are used in lieu of the true
schedule that decreased T by 10% every 105 iterations,population allelic frequencies. The likelihood ratios are con-

structed and the partitioning algorithm is run, allowing estima- terminating the search on reaching T � 0 after 106

tion of sibship groups (step 1). Weighted allelic frequencies iterations. Each run began at the all-unrelated configu-
are then recalculated giving a weight of 1 to individuals that ration having 759 full-sib groups of size 1. We carriedare estimated to belong to a family subgroup on their own

out four runs in which we sampled from the full likeli-and weight of 1/m to the m individuals that are estimated to
hood (as described in materials and methods), ofbelong to the same family subgroup. The likelihood ratios are

reconstructed, and the partitioning algorithm is run again which three began in the all-unrelated configuration
(step 2). Weighted allelic frequencies are further refined and and one was started at the true configuration having
the process repeats until the predicted partition stabilizes. This 12 full-sib groups. In addition we ran two simulated
process is illustrated in example 4, where predicted partitions

annealing type runs described more fully below. In allusing both population allelic frequencies and iterative sample
cases we ran for 106 iterations. The results are summa-allelic frequencies are compared for a simulated family con-

figuration of (30, 5, 5, 5, 5) generated with four loci and four rized in Table 3, which shows the maximized values
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TABLE 3

Error counts and optimization summaries for Example 1

Estimated configuration Method Optimized criterion Iteration

(13, 2, 2, 135, 91) S(C) T � 30 1,523,081 734,507
(12, 2, 2, 135, 101) S(C) SA T � 30 1,522,899 308,452

1,522,899 469,098
1,522,899 532,671

S(C) T � 10 1,522,899 533,039
(13, 29, 3, 1134, 101) S(C) T � 3 1,522,864 495,801

S(C) SA T0 � 30 1,522,864 734,234
(13, 27, 4, 790, 125) S(C) SA T0 � 30 1,519,256 680,734
True configuration 1,522,637
(17, 108, 7, 4130, 168) ML SA T0 � 30 �61.1 957,193
(24, 294, 14, 15701, 139) ML �415.6 226,453
(27, 372, 18, 19022, 96) ML �478.6 921,908
(28, 375, 17, 19062, 4) ML SA T0 � 1 �491.3 273,616
(25, 323, 15, 17470, 110) ML �509.1 762,518
(12, 22, 99, 197) at true ML started �27.8 362
(12, 0, 0, 0, 0) True configuration �89.0

Optimized criterion is maximized value of log-likelihood or score iteration (iteration at which optimum was
first encountered). Configuration is (no. f.s., no. moves, no. group moves, E1, E2), where no. f.s. is number of
full-sib groups; no. moves is number of moves to correct configuration; no. g.m. is number of group moves;
E1 is number of full-sib pairs misclassified as unrelated; E2 is number of unrelated pairs misclassified as full-
sibs; ML is the maximum-likelihood method; S(C) is the pairwise scoring method; and SA T is simulated
annealing with starting temperature T.

found over 106 iterations as well as the iteration number appears that there may be a large number of configura-
tions whose scores exceed that of the true configuration,at which the maximum was first achieved (“iteration”),

the number of full-sib groups in the best configuration although these seem to be fairly close to the true con-
figuration, at least in terms of number of group moves.achieved (“no. f.s.”), and the four error criteria evalu-

ated at the best configuration. At the beginning of the It is also clear that the best configuration is not typically
found until a very large number of iterations were per-process, no. f.s. � 759 and at the end no. f.s. should

hopefully be 12, with all four error criteria optimally formed, so that, for this data, 106 iterations may not be
enough to provide an adequate coverage of the config-being 0.

Four of the five best runs judged on the basis of uration space.
Of the five simulated annealing runs using S(C), fourmaximized S(C) resulted in the same estimated config-

uration, differing by only two individuals from the cor- terminated in the best configuration found during the
prior 106 iterations. The fifth annealing run ended onerect configuration. In each of these four runs, the same

individual was incorrectly assigned from family 7 to fam- move away from the best configuration found, with the
addition of a 14th group consisting of a single individ-ily 6, and a second individual was incorrectly assigned

from family 7 to family 8. ual. The annealing schedule that we have chosen is very
simplistic, with temperature being decremented by aIn general, the configurations estimated using S(C)

are excellent, considering that this is a large real data constant 10% every 105 iterations. Aarts and Van Laar-
hoven (1993) provide guidelines for the choice of anset with information from only 4 loci and with very

unbalanced family sizes, ranging from 8 individuals in annealing schedule that has some desirable theoretical
properties and may be an appropriate choice here.family 9 to 140 individuals in family 11. Three of the

estimated configurations are somewhat less accurate The relationship between the two error types can be
seen, for example, by considering the four runs withthan the others, with 27 or 29 moves necessary to bring

the estimate to the true configuration. However, in these equal outcome, where one individual from group 7
(sample size n � 69) was improperly assigned to groupcases one of the true-sib groups was split into two smaller

groups of roughly equal size so that the number of 6 (n � 91) and another individual from group 7 was
assigned to group 8 (n � 10). Thus the number ofgroup moves from the true configuration was still small.

A comparison to the score of the true configuration unrelated pairs incorrectly identified as full-sibs is E2 �
91 � 10 � 101 and the number of full-sib pairs incor-(1,522,637) shows that all but one of the estimated con-

figurations have higher scores. This suggests that the rectly identified as unrelated is E1 � 67 � 67 � 1 �
135. These numbers are quite small considering thatMCMC optimization procedure is doing a reasonable

job in maximizing the score. On the other hand, it there are 31,588 full-sib pairs and 256,073 unrelated
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pairs in the data set. Even in the worst run, the propor-
tion of error type E1 is only 3.5% (1134/31,588) while
the proportion of error type E2 is a very low 0.04% (101/
256,073).

When carrying out a statistical analysis it is generally
considered desirable to make inferences on the basis
of the full joint distribution of the data (proportional
to the likelihood) as opposed to some function of lower
dimensional projections, such as the pairwise likelihood
score S(C). However, in the present case, sampling from
the full joint distribution [equivalently the likelihood
L(C)] did not provide accurate estimates of the true
configuration and led to estimated numbers of full-sib
groups equal to 24, 25, and 27 (entries labeled T � 1).

Our supposition is not that the likelihood is a bad
criterion to optimize but rather that the likelihood sam-
pler needs some tuning appropriate to the problem
at hand. We considered an annealing version of the
likelihood with acceptance probability

r(Ct,C) � min��L(C)
L(Ct)

�
1/T

, 1�
and made two likelihood-based annealing runs, one be-
ginning at T0 � 1 and a “heated” version beginning at
T0 � 30. The annealing schedule again reduced T by
10% after each 105 iterations. With T0 � 30, configura-
tions are initially accepted with much higher probability Figure 1.—Number of groups vs. iteration number for ex-
than for the basic likelihood sampler (T � 1) and this ample 1. Pairwise, sampling from pairwise likelihood score;

likelihood, sampling from full likelihood; sa, simulated anneal-case provided the best-estimated configuration among
ing with annealing schedule decrementing T by 10% each 105

all of the likelihood-based samplers started at the all
iterations.

unrelated configuration, although this wasn’t achieved
until nearly 106 iterations had been completed. These
preliminary results suggest that the performance of the tions). Much of the grouping is done in the first 105

likelihood-based sampler might be improved with fur- iterations (from 759 to �30 groups in these examples).
ther tuning, either using a fixed T � 1 or an annealing While in theory the Hastings-Metropolis algorithms are
schedule with T0 � 1. guaranteed to generate samples from the full likelihood

There was great deal of run-to-run variability in the or from pS(C) as the number of iterations increases, the
maximized value of the log likelihood, which may be figure indicates that several hundred thousand itera-
due to inherent roughness of the likelihood surface tions are required before this might be the case. When
and/or the starting point used and/or the relatively sampling from pS(C) the parameter T governs the rate
small number of iterations carried out. In one run the of acceptance of new configurations, with increasing
log-likelihood sampler was started at the true configura- acceptance rate (and therefore a more thorough sam-
tion and quickly (after only 362 iterations) found a pling of the configuration space) as T increases. This
configuration with much higher log likelihood after is suggested by the run at T � 30, which found the best
which there was no additional improvement through configuration over any of our examples, but only after
106 iterations. In this case, the estimated configuration a very large number of iterations. For the annealing
had one individual from family 6 incorrectly assigned likelihood run at T0 � 30, the sampled configurations
to family 10, and one individual from family 8 was incor- at t � 105, 2 � 105, . . . , 106 had numbers of groups
rectly assigned to family 6. In a study of parentage assign- equal to 252, 232, 234, 211, 206, 193, 149, 155, 86, and
ment on these same salmon using the parental genotype 21, respectively, which, except for the last point, are off
information (O’Reilly et al. 1998), one offspring (omit- scale on the plot.
ted from the present data set) could not be unambigu- Example 2: We sampled from both the likelihood and
ously assigned to a single family and could have come pS(C) (with T � 10) for the peregrine falcon data pre-
from either family 6 or 8 because of the similarity of viously analyzed in Painter (1997), using empirical al-
the genotypes in these two families. lele frequencies and running 100,000 iterations. The

Figure 1 shows the estimated number of full-sib best 10 configurations found with each sampler are
listed in Table 4. The best 5 ordered configurations aregroups by iteration (plotted at multiples of 105 itera-
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TABLE 4 per locus are the two factors that have the strongest
impacts on the configuration accuracy. Using two lociTen best configurations found by pairwise likelihood and
is clearly insufficient in most cases. However, even withlikelihood optimizations for the Falcon data of Example 2
only two loci, but with eight alleles per locus, a few
simulations with the pairwise likelihood score approachLog Pairwise

Configuration likelihood score SC gave surprisingly good results, although there is consid-
erable variability within each cell among the various(1 2)(3 4 7 8)(5)(6 9) �150.1 430.3
replicated simulations. This indicates that the configu-(1 2)(3 4 7 8)(5)(6)(9) �156.2 414.4
ration accuracy based on such a low number of loci is(1 2)(3 4 8)(5)(7)(6 9) �156.5 411.5

(1 2)(3 4 7 8)(5 6)(9) �156.6 401.1 quite unpredictable. At the other extreme, configura-
(1 2)(3 4 7 8)(5 9)(6) �157.0 397.5 tions based on eight loci are overall very good with both
(1 2)(3 4 7)(8)(5)(6)(9) �167.4 approaches, with little variability among the various
(1 2)(3 4 7)(8)(5 6)(9) �167.8 cells. When each locus has 8 alleles, predicted configu-
(1 2)(3 4 7)(8)(6)(5 9) �168.1

rations are almost always exact, independent of allele(1 2)(3 7)(4 8)(5)(6)(9) �170.5
distribution, even when using sample allelic frequency(1 2)(3 7)(4 8)(5 6)(9) �170.9
estimates instead of independent population estimates(1)(2)(3 4 7 8)(5)(6 9) 397.0

(1 2)(3 4 8)(5)(6)(7)(9) 395.6 with the pairwise likelihood score approach. Overall,
(1 2)(3 4 8)(5 7)(6 9) 383.8 there is a trade-off between the number of loci and
(1 2)(3 4 8)(5 6)(7)(9) 382.3 the number of alleles per locus. We found that similar
(1)(2)(3 4 5 8)(6)(7)(9) 381.1 accuracy was attained with four loci each with 8 alleles

per locus or with eight loci with 4 alleles per locus with
the pairwise approach. This result is partly borne out
by example 1, where excellent results were obtainedthe same for each algorithm, and in both cases the best

configuration is (1 2)(3 4 7 8)(5)(6 9), which means with four loci having 8, 10, 11, and 14 alleles, respec-
tively, with the pairwise approach. This is encouragingthat birds 1 and 2 form a full-sib group, birds 3, 4, 7,

and 8 form a second full-sib group, and so on. Painter as it means that very good predictions can be attained
with a reasonably low number of microsatellite loci,(1997) found this to be the optimal configuration for

a number of choices of allele frequencies sampled from which typically have 6–12 alleles in most species. In
contrast, when sampling from the full likelihood, bettera Dirichlet prior distribution. He found that the ordered

posterior probability of configurations tended to be rela- results were systematically obtained in simulations with
four loci having 8 alleles each than with eight loci havingtively insensitive to choice of prior. If this is typical for

most data sets then there may be some justification in 4 alleles. A small but fairly consistent trend was also
observed concerning the effect of allelic distribution,using empirical estimates of allele frequencies. Painter

(1997) also carried out an analysis in which the joint better results being obtained with equifrequent allele
distributions than with nonequifrequent, with thedistribution of configuration and allele frequencies was

integrated over the prior distribution on the allele fre- mixed distribution in between.
A second simulation was carried out to assess thequencies. The resulting marginal likelihood was sam-

pled, and again the configuration (1 2)(3 4 7 8)(5)(6 effect of family distribution with the number of loci
fixed at four and with equifrequent allelic distributions.9) was found to be optimal. This latter approach, while

desirable when reasonable estimates of allele frequen- The number of moves to correct configuration is dis-
played in Figure 2. The pairwise and full likelihoodcies are unknown, adds the substantial computational

burden of integrating over the prior distribution and approaches have qualitatively different behavior. Not
surprisingly, both approaches produce much better pre-restricts the method to relatively small problems.

Example 3: An initial simulation study was carried out dictions with eight alleles per locus than with four. How-
ever, the pairwise likelihood score approach outper-to better assess the sensitivity of the procedures to the

number of loci, the number of alleles, the allele distribu- forms the full joint likelihood approach when only four
alleles per locus are present, while the reverse is truetion type at each locus, and the knowledge of indepen-

dent population allelic frequencies. For each estimated when eight alleles per locus are available, particularly
when using sample allelic frequencies. The pairwise like-configuration the number of moves to the true configu-

ration was determined. The salient findings are summa- lihood-ratio approach performs better with indepen-
dent (true) population allelic frequencies estimatesrized as follows (data not shown). As a general trend,

with the pairwise likelihood score approach, configura- than with sample estimates, with both four and eight
alleles per locus. With increasingly skewed family distri-tions are more accurate when using independent popu-

lation estimates of allelic frequencies than when using bution, the predictions worsen significantly when using
sample estimates. In contrast, increasingly skewed familysample estimates. In contrast, accuracy is about equiva-

lent with the full joint likelihood whether using inde- distributions produce a small improvement in the pre-
diction accuracy when using independent populationpendent population allele frequencies or sample esti-

mates. The number of loci and the number of alleles estimates with four alleles, while no changes were ob-
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Figure 2.—Number of
moves to correct configuration
in the second simulation of ex-
ample 2, with four loci in each
case and three family distribu-
tions, (10, 10, 10, 10, 10) top,
(20, 10, 10, 5, 5) middle, and
(30, 5, 5, 5, 5) bottom. pl, pair-
wise likelihood; l, likelihood; s,
sample estimate of allele fre-
quencies, p, true population al-
lele frequencies; 4, four equi-
frequent alleles per locus; 8,
eight equifrequent alleles per
locus.

served with eight alleles per locus, as predictions are family at most loci, the likelihood ratio of being full-sib
vs. unrelated would be much lower if these alleles arethen almost always exact.

The full joint likelihood approach performs about very common (when frequencies are estimated in the
target sample) than if the alleles are rarer (when inde-equally well when using independent population or

sample estimates of allelic frequencies, which is consis- pendent population estimates are available). This obvi-
ously reduces the power to group together the varioustent with Painter’s (1997) finding for the falcon data

that results were quite insensitive to estimates of allele individuals from the common family.
It is also interesting to look at the average proportionsfrequencies. Results are overall fairly poor with loci hav-

ing only four alleles, with a small improvement with of errors E1 and E2 that occurred in the various simula-
tions (Table 5). The results are very consistent acrossincreasingly skewed family distributions. On the other

hand, results are almost always exact with eight alleles every combination of factors, and so Table 5 presents
only a portion of the cases to exemplify the findings.per locus, independent of family distribution.

It is apparent that both the pairwise likelihood-ratio In this table every locus has eight equifrequent alleles
and the variable factors are the number of loci (fourapproach when using the population allelic frequencies

and the full likelihood method produce predictions that or eight), the family distribution type [(10, 10, 10, 10,
10), (20, 10, 10, 5, 5) or (30, 5, 5, 5, 5)], and whetherare fairly robust to the type of family distribution for

the various combinations of number of loci and alleles population or sample allelic frequencies were used. It
is clear from Table 5 that the errors are predominantlyper locus. On the other hand, with the pairwise likeli-

hood approach when using allelic frequencies estimated of type E1 rather than E2; i.e., true full-sib pairs are not
always identified to belong to the same family groupon the target sample itself, the accuracy of the predic-

tions worsens considerably as the family distribution but truly unrelated pairs are very rarely construed to be
full-sibs. Even when the classification does not performdeparts from uniformity. This sensitivity of the configu-

ration accuracy to family distribution when using sample very well, e.g., when only sample allelic frequencies with
nonuniform family distribution are available, the pro-allelic frequency estimates probably results from those

estimates being increasingly biased and inaccurate as portion of unrelated pairs falsely conjectured to be full-
sibs remains quite low while the proportion of full-sibsthe family distribution departs from uniformity, particu-

larly in the case of small samples. In the (30, 5, 5, 5, 5) construed to be unrelated is quite high. This shows that
results from the proposed partitioning algorithm arefamily distribution, for example, 60% of the individuals

come from one family, and at each locus this family essentially conservative. Individuals that are grouped
together can safely be assumed to indeed be full-sibs,makes a disproportionately large contribution to the

estimate of allele frequencies, as all 30 individuals carry even though all sibs may not have been added to the
group. These “other” sibs will very often be isolated inno more information than would the two unknown par-

ents. For a dyad sharing the particular alleles from that many single groups of size 1 or 2 or will be regrouped
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TABLE 5

Average proportion of error types 1 and 2 in Example 3, when all loci have four or eight equifrequent alleles

Pairwise likelihood Likelihood

Sample Population Sample Population

na Configuration p(E1) p(E2) p(E1) p(E 2) p(E1) p(E 2) p(E1) p(E 2)

4 10, 10, 10, 10, 10 0.273 0.024 0.228 0.044 0.516 0.101 0.496 0.099
8 10, 10, 10, 10, 10 0.111 0.0002 0.044 0.0005 0.014 0.002 0.052 0.003
4 20, 10, 10, 5, 5 0.547 0.022 0.303 0.039 0.670 0.096 0.678 0.096
8 20, 10, 10, 5, 5 0.266 0.0006 0.032 0.0004 0.014 0.001 0.103 0.004
4 30, 5, 5, 5, 5 0.497 0.022 0.106 0.042 0.309 0.094 0.292 0.089
8 30, 5, 5, 5, 5 0.483 0.0006 0.012 0.002 0.032 0.002 0.062 0.004

p(E1) is the average proportion of errors of the first type; p(E2) is the average proportion of errors of the
second type. na, number of alleles; sample, using sample allele frequencies; population, using population allele
frequencies.

in another separate full-sib group as was the case in the (2 7 9 10 12 13 14 16 19 22 23 25 26 27 30 40)
(3 4 6 8 11 15 17 18 20 24 28 29) (31 32 33 34 35 43)three more pessimistic runs of example 1 using the

pairwise likelihood score, where individuals from one (5 37 38 39 48) (1 46 47 49 50) (41 44 45) (36) (42).
true family were classified into two predicted groups.

The process was iterated a second time, leading toExample 4: As shown in the previous example, the
the partitionaccuracy of the pairwise likelihood prediction worsens

when allelic frequencies are estimated in samples with (2 5 7 9 10 12 13 14 16 19 21 22 23 25 26 27 30 40 48)
nonuniform family distribution. One solution might be (1 3 4 6 8 11 15 17 18 20 24 28 29) (31 32 33 34 35)
to iterate the process, whereby sample allele frequencies (37 38 39) (41 44 45) (46 47 49 50) (36) (42) (43).
are used to estimate a configuration on the basis of

Each iteration resulted in an improved estimate, withwhich new estimates of allele frequencies are made, and
25, 19, and 18 errors, respectively, in the sample config-a new configuration is estimated. In example 4, a data
uration and the first and second iterates. The first andset with a family configuration of (30, 5, 5, 5, 5) was
second iterates had 12 and 13 errors, respectively, thatcreated with individuals (1–30), (31–35), (36–40), (41–
were attributable to large single families not being45), (46–50) belonging to the five families, respectively.
joined to the largest family in the configuration. If groupThe configuration
moves are counted as single errors, the error counts are

(1–30, 43) (36 37 38 39 40 48) (31 32 33 34 35) reduced to 14, 8, and 6, which indicates that the esti-
mates are often much better than the crude error count(41 42 44 45) (46 47 49 50)
suggests. We expect that the iterative process will often

was estimated on the basis of known population allele improve sample estimates and that often one might wish
frequencies with only individuals 43 and 48 misclassi- to restart the estimation at the best current configura-
fied. When using the sample allele frequencies, the fol- tion to date.
lowing configuration was obtained: In calculating the updated estimates, our weights are

inversely proportional to estimated sibship size. An alter-(14 16 19 21 22 23 25 26 27 30) (2 7 9 10 12 37 38 39 40 48)
native approach was suggested by Thomas and Hill(5 6 15 17 18 20 24) (3 4 8 11 28 29) (31 32 33 34 35)
(2000), who used weighted least-squares estimates of(1 46 47 49 50) (13 41) (42 44) (36) (43) (45).
allele frequencies, with weight matrix based on the cur-

It is clear that information on the population allele
rent estimate of relationships among individuals.

frequencies provides a much better partition in this
case. Due to the imbalance in the true family configura-
tion, the sample estimate of allele frequencies is heavily CONCLUSIONS
biased toward the alleles of the parents of family 1.

We presented Monte Carlo algorithms to stepOne way to improve the estimated configuration is to
through the space of family configurations and took asimprove the estimate of allele frequencies. Using the
an optimal configuration that which maximized SC orestimated sample configuration, new weighted estimates
the full joint likelihood on the tour. As shown in theof allele frequencies were made and the algorithm was
previous real and simulated examples, these approachesthen rerun using these updated allele frequencies, again
are quite successful at properly partitioning individualsstarting from the all unrelated configuration. The up-

dated partition was given by into full-sib groups on the basis of the information pro-
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