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*Laboratoire Génome, Populations et Interactions, Université Montpellier II, 34095 Montpellier Cedex 05, France, †Laboratoire Génétique et
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ABSTRACT
Population structure and history have similar effects on the genetic diversity at all neutral loci. However,

some marker loci may also have been strongly influenced by natural selection. Selection shapes genetic
diversity in a locus-specific manner. If we could identify those loci that have responded to selection during
the divergence of populations, then we may obtain better estimates of the parameters of population history
by excluding these loci. Previous attempts were made to identify outlier loci from the distribution of
sample statistics under neutral models of population structure and history. Unfortunately these methods
depend on assumptions about population structure and history that usually cannot be verified. In this
article, we define new population-specific parameters of population divergence and construct sample
statistics that are estimators of these parameters. We then use the joint distribution of these estimators to
identify outlier loci that may be subject to selection. We found that outlier loci are easier to recognize
when this joint distribution is conditioned on the total number of allelic states represented in the pooled
sample at each locus. This is so because the conditional distribution is less sensitive to the values of
nuisance parameters.

PRESUMED neutral polymorphic loci are commonly and Kaplan 1988). Selection acting on any locus has
used in making inferences about patterns of differ- an effect on loosely linked loci, which resembles a reduc-

entiation within or among populations of the same or tion of effective population size (Robertson 1961; Bar-
closely related species. For this purpose, genetic dis- ton 1995, 1998). Local adaptation tends to increase
tances (see, e.g., Nei 1972) or Wright’s (1951) F-statis- population differentiation at loci where selection acts,
tics are estimated from allele-frequency data. Under and very high FST values may be found at closely linked
particular models of population structure, these param- neutral loci (Charlesworth et al. 1997). The substitu-
eters are related to demographic or historical parame- tion of advantageous mutations at a locus may also re-
ters, such as the effective population size, the rate of duce neutral variation at linked loci (Maynard Smith
migration between populations, or the time since the and Haigh 1974; Kaplan et al. 1989; Barton 1995).
populations diverged from their common ancestral pop- Similarly, “background selection,” caused by the selec-
ulation. tion against deleterious mutations (Charlesworth et

However, misinterpretations can occur if one is not al. 1993; Barton 1995) results in a reduced effective
able to clearly distinguish between the patterns gener- population size for neutral genes in the region of the
ated by random genetic drift or by natural selection. chromosome where this selection is acting. Background
The problem is that selective processes can also affect selection may also increase the apparent population
neutral loci. A locus that is neutral will respond to selec- differentiation (Charlesworth et al. 1997).
tion whenever it is in linkage disequilibrium (statistical Therefore, it is of prime interest to identify loci that
association among allelic states at different loci) with are responding to selection to exclude them from the
other loci that are subject to selection. Such associations genetic analysis of population structure or history. It
may arise by chance in small populations (Hill and was recognized early on by Cavalli-Sforza (1966) that
Robertson 1966, 1968; Ohta and Kimura 1969). For any form of selection will affect some regions of the
example, stabilizing or balancing selection operating at genome more than others, whereas population history,
a locus tends to maintain an elevated level of variation demography, migration, and the mating system will af-
at closely linked neutral loci (Strobeck 1983; Hudson fect the whole genome in the same way. Accordingly,

Lewontin and Krakauer (1973) proposed two tests of
selective neutrality. Both tests are based on the sampling
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the observed distribution of F̂ estimates (one estimate true population history consists of repeated branching
events or when the connectivity of populations is un-from each locus) to a �2 distribution with (n � 1) d.f.,
even. However, we cannot infer patterns of migrationwhere n is the number of populations sampled. The
or historical branching and test for the homogeneity ofsecond test is based on the comparison of the observed
the markers with the same data. This is what Felsen-variance of F̂ (across loci) denoted s2

F, with the theoreti-
stein (1982) described as the “infinitely many parame-cal variance approximated as
ters” problem. A solution to this problem is to restrict
attention to simple but realistic scenarios that may apply�2 �

kF 2

n � 1
, (1)

to any pair of populations (Robertson 1975b; Tsakas
and Krimbas 1976). This reduces the number of param-

where F is the mean value of F̂ averaged across loci, and eters in the model. Here, we develop a model of popula-
k is a constant that, according to Lewontin and Kra- tion divergence. We define population-specific parame-
kauer (1973), should not exceed 2 whatever the under- ters as functions of probabilities of identity for pairs
lying distribution of allelic frequency. The ratio s2

F/�2
of genes taken within or among populations. These

should be distributed approximately as a �2/d.f., the parameters are simply related to the ratio of divergence
number of degrees of freedom being determined by time over effective population size. We construct simple
the number of biallelic loci. estimators of these population-specific parameters. We

However, since populations of the same species share, then examine the expected joint distribution of these
to a certain extent, a common history and since popula- estimators under a wide range of neutral scenarios of
tions are connected through the dispersal of individuals, divergence. This suggests a new method to assess the
F̂ values will be correlated across loci. For example, the homogeneity of response of genetic markers to the his-
geographic and historical relationships between popula- torical processes, using empirical data. Finally, we apply
tions may have a hierarchical structure if populations our new method to a data set of allozyme loci from
have been derived from a common ancestral population Drosophila simulans populations and compare our results
by a sequence of successive splits. This is the pattern to to those obtained by using Beaumont and Nich-
be expected following the fragmentation of a species ols’(1996) method.
range. The effect of such a population history is always to
increase the expected variance of F̂ (Robertson 1975a,b).

THE MODELMoreover, even simple models of divergence by drift
(Nei and Chakravarti 1977), island models (Nei et al. We consider two haploid populations of constant sizes
1977), or stepping-stone models of dispersal (Nei and N1 and N2, which completely separated � generations
Maryuyama 1975) inflate the expected variance, mak- ago from a single population of stationary size N0. By
ing Lewontin and Krakauer’s (1973) test unreliable complete separation, we mean that the populations did
in most cases (Lewontin and Krakauer 1975). not exchange any migrants between the time of the split

More recently, Bowcock et al. (1991) studied the and the present. We do not assume that the common
worldwide human genetic differentiation based on DNA ancestral population was at equilibrium when it split.
polymorphism. Simulating a reasonably well supported Instead, we allow the ancestral population to have gone
evolutionary scenario of divergence, they evaluated the through a bottleneck �0 generations before present
theoretical distribution of FST conditional on initial gene (with �0 � �). Before this, the ancestral population was
frequencies. Among 100 nuclear RFLP markers a num- at mutation-drift equilibrium, with constant size Ne. Gen-
ber of genes exhibited lower or, more often, higher erations do not overlap. New mutations arise at a rate
variation than expected under neutrality. In an impor- � and follow the infinite allele model (IAM). This model
tant article, Beaumont and Nichols (1996) proposed of population divergence is illustrated in Figure 1.
a method based on the analysis of the expected distribu- Let Qw,i be the probability that two genes sampled at
tion of FST conditional on heterozygosity rather than random within population i are identical by descent
allele frequency. The conditional distribution, con- (IBD) and Qa be the probability that a gene sampled at
structed under an island model of population structure, random from population 1 is IBD to a gene sampled at
is remarkably robust to a wide range of alternative mod- random from population 2. IBD probabilities are de-
els (colonization, stepping-stone). Interestingly, depar- fined as the probabilities that two genes have not
tures from equilibrium do not alter the expected distri- mutated since their most recent common ancestor
bution much whenever FST is �0.5. Yet, unequal (Malécot 1975). The probability that a pair of genes
numbers of immigrants per generation over the whole are IBD is equal to the probability that these genes are
population generated some discrepancies with the sym- identical in state (IIS) whenever the mutation process
metric island model for heterozygosities in the range follows the IAM.
[0.1, 0.5] (see Figure 3d in Beaumont and Nichols More generally, let Qh denote the IBD probability of
1996). any pair of genes: h � (w, i) when two genes are sampled

within population i, or h � a when one gene is sampledThus, their approach might be flawed whenever the
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Figure 1.—A gene genealogy under our model
for n � 10 genes sampled in each population. In
this example, the parameter values are N1 � N2 �
100, N0 � 500, Ne � 1000, � � 50, �0 � 150, and
� � 10�3.

from each population. It is possible to give an expression
Q 0 � �

�0

r

	t��

N0

e�(t��)N0dt 
 (1 � C 0)�
∞

�0

	t��0

Ne

e�(t��0)/Nedt,for Qh as a function of the coalescence time (Slatkin
1991). Under a continuous time approximation (4)

where (1 � C 0) � 	�0�� · e�(�0��)/N0 is the probability thatQh � �
∞

0
	tch(t)dt (2)

the two genes neither coalesce nor mutate in the time
interval � � t � �0. The first term on the right-hand(Hudson 1990), where ch (t) is the probability of coales-
side of Equation 4 averages over the coalescent eventscence at t for a pair of genes of type h, and 	 � (1 �
occurring during the population bottleneck. During�)2. The waiting time for a coalescent event in a popula-
this time interval (� � t � �0) the waiting time for ation of size Ni has an exponential distribution with mean
coalescent event is exponentially distributed with meanNi. The IBD probability for a pair of genes in population
N0. The last term in Equation 4 averages over coalescenti reduces to
events occurring in the ancestral population at muta-
tion-drift equilibrium. This last term represents the IBDQw,i � �

�

0

	t

Ni

e�t/Nidt 
 (1 � Ci)Q 0, (3)
probability for two randomly sampled genes in a station-
ary population of size Ne, which is 1/(1 
 �), with � �

where Q 0 is the IBD probability for two genes sampled 2Ne�. Solving the integrals in the low-mutation limit
at random from the common ancestral population at (where 	t ≈ e�2�t), we find that the solution of Equation
time � (just before the split) and (1 � Ci) � 	� · e��/Ni 3 is
is the probability that the two genes neither coalesce
nor mutate in the ith population in the time interval 0 � Q w,i ≈ 1

�i 
 1
[1 � e�Ti(�i
1)] 
 e�Ti(�i
1)·Q 0, (5)

t � �. The first term on the right-hand side of Equation 3
is the probability that the two genes coalesce in the time where �i � 2Ni� and Ti � �/Ni. The value of Q0 is given
period 0 � t � � and are IBD. Following Equation 2, by the solution of Equation 4,
the IBD probability for a pair of genes sampled at ran-
dom from the common ancestral population just before Q 0 ≈ 1

�0 
 1
[1 � e�T0(�0
1)] 
 e�T0(�0
1) � 1

� 
 1�, (6)
the split at time � is given by
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where �0 � 2N0� and T0 � (�0 � �)/N0. The probability During this period, all the coalescent events are sepa-
rated by exponentially distributed time intervals, withfor a gene in population 1 to be IBD with a gene in

population 2 is just given by means N1/(n12 ) in population 1 and N2/(n22 ) in population
2 (see Equation 3). At time �, the number n0 of lineages

Qa � 	�Q 0. (7) that remain represents the ancestors of all the genes
sampled in populations 1 and 2. The genealogy of theseObviously, two such genes cannot coalesce during the
lineages is generated for the time period [�, �0], and all� generations between the moment of divergence and
the coalescence events are separated by exponentiallythe present. They are IBD only if their respective ances-
distributed time intervals, with mean N0/(n02 ) (see thetors are IBD when populations 1 and 2 diverge and,
first term in the right-hand side of Equation 4). At timefurthermore, if they do not undergo mutation during
�0, the lineages that remain are the ancestors of all thethe divergence. Now, it is useful to consider the param-
genes sampled in populations 1 and 2. The genealogyeter
of these ne genes is generated for the period [�0, 
∞],
with all coalescent events separated by exponentiallyFi �

Qw,i � Qa

1 � Qa

. (8)
distributed time intervals with mean Ne/(ne2 ) (see the
second term in the right-hand side of Equation 4). OnceIt is worth noting that the weighted sum of Fi over the
the complete genealogy is obtained, the mutation eventstwo populations gives the intraclass correlation for the
are superimposed on the coalescent tree of lineages. Inprobability of identity by descent for genes within popu-
the results that follow, each artificial data set consistedlations relative to genes between populations. This is of
of two (haploid) samples of size n � 100, one fromparticular interest, because the properties of the in-
population 1 and the other from population 2.traclass correlations for the probability of identity in

Simulation results: By calculating the estimators F̂1state (“IIS correlations”; Cockerham and Weir 1987)
and F̂2 for each of these artificial data sets, it was possiblecan be deduced from the properties of the correspond-
to obtain a close approximation to the expected distri-ing intraclass IBD correlations in the low-mutation limit
bution of these estimators (see appendix for details).(Rousset 1996). Indeed, such ratios of identity proba-
Figure 2 shows this expected joint distribution of F̂1 andbilities of the form of Equation 8 give the same low-
F̂2 for various combinations of the nuisance parametersmutation limit, whether one considers the infinite allele
� and T0. In this case, the “true” branch lengths weremodel or other mutation models (Rousset 1996, 1997).
T1 � T2 � 0.1 (hence F1 � F2 ≈ 0.0953). The expectedIf we neglect new mutations arising during the diver-
value of the estimator F̂1 (respectively F̂2) was alwaysgence process, Qa reduces to Q 0 and Qw,i � Ci(1 � Q 0) 

close to the value of the parameter F1 (respectively F2).Q 0. Thus
One can show that, by construction, the points (F̂1, F̂2)
lie within the upper-right triangle with vertices (1, 1),Fi ≈ 1 � e�Ti. (9)
(�1, 1), and (1, �1). The joint distribution of these two

Note that Equation 9 gives a well-known result when statistics has a negative correlation. Most importantly, it
both daughter populations are assumed to have the is clear from this figure that the joint distribution of F̂1same size N, so that F1 � F2 � F ≈ 1 � e��/N (see, e.g., and F̂2 depends strongly on the nuisance parameters,
Reynolds et al. 1983). Hereafter, the parameter Ti is even though their expectations remain close to the true
referred to as the “branch length” of population i. An values of F1 and F2.important result is that, in the low-mutation limit, the It can be seen that, for smaller values of T0, the joint
new parameters F1 and F2 do not depend on the “nui- distribution becomes tighter as � increases. On the other
sance parameters” � or T0. This suggests that a simple hand, for larger values of �, the distribution is found
moment-based estimator T̂i of branch length can be to widen as T0 increases. In both cases, it is the level of
derived as variation that remains before divergence that is crucial

in shaping the joint distribution. With small � and largeT̂i � ln(1 � F̂i), (10)
T0, the lineages coalesce rapidly before the divergence,

where F̂i is an estimator of Fi (see appendix for details). and the number of distinct mutations (allelic states)
that can be maintained is small. In this case, the variance
of the estimates of populations branch lengths is large,

PROPERTIES
as illustrated by the wide joint distribution of F̂1 and F̂2.
Therefore, the joint distribution of F̂1 and F̂2 is not idealSimulation procedure: For each set of parameter val-

ues, a sequence of artificial data sets was generated using for investigating the homogeneity of response of a set
of molecular markers to the genealogical processes. In-standard coalescent simulations, as described by, e.g.,

Hudson (1990). The simulations were performed as deed, other factors such as heterogeneous mutation
rates across loci may be invoked to explain disparitiesfollows (see Figure 1 for an illustrated example of one

simulated genealogy). For each population, the geneal- of branch length estimates among markers. Fortunately,
this problem can be overcome by considering the jointogy of a sample of ni genes is generated for a period of

time ranging from present to � generations in the past. distribution of F̂1 and F̂2, conditional upon the total
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Figure 2.—Expected distribution of
pairs of F̂1 and F̂2 estimates for wide ranges
of values of the nuisance parameters � �
2Ne� and T0. Ti � �/Ni is 0.10 for both
daughter populations (with � � 50 and N1 �
N2 � 500), giving an expected value Fi ≈
0.0953, as indicated by the dotted lines. For
all parameter sets, � � 10�4 and N0 � 1000.
One hundred individuals are sampled in
each daughter population. The light gray
area defines a region in which 95% of the
simulated points are expected to lie (see
appendix for details).

number k of allelic states in the pooled sample at each 3. The expected joint distribution of F̂i and F̂j is gener-
ated by performing 10,000 coalescent simulationslocus. Figure 3 shows the estimated joint distribution

for T1 � T2 � 0.1 (hence F1 � F2 ≈ 0.0953), conditioned for a given set of nuisance parameter values. This is
repeated using a wide range of values for the nui-on k � 4. The combinations of nuisance parameter

values are the same as in Figure 2. sance parameters. In the D. simulans data set dis-
cussed below, all the pairwise combinations for � andThe expected joint conditional distribution appears

to be almost independent on the nuisance parameters. T0 were performed, with � � 1, 5, or 10 and T0 �
0.01, 0.1, or 1. Thus, a total of 90,000 coalescentSo, given the observed values for the parameters F1 and

F2, and given the number of alleles in the sample, one simulations were performed in this example. The
simulated sample sizes are chosen to be representa-can obtain the conditional joint distribution, and then

a high probability region, that should contain 95% of tive of those actually realized in the real data set.
4. For each expected joint distribution of F̂i and F̂j, wethe observed measures of pairwise F̂i’s values. This result

provides the justification for using the conditional distri- construct all the distributions, conditional on the
number of allelic states k in the pooled sample, forbutions to analyze the homogeneity in the patterns of

genetic differentiation revealed by a (large) set of k � 2, 3, . . . (the pooled sample is the sample
obtained by pooling the samples from populations imarkers.
and j). Remember, there is one expected distribu-
tion for each set of nuisance parameter values. For

APPLICATIONS each conditional distribution, we identify the “high
probability” or “high density” region, in the rangeIn this section, we present a methodology for identi-
of the points F̂i and F̂j, where 95% of the data arefying outlier loci by a pairwise analysis of populations.
expected to lie (see appendix for the constructionFor each pair of populations (i, j), we suggest the follow-
of this high probability region).ing protocol:

5. For each value of the number of allelic states in the
1. For all loci, the statistics F̂i and F̂j are computed (see pooled sample, we superimpose a scatter plot of the

appendix). observed data points (pairs of F̂1 and F̂2 values) over
2. The parameters Fi and Fj are estimated as the averages an outline of the 95% high probability region to

among loci weighted by the heterozygosities (1 � identify outlier loci.
Q̂ i) and (1 � Q̂ j), respectively (see appendix). This

D. simulans data set: We applied this method to a D.corresponds to the weighting of loci suggested by
simulans data set, described in Singh et al. (1987) andWeir and Cockerham (1984) for the multilocus esti-

mator of FST. Choudhary et al. (1992). The raw data set was kindly
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Figure 3.—Expected distribution of
pairs of F̂1 and F̂2 estimates conditioned on
a number of alleles in the sample equal to
four. As in Figure 1, wide ranges of values
were used for the nuisance parameters. The
dotted lines indicate the expected values
for F1 and F2.

provided by R. S. Singh and R. A. Morton. Among 111 and D). In all pairwise comparisons that included the
French population, these two loci fell either outside, orallozyme loci, 43 were found to be polymorphic in the

five populations studied in Europe and Africa. The sam- on the edges of the 95% high probability region.
In all the pairs that included the population fromples consisted of isofemale lines maintained in the labo-

ratory. The haploid sample sizes ranged from n � 26 Congo, two loci coding respectively for the larval pro-
tein-10 (Pt-10) and the phosphoglucomutase (PGM)to n � 55. Figure 4 shows the analysis performed on a

particular pair of populations (France and Tunisia). were found to lie outside or on the limit of the 95%
high probability region (Figure 5). The locus codingThe multilocus estimates of the parameters F1 (French

population) and F2 (Tunisian population) were 0.0064 for the larval protein-10 systematically gives a longer
estimated branch length for this African populationand 0.0617, respectively. The expected distributions

with these averaged values, conditioned on the number than do all other loci, while it gives similar branch
lengths to other loci for the other populations. Thisof alleles in the pooled sample, are plotted with the

actual monolocus pairwise (F̂1, F̂2) estimates. suggests that genetic variation was severely reduced by
a factor other than genetic drift in this African popula-In the great majority of cases, the points fall within

the 95% confidence region. With 43 loci we would ex- tion. The locus coding for phosphoglucomutase gives
a longer branch length estimate than the other loci inpect two (0.05  43 ≈ 2) to lie outside the region by

chance. But considering the joint distributions for loci three cases (Figure 5, A–C) and a shorter one in one case
(Figure 5D). The locus coding for phosphoglucomutasewith three or more alleles, we found 4 loci that clearly

lie outside. Caution is required in the case of loci that was also found to lie outside the limit of the 95% high
probability region in all the pairs that included the popula-lie on the borders of the possible range (Figure 4B).

These correspond to loci that have an allele fixed in one tion from Seychelle Island (Figure 6). To strengthen our
presumption that these loci were outside the limit al-population. Slight variations in the nuisance parameters

can increase or decrease the relative proportion of loci lowed by a neutral model, we checked whether these
loci also lie outside the limit of the 99% high probabilitythat may fix one allele in a population. Indeed, we

found some conditions under which the 95% envelope region. The same results were obtained. For these loci,
we did not find any plausible neutral scenario of diver-contained these 2 loci. This problem can remain even

when we condition on the observed number of alleles. gence by drift that could provide such a scatter of points.
We thus conclude that natural selection may have actedOn the other hand, 2 other loci (coding for glutamate

pyruvate transaminase and carbonic anhydrase-3) are on these loci or on closely linked regions within the
genome.clear outliers of the expected distributions (Figure 4, C
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Figure 4.—F̂1 and F̂2 values estimated from 43
loci in Drosophila simulans for the pairwise compar-
ison of the populations from France (n � 55) and
Tunisia (n � 52). n is the number of isofemale
lines typed for each enzymatic system (haploid
sample size). Each locus is represented with a
solid dot. The averaged values are F̂1 � 0.0064
and F̂2 � 0.0617 as indicated by the dotted lines.
Thin solid lines enclose a region in which 95%
of the simulated data points are expected to lie.
Four distributions are shown, conditioned on the
number of allelic states k in the whole sample:
(A) expected distribution of pairwise Fi estimates
conditioned on k � 2; (B) with k � 3; (C) with
k � 4; and (D) with k � 5. Solid arrows indicate
outlier loci. The loci coding for glutamate py-
ruvate transaminase (GPT) and carbonic anhy-
drase-3 (Ca-3) are shown, respectively, in C and D.

We are more cautious about claiming that the loci An alternative approach would be to develop a new
model of population divergence that allows subsequentcoding for glutamate pyruvate transaminase and car-

bonic anhydrase-3 were or are subject to selection. migration after separation. But if we want to make infer-
ences about a more realistic (and hence a more com-These loci are clear outliers in some pairwise compari-

sons involving the French population but fall just within plex) model of divergence, then we need to distinguish
between the pattern of genetic differentiation that re-the limits of the confidence region in other compari-

sons. Moreover, when considering 99% confidence re- sults from (i) recent separation followed by very little
migration or (ii) ancient separation followed by a mod-gions instead of 95% confidence regions, some loci were

no longer detected as outliers but rather as lying on the erate amount of migration. This is a difficult task, which
would require more powerful methods for inferringedges of the confidence limit. The locus coding for

isocitrate dehydrogenase-1 was found to be an outlier parameter values (e.g., maximum likelihood; see Niel-
sen and Slatkin 2000) that would be much more timein three (out of four) pairs that included the population

from Seychelle Island. Overall, six more loci were de- consuming. Further, note that Nielsen and Slatkin
(2000) assume that the mutation rate is zero.tected as outliers in single pairwise comparisons only.

Therefore, we should be very cautious about consider- So, we are interested in testing if our method (which
assumes evolution in complete isolation after diver-ing those latter loci as being under selection. Indeed,

if a locus has responded to selection in one particular gence) is undermined when applied to pairs of popula-
tions that still exchange genes after divergence. Itcontemporary population since it became isolated, then

we expect this locus to show up as an outlier in all should be borne in mind that gene flow, like genetic
drift, affects the whole genome in the same way. We(or most) comparisons involving this population. This

pattern is exactly what we found for the two loci coding generated artificial data sets under neutral models of
population divergence, including high mutation ratesfor larval protein-10 and phosphoglucomutase in the

Congo and Seychelle Island populations. and moderate levels of migration between populations.
We used a modified version of the algorithm describedEvaluating the robustness of this method to the as-

sumptions of the model: In the data set discussed above, by Hudson (1990), which accounts for symmetric mi-
gration between populations. For the period of timeit is likely that the populations of D. simulans have ex-

changed migrants after divergence. More generally, one ranging from present to � generations in the past, con-
sidering populations 1 and 2 altogether, the waitingcan wonder whether complete isolation and divergence

by random drift accurately describes natural situations. time to the next event (coalescence or migration) is
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Figure 5.—F̂1 and F̂2 values estimated from 43
loci in Drosophila simulans for all the pairwise com-
parisons involving the population from the Congo
(n � 45). (A) Expected distribution for the popu-
lations from France (n � 55) and Congo. (B)
Tunisia (n � 52) vs. Congo. (C) Congo vs. Cape
Town, South Africa (n � 32). (D) Congo vs.
Seychelle Island (n � 26). All distributions are
conditioned on k � 4. Each locus is represented
with a solid dot. Dotted lines give the expected
values for F̂1 and F̂2. For each expected conditional
distribution, solid arrows indicate the loci coding
for the larval protein-10 (Pt-10) and phosphoglu-
comutase (PGM).

drawn from an exponential distribution with mean hall et al. 1990) to determine if the distribution of the
number of detected outlier loci was shifted to the rightN1N2/[N2/(n

2
1) · N1/(n

2
2) 
 m(n1 
 n2)N1N2], where m is

the backward migration rate (Nordborg 2001). Condi- of 2.5 (one-tailed test).
Table 1 shows the total observed number of outliertionally on the occurrence of one event, two genes co-

alesce in population 1 (respectively population 2) with loci (mean and median over 20 independent simulated
data sets) detected for a range of nuisance parameterprobability N2/(n

2
1)/[N2/(n

2
1) · N1/(n

2
2) 
 m(n1 
 n2)

N1N2] (respectively N1/(n
2

2)/[N2/(n
2

1) · N1/(n
2

2) 
 m(n1 
 values (low and high mutation rates, short or long diver-
gence by random drift, with or without migration). Inn2) N1N2]) or one gene migrates from population 2 to

population 1 (respectively from population 1 to popula- no case could we reject the null hypothesis that the
expected number of outlier loci detected by our methodtion 2) with probability m · n1/[N2/(n
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1) · N1/(n

2
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 m(n1 


n2) N1N2] (respectively m · n2/[N2/(n
2

1) · N1/(n
2

2) 
 m(n1 
 was equal to 2.5 (against the alternative hypothesis that
the expected number of outliers was �2.5). Thus, ourn2)N1N2]; see Strobeck 1987; Takahata 1988; Nord-

borg 2001). Then, for the period [�, 
∞], the coalescent approach is conservative in the sense that the 95% con-
fidence region contains at least 95% of the loci gener-process was generated as previously described (see also

Figure 1). ated by a truly neutral model. At the level of 5% we do
not (falsely) detect any more than 5% of outlier loci inFor each set of parameters, we generated 20 data sets

composed of two samples (n1 � n2 � 50) of 50 loci each. a sample of neutral markers (type I error).
Comparison with Beaumont and Nichols’ (1996)The parameter values are given in Table 1. For each

data set, we applied our method as described above. method: We also applied Beaumont and Nichols’
(1996) procedure to the D. simulans data set. Based onWe generated joint distributions, conditional on the

number of alleles, according to the actual numbers of a preliminary examination of the data, three loci (cod-
ing for �-fucosidase, dipeptidase-1, and mannose phos-alleles in each sample. For all sets of parameters, we

grouped loci with eight alleles and more in a single phatase isomerase) were found to lie outside the 95%
confidence region of the conditional joint distributionclass. The number of joint conditional distributions gen-

erated per artificial data set (i.e., the number of classes of F̂ST and mean heterozygosity. The percentiles were
determined as described in Beaumont and Nicholsfor different numbers of alleles) ranged from three to

seven. For each data set, over all the joint conditional (1996). Surprisingly, none of these three loci were de-
tected as outliers using our method. There may be sev-distributions taken together, we expected to detect

0.05  50 � 2.5 outlier loci, just by chance. We per- eral reasons for this.
We suspect that, in the present case, the inclusion offormed Wilcoxon’s signed-rank tests (see, e.g., Menden-
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Figure 6.—F̂1 and F̂2 values estimated from 43
loci in Drosophila simulans for all the pairwise com-
parisons involving the population from the
Seychelle Island (n � 26). (A) Expected distribu-
tion for the populations from France (n � 55)
and Seychelle Island. (B) Tunisia (n � 52) vs.
Seychelle Island. (C) Congo (n � 45) vs. Seychelle
Island. (D) Cape Town, South Africa (n � 32) vs.
Seychelle Island. Distributions in A and C are
conditioned on k � 4 and distributions in B and
D are conditioned on k � 3. Each locus is repre-
sented with a solid dot. Dotted lines give the ex-
pected values for F̂1 and F̂2. For each expected
conditional distribution, solid arrows indicate the
locus coding for phosphoglucomutase (PGM).

a very distant insular population (Seychelle Island) may a local scale, pairwise comparisons of populations are
more likely to be efficient for detecting outlier loci.bias their analysis. Indeed, populations heterogeneous

with respect to their demographic parameters (effective
population sizes and migration rates) were shown to

DISCUSSION
strongly affect their method (Beaumont and Nichols
1996). Isolation (low migration rates) together with Using population-specific estimators of branch

lengths: Conventional pairwise genetic distances or pair-population bottlenecks can introduce a further bias.
Consider as an extreme case the fixation of a private wise measures of population differentiation are based

on the assumption that the sizes of populations areallele at some locus in one population. This may be
unexpected for a polymorphic locus in a mutation- equal and constant through time or that dispersal, if any,

is symmetric. For example, the pairwise FST parameter ismigration-drift equilibrium model, unless there is a
strong asymmetry, with some populations being smaller defined as a ratio of identity probabilities within and

among populations. But the within-population term isand receiving less immigrants than others. However,
this is not unexpected for a model of separation and taken as an average over the pair of populations. Thus,

the definition of the parameter implicitly assumes thatisolation, where there were population bottlenecks. This
may boost the FST estimate at some locus and thus ex- both populations share the same demographic parame-

ters. Weir and Cockerham’s (1984) estimator � of FSTclude it from the 95% high probability region. So, iso-
lated populations should probably be excluded from is constructed to have low bias and variance, assuming

that the populations are independent replicates of theBeaumont and Nichols’ (1996) analysis.
Moreover, in general, the loci that were outliers in same stochastic process. This means that populations

are supposed to have the same size and that they doour analysis gave small values of (global) FST. But from
the shape of the joint distribution of FST and heterozygos- not exchange migrants. Without these assumptions, �

would be a complex function of unequal (within-popu-ity, it seems that Beaumont and Nichols’ (1996) analy-
sis is likely to detect outlier loci that exhibit unusually lation) identity probabilities.

In contrast, the F̂i parameters defined here makelarge FST values. However, a process that would cause
an apparent decrease of genetic variation at one locus sense even when the populations are of unequal size.

The only assumption we make is that when the twoin a single local population, without leading to a de-
crease of the variation over all populations, would not populations have separated, they remain completely iso-

lated. From the estimation of Fi’s for a pair of popula-be detected in Beaumont and Nichols’ (1996) proce-
dure. In other words, if selection acts on one locus at tions, we can infer the branch lengths. The ratio of
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TABLE 1 selection in the population from Congo, one of which
was also probably subject to selection in the populationResults from applications to various divergence scenarios
from Seychelle Island. We concluded that the distribu-
tion of variability at these loci may have been shapedDetected outliers
by forces other than mutation and drift. Furthermore,

� � T0 Mean Median P value we identified two other loci that either lie on the edges
or fall just outside the high probability region of theNo migration: m � 0
expected conditional distribution in the French popula-10�5 1 1 1.85 2.0 0.98

10�5 10 10�2 1.15 1.0 1.00 tion, although we are more cautious about these latter
10�3 1 1 2.60 3.0 0.28 loci. It is noteworthy that our estimation of the density
10�3 10 10�2 1.75 2.0 0.76 of F̂i parameters (see appendix) is discontinuous, be-

cause of the discrete nature of the data (the alleleLow migration: m � 0.01
counts). This is particularly true when the number of10�5 1 1 2.30 2.5 0.79
alleles on which the distribution is conditioned is small10�5 10 10�2 2.25 2.0 0.77

10�3 1 1 2.00 2.0 0.99 (for a given set of parameters, the lower the number
10�3 10 10�2 1.20 1.0 1.00 of allelic states, the more discontinuous the null distri-

bution; see Figure 4). Using discrete distributions isModerate migration: m � 0.1
clearly preferable to using some (unnecessary) continu-10�5 1 1 2.30 2.0 0.87
ous approximations to it. Moreover, whenever the null10�5 10 10�2 2.05 2.0 0.96

10�3 1 1 2.25 2.0 0.89 distribution is based on the same number of allelic states
10�3 10 10�2 1.85 2.0 0.98 and the same number of genes as in the sample, there

is no tendency for loci to show up as outlier just becauseFor all sets of parameters, 50 loci were scored among 100
of the discrete nature of the distribution (i.e., a locushaploid sampled individuals (50 in each population). The

mean (and median) number of outlier loci detected is tabu- cannot, by construction, show up between arc-shaped
lated. We provide the P values of Wilcoxon’s signed-rank areas located at the edge of some distributions). Yet,
tests, performed on the distributions of detected outliers, to when an apparent outlier lies very close to the 95%determine whether this distribution was shifted to the right

high probability region, it is highly advisable to checkof 2.5 (one-tailed test).
whether this locus also lies outside the 99% high proba-
bility region.

The main criticisms of Lewontin and Krakauer’sthese branch length estimates is inversely proportional
to the ratio of effective population sizes. Thus, these (1973) attempts to interpret across-loci heterogeneity

of FST values arose from their failure to consider alleleestimates may be seen as measures of the intensity of
genetic drift that has occurred since population diver- frequencies as random variables, whose distribution de-

pends on the underlying model of population structuregence. The main drawback to this approach is that when
estimates of IIS probabilities are smaller within popula- and history. Indeed, uneven patterns of dispersal among

populations (Nei and Maryuyama 1975) or sequencestions than among them (i.e., Q̂ w,i � Q̂ a), F̂i becomes
negative, and the moment-based estimator of branch of population splits within the species (Robertson

1975a,b) may strongly undermine the approach. Lew-length fails. Although this can arise just by chance for
some loci, averaging Q̂ estimates over loci reduces the ontin and Krakauer (1975) acknowledged that their

tests might be limited to situations where the true popu-problem.
Provided that we obtain good estimates of branch lengths lation structure did not depart too much from the island

model.for a pair of populations (which requires the pooling
of information from many independent loci), we may However, conditioning the distribution of FST on the

heterozygosity (Beaumont and Nichols 1996) or onbe able to evaluate the consistency of locus-specific esti-
mates. Indeed, the joint distribution of branch length gene frequency for biallelic loci (Bowcock et al. 1991)

was shown to give surprisingly robust results, in the senseestimates, conditioned on the number of alleles in the
pooled sample, depends only weakly on nuisance pa- that strong departures from the model assumptions do

not alter the distribution very much. The strongest effectrameters of the simple model of divergence by drift. In
particular, this conditional distribution is not sensitive on the joint expected distribution of FST and heterozy-

gosity occurs when populations are heterogeneous withto departures from mutation-drift equilibrium before
isolation or to differences in mutation rates. respect to their demographic parameters (Beaumont

and Nichols 1996), for example, when populations areDetection of selection acting on genetic markers: We
saw from the analysis of the D. simulans data set that founded by very different numbers of individuals or

when populations are arranged in an irregular stepping-the great majority of loci always fall in the confidence
region of the conditional pairwise distributions of stone lattice. However, Beaumont and Nichols (1996)

considered a large number d of subpopulations in thebranch length estimates, while some loci do not. Overall,
we identified two loci that were probably subject to metapopulation (d � 100) and this parameter strongly
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influences the expected heterozygosity [He ≈ 4Nd�/(1 
 So, it is certainly plausible that the patterns that we
identified in, e.g., the Tunisia vs. Congo data set were4Nd�), for diploids]. In addition, at a local scale, FST is

only weakly influenced by the total population size Nd produced by selection. A thorough investigation of the
conditions under which our method fails to identify(Rousset 2001). The number of populations has a

stronger role than acknowledged by Beaumont and selected loci (type II error) would be desirable. How-
ever, this is not feasible, as the range of models thatNichols (1996) in determining whether mutation has

an effect on FST or not. It was shown that, considering incorporate selection is very large.
An important task for the future is to consider a moresmaller numbers of populations, FST estimates may be

reduced by mutation, especially with a stepwise muta- general neutral model of the divergence of two popula-
tions, where gene flow may continue after the momenttion model (see Flint et al. 1999). With d � 100 islands,

the sets of parameters used in Beaumont and Nichols of “separation.” It is also desirable to extend this ap-
proach to more elaborate neutral models, incorporating(1996) did not account for any case where mutation

may depress FST. recombination. More sophisticated estimators of the di-
vergence parameters (branch lengths) would then beAs already suggested by Tsakas and Krimbas (1976),

restricting Lewontin and Krakauer’s (1973) approach required. We assumed that the mutation process follows
the IAM and we allowed a wide range of possible muta-to pairs of populations removes all kinds of dependence

on the unknown population structure. Indeed, whatever tion rates. In the IAM, genes that are identical in state
are also identical by descent. This may not be the casetheir history, two populations ultimately descend from

a single ancestral one in the past. Still, nuisance parame- with other mutation models such as with the K allele
or stepwise mutation processes, which can produce IISters may broaden the joint distribution of pairwise Fi’s

(Figure 2). However, conditioning on the number of genes that are not IBD (homoplasy). The IAM is proba-
bly an adequate model for allozyme data. It is certainlyalleles (Figure 3) also gives distributions that are robust

enough to variations in the values of nuisance parame- not so appropriate for potentially more variable mark-
ers, such as microsatellites. Recent studies revealed thatters. It is obvious that, for each analysis of a pair of

populations, we deliberately discard the information the processes of mutation of microsatellite markers may
be more complex than previously thought and may varybrought by other populations, which may decrease the

power of the method (Tsakas and Krimbas 1976). But greatly among loci (Estoup and Angers 1998). Further-
we believe that this enables us to explain a wider range more, the effect of homoplasy on measures of popula-
of patterns than any symmetrical model, such as the tion subdivisions is not simple (Rousset 1996). There-
island model. In this respect, our approach is conserva- fore, further studies should be conducted to test the
tive. Moreover, we found that low or moderate gene application of our method across different classes of
flow did not undermine our approach, in the sense that nuclear markers that differ in processes of mutation.
the probability of falsely detecting a neutral locus as an Clearly, if a whole class of marker loci, which are known
outlier (type I error) is no more than 5% (Table 1). to have a very distinct mutation process, are identified
We compared the performance of our method to that as outliers by our analysis, then this class of markers
of Beaumont and Nichols (1996), using the empirical should be interpreted with caution.
data from Singh et al. (1987) and Choudhary et al. If we could identify those marker loci that responded
(1992). We further tested whether our method would to selection during the process of divergence, then we
falsely reject neutral loci (type I error) any more than may be able to obtain improved estimates of the parame-
expected, under a wide range of nuisance parameter ters of population structure and history by excluding
values (see Table 1). In particular, since the method these loci (Ross et al. 1999). Our method differs from
assumes that the mutations arising after divergence can previous ones in allowing selection to be detected in
be neglected, we checked that high mutation rates do particular populations and in some pairwise compari-
not weaken the approach. sons but not others. This opens up the possibility that

We found that patterns such as those identified in, markers may be discarded only in the analysis of those
e.g., the Tunisia vs. Congo data set as evidence of selec- populations where there is evidence that they have re-
tion can be produced by “neutral models,” where the sponded to selection. It is also of interest to use this
coalescent process occurs independently at each locus. approach to screen the genome for regions that have
Indeed, similar scatters of points could be obtained responded to strong selection in the recent past. If popu-
whenever the parameters F̂1 and F̂2 vary across loci, hav- lations have diverged phenotypically and if this has been
ing particularly high values at certain loci (results not caused by selection, then it may even be possible to
shown). Models of this type provide a rough approxima- identify candidate regions for the quantitative trait loci
tion to models of unlinked neutral loci, some of which underlying this adaptive divergence.
were strongly influenced by selection (remembering
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gives the probability for two genes in population i to tion 8 to get F̂) directly yields Cockerham’s estimators
(Cockerham 1973; Weir and Cockerham 1984), devel-be identical in state (IIS),
oped with the methods of analysis of variance (see Rous-

Qw,i � ε��
k

u�1

p2
iu�, (A1) set 2001 for a thorough demonstration of the equiva-

lence between estimator formulas based on analyses of
where e denotes now the expectation over the distribu- variance and expressions in terms of frequency of identi-
tion of allele frequencies p and k is the number of alleles cal genes). Our estimator differs from previous ones
in the population. The IIS probability for two genes (e.g., Reynolds et al. 1983) in allowing separate parame-
respectively taken in populations 1 and 2 is given by ters Fi’s for each population.

Estimation of the density of Fi parameters: For each
Qa � ε��

k

u�1
(p1up2u)�. (A2) set of parameter values, coalescent simulations were per-

formed, thus generating “artificial data sets.” Each arti-
An unbiased estimator of the frequency of allele u ficial data set yields a pair of estimates F̂1 and F̂2. An
among ni sampled individuals from the i th population approximation to the expected joint distribution was
is simply given by p̂iu� �n

j�1 xiju/ni. Expanding the square obtained as follows. First, a two-dimensional histogram
of this expression, and then taking expectation, gives was constructed. Recall that the points (F̂1, F̂2) are con-
ε(p̂2

iu|p) � [piu 
 ni(ni � 1)p 2
iu]/ni. Therefore, strained to lie within the upper-right triangle of a square

with vertices (�1, �1), (1, �1), (�1, 1), and (1, 1). The
Q̂w,i � �

k

u�1

[p̂iu(nip̂iu � 1)]/(ni � 1) (A3) whole square region was covered by a two-dimensional
array (or mesh) of 100  100 square cells. Each cell

is an unbiased estimator of the probability for two genes has thus sides of length 0.02. Each observation (F̂1, F̂2)
in population j to be identical in state, with k being the was binned in the appropriate cell. The cell counts were
number of alleles in the sample. Similarly divided by the total number of observations to obtain

a discrete probability distribution over the two-dimen-
Q̂ a � �

k

u�1

(p̂1up̂2u) (A4) sional array. This discrete distribution is a close ap-
proximation to the expected joint distribution of the

is an unbiased estimator of the IIS probability of two estimators (F̂1, F̂2). The q-level “high probability region”
genes taken in the ancestral population, before diver- (q � 95% or any other value) is constructed as follows.
gence. Approximating the expectation of a ratio by the The cells are sorted in order of decreasing probability.
ratio of expectations, an estimator of Fi is given by Finally, starting from the cells with the highest associ-

ated probabilities, cells are sequentially added to the
F̂i � �k

u�1[p̂iu(nip̂iu � 1)/(ni � 1) � p̂1up̂2u]
1 � �k

u�1(p̂1up̂2u)
. (A5) confidence region until the cumulative probability of

the whole set of cells obtained is equal to (or just ex-
When combining the information brought by all alleles ceeds) the chosen q-value.
at more than one locus, a multilocus estimator is defined From this procedure, we obtain for each simulation
as the ratio of the sum of locus-specific numerators over a region within which a proportion q of the data lies.
the sum of locus-specific denominators (see, e.g., Weir Note that this confidence region is not necessarily con-
and Cockerham 1984). It is worth noting that, when tinuous. Constructing the high probability region using
daughter population sizes are equal, this simple way to the discrete distribution is clearly preferable to using

some (unnecessary) continuous approximation to it.estimate parameters (i.e., equating Q’s to Q̂’s in Equa-


