Abstract
The causes of inbreeding depression and the converse phenomenon of heterosis or hybrid vigor remain poorly understood despite their scientific and agricultural importance. In bivalve molluscs, related phenomena, marker-associated heterosis and distortion of marker segregation ratios, have been widely reported over the past 25 years. A large load of deleterious recessive mutations could explain both phenomena, according to the dominance hypothesis of heterosis. Using inbred lines derived from a natural population of Pacific oysters and classical crossbreeding experiments, we compare the segregation ratios of microsatellite DNA markers at 6 hr and 2-3 months postfertilization in F(2) or F(3) hybrid families. We find evidence for strong and widespread selection against identical-by-descent marker homozygotes. The marker segregation data, when fit to models of selection against linked deleterious recessive mutations and extrapolated to the whole genome, suggest that the wild founders of inbred lines carried a minimum of 8-14 highly deleterious recessive mutations. This evidence for a high genetic load strongly supports the dominance theory of heterosis and inbreeding depression and establishes the oyster as an animal model for understanding the genetic and physiological causes of these economically important phenomena.
Full Text
The Full Text of this article is available as a PDF (149.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albright C. D., Friedrich C. B., Brown E. C., Mar M. H., Zeisel S. H. Maternal dietary choline availability alters mitosis, apoptosis and the localization of TOAD-64 protein in the developing fetal rat septum. Brain Res Dev Brain Res. 1999 Jun 2;115(2):123–129. doi: 10.1016/s0165-3806(99)00057-7. [DOI] [PubMed] [Google Scholar]
- Bierne N., Launey S., Naciri-Graven Y., Bonhomme F. Early effect of inbreeding as revealed by microsatellite analyses on Ostrea edulis larvae. Genetics. 1998 Apr;148(4):1893–1906. doi: 10.1093/genetics/148.4.1893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bierne N., Tsitrone A., David P. An inbreeding model of associative overdominance during a population bottleneck. Genetics. 2000 Aug;155(4):1981–1990. doi: 10.1093/genetics/155.4.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Callen D. F., Thompson A. D., Shen Y., Phillips H. A., Richards R. I., Mulley J. C., Sutherland G. R. Incidence and origin of "null" alleles in the (AC)n microsatellite markers. Am J Hum Genet. 1993 May;52(5):922–927. [PMC free article] [PubMed] [Google Scholar]
- Crow J. F. 90 years ago: the beginning of hybrid maize. Genetics. 1998 Mar;148(3):923–928. doi: 10.1093/genetics/148.3.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- David P., Delay B., Berthou P., Jarne P. Alternative models for allozyme-associated heterosis in the marine bivalve Spisula ovalis. Genetics. 1995 Apr;139(4):1719–1726. doi: 10.1093/genetics/139.4.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- David P. Heterozygosity-fitness correlations: new perspectives on old problems. Heredity (Edinb) 1998 May;80(Pt 5):531–537. doi: 10.1046/j.1365-2540.1998.00393.x. [DOI] [PubMed] [Google Scholar]
- David P., Jarne P. Context-dependent survival differences among electrophoretic genotypes in natural populations of the marine bivalve Spisula ovalis. Genetics. 1997 May;146(1):335–344. doi: 10.1093/genetics/146.1.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffing B. Use of a controlled-nutrient experiment to test heterosis hypotheses. Genetics. 1990 Nov;126(3):753–767. doi: 10.1093/genetics/126.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo X., Allen S. K., Jr Complete interference and nonrandom distribution of meiotic crossover in a mollusc, Mulinia lateralis (Say). Biol Bull. 1996 Oct;191(2):145–148. doi: 10.2307/1542916. [DOI] [PubMed] [Google Scholar]
- Hu Y. P., Foltz D. W. Genetics of scnDNA polymorphisms in juvenile oysters (Crassostrea virginica). Part I: Characterizing the inheritance of polymorphisms in controlled crosses. Mol Mar Biol Biotechnol. 1996 Jun;5(2):123–129. [PubMed] [Google Scholar]
- Huvet A., Boudry P., Ohresser M., Delsert C., Bonhomme F. Variable microsatellites in the Pacific oyster Crassostrea gigas and other cupped oyster species. Anim Genet. 2000 Feb;31(1):71–72. doi: 10.1111/j.1365-2052.2000.579-5.x. [DOI] [PubMed] [Google Scholar]
- Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
- Longwell A. C., Stiles S. S., Smith D. G. Chromosome complement of the American oyster Crassostrea virginica, as seen in meiotic and cleaving eggs. Can J Genet Cytol. 1967 Dec;9(4):845–856. doi: 10.1139/g67-090. [DOI] [PubMed] [Google Scholar]
- MORTON N. E. Sequential tests for the detection of linkage. Am J Hum Genet. 1955 Sep;7(3):277–318. [PMC free article] [PubMed] [Google Scholar]
- McGoldrick D. J., Hedgecock D. Fixation, segregation and linkage of allozyme loci in inbred families of the Pacific oyster Crassostrea gigas (Thunberg): implications for the causes of inbreeding depression. Genetics. 1997 May;146(1):321–334. doi: 10.1093/genetics/146.1.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Remington D. L., O'Malley D. M. Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics. 2000 May;155(1):337–348. doi: 10.1093/genetics/155.1.337. [DOI] [PMC free article] [PubMed] [Google Scholar]