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Śaunak Sen and Gary A. Churchill

The Jackson Laboratory, Bar Harbor, Maine 04609

Manuscript received July 29, 2000
Accepted for publication June 4, 2001

ABSTRACT
We describe a general statistical framework for the genetic analysis of quantitative trait data in inbred

line crosses. Our main result is based on the observation that, by conditioning on the unobserved QTL
genotypes, the problem can be split into two statistically independent and manageable parts. The first
part involves only the relationship between the QTL and the phenotype. The second part involves only
the location of the QTL in the genome. We developed a simple Monte Carlo algorithm to implement
Bayesian QTL analysis. This algorithm simulates multiple versions of complete genotype information on
a genomewide grid of locations using information in the marker genotype data. Weights are assigned to the
simulated genotypes to capture information in the phenotype data. The weighted complete genotypes are
used to approximate quantities needed for statistical inference of QTL locations and effect sizes. One advantage
of this approach is that only the weights are recomputed as the analyst considers different candidate models.
This device allows the analyst to focus on modeling and model comparisons. The proposed framework can
accommodate multiple interacting QTL, nonnormal and multivariate phenotypes, covariates, missing genotype
data, and genotyping errors in any type of inbred line cross. A software tool implementing this procedure is
available. We demonstrate our approach to QTL analysis using data from a mouse backcross population that
is segregating multiple interacting QTL associated with salt-induced hypertension.

THE problem of identifying the genetic factors un- QTL models because of their ability to separate linked
QTL on the same chromosome and to detect interact-derlying complex and quantitative traits has a long

history. The idea of using the association between a ing QTL that may otherwise be undetected. They pro-
vide increased power to detect QTL and can eliminatediscrete trait (marker) and a continuously variable phe-

notype to establish linkage of a quantitative trait locus biases in estimates of effect size and location that can
be introduced by using an inappropriate single-QTL(QTL) first appeared in the work of Sax (1923). The

first known statistical approach is due to Thoday (1961). model (Schork et al. 1993). A variety of approaches
have been proposed for mapping multiple QTL. HaleyModern analysis of quantitative trait genetics utilizes
and Knott (1992) described a simple approximationlarge sets of DNA-based markers to carry out genome
to interval mapping that is based on regression, whichscans that are capable of identifying multiple genetic
can be applied to multiple-QTL models. Compositefactors associated with a trait in a mapping population.
interval mapping (CIM) and multiple-QTL mappingStatistical analysis of QTL mapping data is typically car-
(MQM; Jansen 1993; Jansen and Stam 1994; Zengried out by interval mapping (Lander and Botstein
1993, 1994) represent attempts to reduce the multidi-1989) in which likelihood-ratio tests are computed on
mensional search for QTL to a series of one-dimensionala dense grid of possible QTL locations. The interval
searches. This is achieved by conditioning on markersmapping procedure is based on an expectation-maximi-
outside a region of interest to account for the effectszation (EM) algorithm (Dempster et al. 1977), which
of other QTL. Multiple interval mapping (MIM) pro-maximizes the likelihood of a single-gene genetic model
posed by Kao et al. (1999) extends interval mappingby averaging over the possible states of the unknown
directly to the case of multiple QTL. An EM algorithmgenotype at each possible QTL location. Despite its ex-
is used to calculate LOD scores under a multiple-QTLplicit use of a single gene model, this approach has
model. Like MIM we use an explicit multiple-QTLbeen successfully applied to detect multiple genes that
model but we replace the EM algorithm with a Monteunderlie a wide range of complex and/or quantitative
Carlo algorithm. Thus we trade off exact computationtraits. Rapp (2000) provides an excellent review of the
for ease of computation and flexibility.state of the art of QTL methodology focusing on hyper-

For pragmatic reasons, we chose to approach the prob-tension in rats.
lem of mapping multiple QTLs from a Bayesian perspec-Multiple-QTL models are an improvement over single-
tive. The Bayesian framework provides a clear picture
of the probabilistic structure of the QTL mapping prob-
lem. In particular, the treatment of unknown quantitiesCorresponding author: Gary Churchill, The Jackson Laboratory, 600

Main St., Bar Harbor, ME 04609. E-mail: garyc@jax.org (the QTL locations, the QTL genotypes, and the pheno-
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typic means and variances) is straightforward. However, ues for a phenotype, it is implicit that there is a genetic
basis for the difference. Association between the geno-we depart from a strictly Bayesian analysis at several

points as indicated below. Bayesian approaches to link- types and phenotypes in progeny derived from a cross
between such strains will provide information about theage analysis and QTL mapping have been described by

others (Hoeschele and VanRaden 1993; Satagopan genetic basis for the trait. However, there are at least
two components of “noise” in the data that can obscureet al. 1996; Uimari and Hoeschele 1997; Sillanpää

and Arjas 1999). We restrict our attention to inbred the genetic effects. First is the environmental variation
that is inherent in most quantitative phenotypes. Secondline crosses and comment on Satagopan et al. (1996).

They constructed a Markov chain Monte Carlo (MCMC) is the incomplete nature of the genotype information,
which can only be observed at the typed markers.algorithm that sequentially samples from the unknown

QTL locations, QTL genotypes, and genetic model pa- Marker genotypes may also contain missing values and
errors. Typically, an investigator is interested in knowingrameters. An advantage of the MCMC approach is the

ability to explore the model space by allowing the num- how many genes contribute to the trait, where they are
located, and how they act. Statistical approaches areber of QTL to change as part of the Markov chain

(Green 1995). Our computations rely on an indepen- needed to address these questions.
Consider the simple case in which the trait is affecteddent sample Monte Carlo approach, using importance

sampling of multiple imputed data sets. This avoids the by allelic variation at a single gene. In the presence of
environmental variation, the phenotype can be viewedproblematic issue of mixing of the Markov chain. Fur-

thermore the Monte Carlo error is inversely propor- as a “noisy” version of a biallelic locus (the QTL) whose
position in the genome is unknown. If the genotype oftional to the square root of the number of imputed

data sets and can be tightly controlled. The operational the QTL could be known, the effects of the QTL could
be estimated by simply looking at the distribution ofsimplicity of our algorithm should make it more accessi-

ble to nonspecialists in MCMC methodology. phenotypes within the groups of individuals defined by
the QTL alleles. Furthermore, the QTL position couldCentral to our approach is the observation that, by

conditioning on the unobserved QTL genotypes, the be localized by mapping the biallelic QTL relative to
the typed markers. Thus the unknown QTL genotypesproblem of QTL mapping can be divided into two

simple and statistically independent parts: the genetic are key.
If we have complete genotype information on a densemodel part, which relates the QTL genotypes to the

phenotype, and the linkage part, in which the locations set of markers, a one-dimensional genome scan can be
performed by regressing the phenotype on each of theof the QTL are determined. This observation is not new

(Jansen 1993; Thompson 2000); it is implicit in almost markers. The more a marker explains the phenotypic
variance, the more likely it is to be close to a QTL. Thisall published work on QTL. However, making the QTL

genotypes the central focus offers several advantages. It belief can be quantified by plotting the LOD score or
F-statistic obtained from regressing the phenotype onleads to a readily implemented algorithm and that

admits a broad range of generalizations. The problems the marker. In practice the markers may be widely
spaced across the genome and some marker genotypesof missing marker data, genotyping errors, covariates,

nonnormal and multivariate phenotypes, epistatic QTL, will be missing or in error. Still we can imagine having
access to a dense set of completely genotyped markers;crossover interference, and nonstandard cross designs

can all be addressed within this framework. we call them pseudomarkers. Using linkage information
in the available marker data we can infer the genotypesIn the sections that follow, we outline our approach

using a general notation that highlights the probabilistic of the pseudomarkers. There will be some uncertainty
regarding the pseudomarker genotypes so we may de-structure of the QTL mapping problem. This structure

is used to devise an efficient computational strategy for cide to construct several, say 10, versions of this ideal
genotype data each of which is consistent with the ob-Bayesian inference. We point out the relationship of

the log posterior distribution of QTL location (LPD) served marker genotypes. Variation in the imputed ge-
notypes reflects the uncertainty in our knowledge ofto the LOD score and show how the former leads to a

simple method for constructing confidence regions for the true complete genotypes. If the typed markers are
dense, the variation will be negligible. As in the caseQTL locations. This is followed by a description of our

software tools. After discussing possible variations of when we had complete genotype information, we can
now regress the phenotype on each of the pseudomark-the basic theme, we demonstrate our approach with an

example of a complete QTL data analysis. Many of the ers and repeat this process for each of the imputed
versions. We now have not 1, but 10 sets of LOD scores.technical details can be found in appendices a–f.
The strength of evidence in favor of a QTL being near
any given pseudomarker can be quantified by averaging

A FRAMEWORK FOR QTL INFERENCE
the 10 LOD scores. For technical reasons explained
below, the average is not an arithmetic mean of theHeuristic and motivation: If two inbred strains raised

in a common environment show markedly different val- LOD scores.
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This approach extends to the simultaneous mapping
of multiple QTL. Suppose that there are two QTL influ-
encing the trait. Using the same pseudomarkers, LOD
scores are computed for each pair of pseudomarkers for
a two-dimensional genome scan. Interactions between
QTL can be accommodated. We implemented pairwise
and triplet genome scans and illustrate their application
below. Higher-order genome scans could become com-

Figure 1.—Graph of the stochastic dependencies betweenputationally prohibitive. We argue below that the pair-
the five main data structures on the QTL mapping problem.wise scans should be sufficient for the analysis of data Boxes represent observed data structures and circles represent

with many segregating QTL provided that interactions unobserved (or missing) data structures.
are limited to pairwise effects and that there are no
groups of three or more tightly linked QTL. When these
conditions are met, the results of single and pairwise

Imputed genotypes can also be used to compute thegenome scans can be combined into a single statistical
marginal probability of the data pH(m, y), which is usefulmodel that describes the simultaneous effects of multi-
for making model comparisons.ple QTL on a quantitative phenotype. The last step

To develop our arguments we begin by looking at therepresents a compromise that is necessary because a
joint distribution of all of the observed and unobservedfull search for four or more QTL is computationally
data. Under the assumption of no ascertainment, theimpractical. The best approach to search for multiple
joint distribution can be factorized asQTL models remains an open problem.

Data structures and notation: Suppose that we have p(y, m, g, �, �) � �p(y|g, �)p(�)��p(g |m, �)p(m)p(�)�.
data on n animals or plants derived from an inbred line (1)
cross. Denote the quantitative trait measurements by

A proof is provided in appendix a. This factorizationy � (y1, y 2, . . . , yn)�, and denote the genotyping data
implies that, conditional on the QTL genotypes, g, theby the n � k matrix m � (mij), where the rows correspond
genetic model part of the problem involving (y, �) canto individuals and the columns correspond to markers.
be solved independently from the linkage part of theThe quantities y and m are the observed data. Assume that
problem involving (m, �). Figure 1 represents this condi-the chromosome of origin, order, and genetic distance
tional independence and highlights the central role ofbetween the markers is known. In practice, these quanti-
the unobserved QTL genotypes.ties may have to be estimated.

This decomposition of the problem into two partsThe genetic model, denoted by H, is a description of
conditional on the unobserved QTL genotypes suggeststhe distribution of phenotypes given the QTL geno-
that we should begin by obtaining the posterior distribu-types. If there are p contributing QTL and the trait
tion of the QTL genotypes. In appendix b we show thatvalues are normally distributed within the QTL geno-
the posterior distribution of the QTL genotypes aftertype classes, a general linear model may be used to
integrating out the parameters � and � can be expresseddescribe the relationship of the phenotype to the QTL
asgenotypes. The parameters of the genetic model are

denoted by �. The locations of the QTL are denoted p(g |y, m) � p(y|g)p(g |m). (2)
by the p-dimensional vector �. The QTL genotypes are
denoted by the n � p matrix g � (gij). The rows of g The first term indicates how compatible a phenotype is

with the QTL genotypes. The second term measures thecorrespond to individuals and columns correspond to
the loci. The quantities �, �, and g are the unobserved compatibility of the QTL genotypes with the observed

marker data.data. Note that the meaning and dimensionality of the
unobserved data structures depend on the genetic Sampling QTL genotypes: Expression (2) suggests an

efficient computational approach for simulating frommodel, H.
Theory: Our goal is to make inferences about the the posterior distribution of the QTL genotypes. We

can first simulate samples from p(g |m) and then weightgenetic model parameters (�) and the QTL locations
(�) given the observed data. We use Bayesian statistical each sampled genotype by p(y|g). The idea is that the

genotypes that are most compatible with the observedtheory because it provides a convenient and mathemati-
cally consistent method for describing uncertainties in marker data are most likely to turn up in the simulation

from p(g |m). Among those genotypes, the ones that arethe form of posterior distributions. As outlined above,
we combine information from the marker genotypes most compatible with the phenotypes will get the largest

weights. Details are provided in appendix b.and the phenotypes to reconstruct the unknown QTL
genotypes. Multiple imputed versions of the QTL geno- We want to consider models with multiple QTL, in-

cluding cases in which there is linkage and/or interac-types are then used to compute approximations to the
posterior densities of interest p(�|y, m) and p(�|y, m). tion among the QTL. If there are p QTL in the model,
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the location � will have p components and the QTL p(� � u|y, m) � �p(y|g)p(g |m, � � u)p(� � u)dg
genotypes will constitute an n � p matrix. Furthermore,
the locations are not known a priori and thus we want � �

q

i�1

WH(ri(u)). (4)
to scan through all possible locations to search for QTL.
These considerations suggest that we should simulate In interval mapping, inference about QTL locations
genotypes at all possible locations in the genome from is based on a likelihood-ratio test, which when expressed
their joint distribution given the marker data. In prac- on the scale of base 10 logarithm, is called the LOD
tice we generate genotypes on a discrete grid of loca- score. The LOD score at location � can be shown to be
tions spanning the genome, which we refer to as the equal to
pseudomarker grid. For a given p-tuple of pseudo-

LOD(�) � constant � log10�sup
�

p(y, m|�, �)�. (5)marker locations u � (u1, . . . , up), the ith realization
of genotypes is an n � p matrix denoted as ri(u).

The logarithm (base 10) of the posterior distributionA weighted sample of QTL genotypes is generated by
of the QTL locations (LPD) isthe following steps:

LPD(�) � log10(p(�|y, m))1. Select a regularly spaced grid G of pseudomarker
locations and create q realizations of the pseu- � constant � log10��p(y, m|�, �)p(�)d��domarkers by sampling from the distribution p(g |m,
� � G). The notation � � G is used to indicate that

� log10(p(�)). (6)
the entire grid of pseudomarkers is simulated as a

We expressed the LOD score and LPD in this form tojoint distribution. We assume that there is no cross-
illustrate their similarity. Details are provided in appen-over interference and that genetic distances between
dix d. By comparing (5) and (6) we see that the LODthe markers are known. With these assumptions, a
score takes a maximum over the genetic model parame-simple Markov chain sampling scheme can be used
ters whereas the LPD carries out an averaging operation.to generate the pseudomarker genotypes (Lander
In most situations when a uniform prior on the QTLand Green 1987).
locations is used, LOD(�) and LPD(�) will be approxi-2. For each p-tuple of locations u in each pseudomarker
mately equal to each other up to an additive constant. Inrealization (i � 1, . . . , q), calculate the weight under
Figure 2, on the basis of the hypertension data discussedthe assumed genetic model H:
below, we compare the LOD score, the LPD, and the

WH(ri(u)) � p(y|g � ri(u))p(� � u). (3) Haley and Knott (1992) approximation to the LOD
score. We can see that in this example the LOD score

If the prior on the QTL locations is uniform, the and the LPD are essentially indistinguishable. However,
term p(� � u) is constant for all locations u and can we note that it is possible to construct examples where
be ignored. the two quantities differ.

The LPD raised to the power of 10 is the posterior
Note that the weight function is model dependent density of the QTL location and hence can be used to

whereas the pseudomarker generation is not. This is construct confidence intervals (Sen 1998; Dupuis and
convenient for exploring the space of models as it re- Siegmund 1999). In our implementation, the pseu-
duces the amount of computation required when a new domarker grid is discrete, and thus p(�|m, y) is a discrete
model is considered. For normally distributed data un- probability distribution. This is a reasonable approxima-
der the assumption that the prior distribution on the tion to a continuous distribution of locations provided
genetic model parameters is of the order of one obser- that the grid density exceeds our ability to resolve the
vation, the weights are approximately proportional to QTL locations. In practice even a very coarse grid
n�v/2RSS�n/2, where n is the sample size, v is the model (10 cM) is quite effective. A denser grid (2 cM) is prefer-
dimension, and RSS is the residual sum of squares ob- able for localization of QTL once they have been as-
tained by regressing phenotypes on the QTL genotypes. signed to a chromosome. The discrete nature of the grid
Genotypes that explain more of the variation in the makes the computation of a highest posterior density
phenotype get a bigger weight. Additionally, the dimen- (HPD) region straightforward. For example, on a chro-
sion of the genetic model is penalized. This penalty mosome with two QTL, the weights for each pair of
becomes important when different genetic models are pseudomarkers can be normalized and ranked from
compared. A derivation of normal model weights is pro- highest to lowest. A 1 � 	 HPD region is constructed
vided in appendix c. by including the pairs with highest weights in the set

Estimating QTL locations: In appendix b we show until the sum of the weights first exceeds 1 � 	. Bayesian
that the posterior distribution of the QTL location is confidence intervals based on the LPD have the desired
proportional to the average weight of all pseudomarker long-run frequency coverage in large samples. See Sen

(1998) for a further discussion of those issues.realizations at that location
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Figure 2.—Comparison of
LOD score, LPD, and Haley-
Knott approximation onto the
LOD score on chromosome 1
of the hypertension data: (A)
Plot of the LOD score calcu-
lated using the EM algorithm
(solid line), the LPD (dotted
line), and the approximate
LOD score calculated using the
Haley-Knott method (dashed
line). (B) Plot of the differ-
ences between LPD-LOD (dot-
ted line) and LPD-approximate
LOD (dashed line). (C) Plot of
the proportion of missing ge-
notype information as a func-
tion of location on chromo-
some 1. One can see that the
three methods agree with each
other where the proportion of
missing genotype information
is small. The discrepancy in-
creases as the proportion of
missing information increases.

Substantive prior information can be incorporated if a chromosome is assumed to contain two QTL, we
use a summation over all pairs of pseudomarkers oninto the LPD through the additive term log10p(�). This

is analogous to the process of accumulating evidence the chromosome to estimate the effects associated with
the two QTL. If two unlinked QTL have an interactionby adding LOD scores (Morton 1955).

Estimating QTL model parameters: In appendix b term in the model, the two must be considered simulta-
neously and the summation will run over all pairs onwe show that the posterior distribution of the model

parameters can be expressed as the two chromosomes of interest. By estimating the pa-
rameters associated with small subsets (of size one, two,

p(�|y, m) � ��p(�|g, y)WH(g, �)p(g |m, �)dgd� or three) separately we can significantly reduce the
amount of computation with negligible effects on the

� �
q

i�1
�
u

p(�|y, g � ri(u))WH(ri(u)), (7) results. When we are estimating effects of one set of
QTL, the other QTL may be represented by including

where the summation on u is over all p-tuples of pseu- marker genotypes as covariates in the regression (see
domarker locations. The first term in the summation is section on covariates below) as in CIM and MQM. Alter-
the “complete data” posterior distribution of the model natively, we can simply ignore the other QTL. In practice
parameters given the phenotypes and the QTL geno- both approaches yield essentially identical point esti-
types. The second is the weight of the QTL genotypes. mates. This is a consequence of the independent assort-
Thus (7) is a weighted mixture of complete data poste- ment of chromosomes, which results in approximate
rior densities. Posterior means and variances of the orthogonality between unlinked locations in the ge-
model parameters, E(�|y, m) and V(�|y, m), are com- nome. The standard errors will generally be smaller
puted by the method of iterated expectation as detailed when conditioning.
in appendix b. Model scanning and model selection: In practice, the

We depart from a strictly Bayesian approach here. genetic model H, which includes the number of QTL
Suppose that we are entertaining a model with six QTL. and their interactions, is not known and has to be cho-
The summation over u in (7) would range over all sextu- sen on the basis of the data. The problem of selecting
ples of pseudomarkers in the genome and could be an appropriate model is challenging and we cannot
prohibitive to compute. In practice we take advantage offer a complete formal solution. The model selection
of the partitioning of the genome into chromosomes. problem is fundamental to multiple QTL analysis. Bro-
We estimate the model parameters one (or two) chro- man and Speed (1999) reviewed different QTL analysis
mosomes(s) at a time and restrict the summation over methods from a model-selection point of view. They

propose a criterion for model selection on the basis ofu just to the chromosome(s) of interest. For example,
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a modification of the Bayesian information criterion there is a significant interaction, the pair represents two
interacting QTL. If the interaction is not significant,(BIC) of Schwarz (1978), which they called BIC
. Kao

et al. (1999) use a stepwise selection procedure. each member of the pair should be individually signifi-
cant. In this case the pair represents two additive QTL.The Bayes factor (Kass and Raftery 1995) is a Bayes-

ian inferential device that can be used to support an In Sugiyama et al. (2001) the secondary decisions were
made using marker-regression-based tests and nominalexploratory analysis of potential models. The Bayes fac-

tor for comparing two models, H and K, is the ratio of P values. In our application we are using Bayes factors
on the chromosomes on which the loci are located.the marginal distribution of the observed data calcu-

lated under the two models Secondary decisions about the significance of the inter-
action do not require genomewide corrections as the
pair has already been selected on the basis of a stringentB(H, K) �

pH(y, m)
pK(y, m)

. (8)
criterion. One should be reasonably conservative about
declaring interaction effects. We suggest that a P valueThe marginal probability of the data under a model H
of at least 0.01 or a Bayes factor of 10 is a reasonablyis approximately equal to the average of all the pseu-
conservative guideline.domarker weights

Stepwise procedures for model selection using the
BIC
 of Broman and Speed (1999) and the F-to-enter

pH(y|m) � 1
qs�

q

i�1
�
u

WH(ri(u)), criterion of Kao et al. (1999) can be carried out using
our software tools. It is an area that holds promise but

(see appendix e), where s is the number of p-tuples one we have not adequately explored. We also note
of pseudomarker locations. In practice we limited the that a QTL may be deemed important if it explains a
application of Bayes factors to making decisions about substantial proportion of the variance even if it fails to
subsets of the QTL in a model. For example, we may achieve statistical significance. For nonnormally distrib-
compare a two-QTL model on a given chromosome uted phenotypes the ANOVA concept does not carry
to a single-QTL model on that chromosome. We can over and alternative criteria (such as those based on
compare a two-QTL model with an interaction term to deviance in the case of generalized linear models) may
a two-QTL model with only additive effects. In these be used. How well a QTL is localized also provides a
cases, the summation on u can be restricted to the chro- measure as to how important the QTL may be. Some
mosome of interest. Bayes factors can present computa- balance of judgment is required and all the evidence
tional difficulties (Satagopan et al. 1996). in support of a reported QTL should be reported.

Our data analysis consists of a model scanning step Prior distributions: All Bayesian analyses depend on
followed by model selection. It represents a departure prior distributions. The influence of the prior distribu-
from the Bayesian approach to model selection. We tion decays with increasing sample size and, for most
carry out single and pairwise genome scans and select problems, vanishes asymptotically. For sample sizes that
only those regions (or pairs) that exceed stringent per- are typical in most QTL studies (50–250 individuals),
mutation testing thresholds (Churchill and Doerge the prior distribution on the model parameters is not
1994). We then fit multiple gene models that include likely to have a large effect on the posterior distributions.
the regions identified as being significant in the genome However, it has a more tangible impact on the Bayes
scans. This approach is consistent with the idea that one factors used for model selection. For example, the Bayes
should report only highly significant QTL to minimize factors are not well defined if (improper) reference
false positive results (Lander and Kruglyak 1995). priors are used for the genetic model parameters.
There is often some fine tuning required to determine In our analyses we used proper priors whose weight
which interaction effects to include and to resolve linked is approximately equal to that of one observation. This
QTL. These model comparisons may be carried out assumption leads to the penalty term of n�v/2 in the
using Bayes factors or likelihood-ratio tests. weight function, where v is the dimension of the genetic

Permutation testing for the pairwise genome scan model (see appendix c). Using proper priors also helps
requires a bit of explanation. We are seeking pairs of loci stabilize numerical computations when the phenotypes
that together contribute significantly to the observed are not normally distributed.
phenotype distribution. Thus we base our test on a com- Implementation: We implemented a basic set of com-
parison of the full model, including an interaction ef- putational tools in the MATLAB computing environ-
fect, to a null model with no genetic effects. The signifi- ment (The Mathworks, http://www.mathworks.com).
cance of this overall test is assessed by permutation We chose MATLAB for prototyping convenience, but
analysis. If a pair is found to be significant it is necessary any computing environment with tools for regression
to make some secondary checks to ensure that the pair analysis and programming would suffice. All MATLAB
is actually representing two QTL. First one examines functions used for this article are available at http://
the size of the interaction by comparing the full model www.jax.org/research/churchill/ under software. The

MATLAB environment provides a variety of functionsto an additive model (with no interaction effects). If
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that can be used for preliminary analysis and manipula- Bayes factors for model comparisons are obtained
from the output of the scan functions since the marginaltion of the data.

Pseudomarker generation is implemented in the distribution of the data under a genetic model is the
average of the pseudomarker weights. Bayes factors arefunction IMPUTE, which takes marker genotypes and

map positions as input and generates a three-dimen- calculated on selected genomic regions of interest. For
example, to compare a single-QTL model on chromo-sional array of imputed genotypes (the first dimension

is individuals, the second dimension is pseudomarker some 1 to a two-QTL additive model on chromosome
1, we will compare the average pseudomarker weightpositions, and the third dimension is replications). This

array is used repeatedly in subsequent analysis steps. on chromosome 1 (obtained from MAINSCAN) to the
average pseudomarker weight on chromosome 1 for anWeights for imputed QTL genotypes are computed

by genome scan functions. These functions can be ap- additive model (obtained from PAIRSCAN).
Model selection is carried out using the permutationplied to the whole genome or restricted to chromo-

somes of interest. A one-dimensional scan is performed tests on one-dimensional and two-dimensional scans fol-
lowed by secondary tests. Loci can be “flagged” by theusing the function MAINSCAN, which produces a LPD

profile assuming a single-QTL model at each pseu- functions FLAG and FLAG2. The former uses Bayes
factors for secondary tests while the latter uses likeli-domarker location. MAINSCAN will produce essentially

identical results to a Mapmaker/QTL analysis. A two- hood ratios.
For localization of a QTL or a pair of QTL, we con-dimensional scan can be carried out using PAIRSCAN.

This function assumes a two-QTL model and computes struct a dense pseudomarker grid on the chromosome
and repeat the imputation and scanning steps on thatthe weights both with and without an interaction effect.

It scans through all pairs of marker loci and produces chromosome. Then we plot the results using LOCALIZE
or PAIRLOCALIZE to plot the posterior distribution ofa two-dimensional LPD profile. The functions PLOT-

MAINSCAN and PLOTPAIRSCAN are used to plot the the QTL or QTL pair.
We are currently constructing examples, includingresults from the scans. Traditionally, scanning functions

have plotted the LOD score. Our functions plot the analysis scripts that illustrate the steps involved in
applying these software modules. Results will be postedproportion of variance explained. This is approximately

a linear multiple of the LOD score (Lander and Botstein on our web site. In our experience we find that each
QTL data set is unique and requires a tailored analysis.1989; Dupuis and Siegmund 1999) for models with

normally distributed phenotypes and it has an intuitive Thus we prefer an interactive software environment that
allows the analyst to work with the data.appeal. Permutation tests on the one-dimensional and

two-dimensional scans are performed by PERMUTEST
and PERMUTEST2, respectively. A three-dimensional

EXTENSIONS
scan can be performed using TRIPLESCAN. We typi-
cally restrict a triple scan to a limited number of geno- We consider two general classes of extensions to the

basic framework, those that alter the genetic model andmic regions that have already been identified in the
one- and two-dimensional scans. TRIPLESCAN can be those that alter the linkage model. Changes to the ge-

netic model can be implemented by programming aused to assess three-way interactions and is useful for
localizing QTL in some situations. For example, if there new weight function. Changes to the linkage model

affect only the code that simulates the pseudomarkerare two linked QTL, one or both of which interact with
a third unlinked QTL, a joint analysis of their effects genotypes. Modularity in software design as well as in

data analysis that the framework provides is an impor-will be required to provide unbiased estimates of loca-
tion and effect sizes. Higher-dimensional scans may be tant advantage.

Extensions of the genetic model: For normally distrib-performed using the SCAN function. This function is
generally slower than ONESCAN or TWOSCAN but is uted phenotypes, the weights are based on a normal

regression model. More general distributions can bemore flexible.
After the genome scans have been carried out we can accommodated by calculating the weights assuming a

generalized linear model (McCullagh and Nelderobtain estimates of the QTL model parameters. For a
QTL that is not linked to or interacting with any other 1989). Generalized linear models have been mentioned

by several authors, for example Jansen (1993), but theyQTL, the function ONEESTIMATE computes estimates
of the posterior mean and standard error of the effect do not appear to be widely used in practice. This may

be due in part to the robustness of normal regressionsize. This function, applied on one chromosome at a
time, provides an estimate of the effect size of a QTL models but is also due to lack of readily available soft-

ware tools. Shepel et al. (1998) used a Poisson regressionon that chromosome. For linked and/or interacting QTL,
we provide functions TWOESTIMATE and THREE- model on marker loci and stepwise selection using the

BIC criterion to identify multiple loci. ImplementingESTIMATE. Scanning and estimation functions for non-
normally distributed phenotypes have been written and alternative distributions in a package based on the EM

algorithm would require extensive reprogramming. Inare not in the testing phase.
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our software package only the weight function needs to phenotype in which some of the animals survive beyond
the observation period. The data are represented as abe revised.

In general the weight function for any model is binary indicator of survival status (y1) and, for those
animals that died, a time to death (y 2). To reproduce

WH(y, g) � �pH(y|g, �)p(�)d�. (9) the results of Broman et al. (2000) we implemented the
weight functionFor generalized linear models, under the assumption

that the prior distribution on the genetic model parame- WH(y, g) � W B
H(y1, g)W N

H(y2, g), (10)
ters is of the order of a single observation, this works

where W B
H denotes the weight function correspondingout to be approximately

to a binomial distribution and W N
H to that of a normal

distribution.exp(�
dev
2

)n�v/2,
In QTL experiments covariates are often collected in

addition to the phenotypes of interest. The logic behind
where dev � �2 log(p(y|g, � � �̂)) � log(p(� � �̂))

measuring covariates is to measure and adjust for envi-
is the observed unscaled deviance (McCullagh and

ronmental factors that influence phenotypic expres-
Nelder 1989), �̂ is the posterior mean of �, and v is

sion. These might be blocking factors in an agricultural
the dimension of the genetic model. If the phenotype

field trial or cage number in a mouse cross. The covari-
data follow a Poisson distribution, the weight function

ate may also be another phenotype, in which case some
is

care must be exercised in the interpretation of results.
We assume that there is no direct association between

WH(y, g) � ��
k

i�1

nyi.i

yi!
�
�1

, the QTL that affect the trait of interest and the covariate.
If this is not the case, the phenotype and the covariate

where k is the number of genotype classes, ni is the should be treated as a multivariate phenotype. We de-
number of observations in the i th class, and y i. is the note the covariate by x and any unknown parameters
sum of the observations in the i th class. For binomial governing the distribution of x are denoted by �. It can
data, the weight function will be be shown by calculations similar to that in appendix a

that the appropriate weight function is
WH(y, g) � ��

k

i�1
�mi.

yi. ��
�1

,
WH(y, g) � p(y|x, g)p(� � u). (11)

where mi. is the total of the size parameters of the bino- The practical implication of (11) is that the weights are
mial observations in each group and y i. is the sum of now based on a regression analysis of the phenotype on
the observations in the ith class. the covariates and the QTL genotypes.

Many complex trait studies involve measurement of The use of marker loci as covariates in QTL analysis
multiple related phenotypes. If two phenotypic mea- was suggested by Jansen (1993) and also by Zeng
surements are affected by the same set of genes, then it (1993). When analysis of a QTL is focused on a single
can be more efficient to consider a multivariate analysis chromosome or other genomic region, the use of un-
(Jiang and Zeng 1995; Korol et al. 1995; Ronin et al. linked markers as covariates presents no difficulties. The
1999). If the phenotype is multivariate normal, then the weight function (11) is appropriate. This can be a useful
appropriate weighting scheme is device for reducing the complexity of QTL analysis by

accounting for other segregating QTL in a cross and isWH(y, g) � n�v/2det(S)�n/2,
easy to implement using our software tools. However,
the use of linked markers as covariates presents somewhere S is the residual covariance matrix of the multivar-

iate ANOVA and v is the model dimension (appendix difficulties and may significantly reduce power. If there
are multiple unlinked QTL in a cross, conditional analy-c). Models in multivariate space are more complex and

some of the nice interpretations that apply to univariate sis of one QTL with marker covariates to control for
others can be an effective strategy. When there are mul-normal phenotypes do not carry over. Although multi-

variate phenotyping comes with the promise of greater tiple linked QTL or interactions among unlinked QTL,
we recommend a joint analysis of their effects.power to detect QTL, there are some costs. Unless two

phenotypes are affected by the same biochemical path- Extensions of the linkage model: Missing marker data
are common in QTL experiments, sometimes due toway, adding a phenotype into the analysis may add genes

and interactions to the list of genes affecting the (multi- difficulties with typing but also as a result of selective
genotyping. Following Rubin (1976) and Schafervariate) phenotype. This may complicate the analysis of

complex traits where a large number of genes are known (1997) we argue that as long as the missingness mecha-
nism depends on the observed data and not on theto be affecting the trait of interest. We recommend that

multivariate trait analysis be used with caution. missing data values, it does not have an impact on the
posterior distributions of the parameters of interest.An interesting mutlivariate data structure is presented

by Broman et al. (2000). They consider a time to death Still, one must use techniques such as the EM algorithm
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or multiple imputation to take missing data into ac-
count. If there is some ascertainment bias, such as if
only animals with high phenotypes are collected and
the rest discarded, then this assumption would be vio-
lated. As a general rule the phenotype data from an
entire cross should be included in the analysis even for
individuals with no genotype information.

Let R denote the missing marker data pattern, and
let mobs and mmis denote the observed and missing marker
data, respectively. It can be shown that the form of
the posterior distributions of the QTL locations �, the
genetic model parameters �, and the QTL genotypes g
given the observed data R, y, and mobs is unchanged.
The marginal distribution of the observed data under
the genetic model H is

pH(y, mobs, R) � p(R |mobs, y)pH(y|mobs)p(mobs). (12)
Figure 3.—Distribution of blood pressure values. The histo-

gram of the blood pressures of 250 mice in the backcrossThus to compute the Bayes factor for comparing differ-
reported in Sugiyama et al. (2001) is shown. Also displayedent models, we only need to calculate pH(y|mobs), other
on top of the histogram are the means and two standardterms being independent of the model.
deviation error bars of the two parental strains. Eight mice in

Selective genotyping is a practical device for reducing the BL/6 strain and 10 mice in the A/J strain were measured.
the cost of QTL mapping experiments (Lander and
Botstein 1989). For example, an investigator, after
measuring the phenotype of the animals from a cross, under a no-interference model cannot be used (Zhao
may decide to genotype only the extremes. In this case, et al. 1995).
the missing data pattern depends only on the observed
data (the phenotypes). If the decision to genotype was

EXAMPLEbased on a phenotype y, but the trait of interest is an-
other phenotype z, then the appropriate analysis would We illustrate the application of our approach by a
use a multivariate phenotype composed of (y, z). Al- reanalysis of a hypertension cross described in Sugi-
though it is technically not correct to analyze z as a yama et al. (2001). Blood pressure measurements were
univariate trait when data have been selected using y, obtained on 250 mice from a backcross between strain
we do not anticipate a serious bias if the univariate C57BL/6J (high blood pressure) and strain A/J (low
analysis is used. blood pressure). We analyze blood pressure data assum-

Genotyping errors were considered by Lincoln and ing a normal model. Figure 3 shows the distribution of
Lander (1992). Their formulation was based on a sim- the blood pressure of the backcross individuals com-
ple model of the probability of a typing error. We note pared with the parental lines. The mean blood pressure
that this falls into the missing data framework presented was �101.6 mm of Hg and the standard deviation of
above and can be handled by modifying the pseu- the blood pressure was �8.4 mm of Hg. A total of 174
domarker simulation code. markers were typed. Initially only the extremes of the

Backcross and intercross designs have been widely backcross population were genotyped in a standard se-
utilized in quantitative trait mapping studies. However, lective genotyping design. Following an initial analysis
there are alternative approaches and there is interest of the data, additional genotyping was carried out in
in developing new cross designs that might improve the regions of interest on all mice.
resolution of QTL mapping studies. Designs that utilize We used a 10-cM pseudomarker grid with 16 imputa-
recombinant inbred lines, congenic or isogenic lines, tions for the initial scanning step. The model refine-
repeated backcrossing, and advanced intercross lines ment and localization were done using a 2-cM pseu-
are some examples (Darvasi 1998). In principle, any domarker grid with 256 imputations. The initial genome
crossing design can be accommodated into our proce- scan using MAINSCAN revealed two significant QTL
dure provided that one can simulate a pseudomarker on chromosomes 1 and 4 and a suggestive peak on
genotype conditional on observed marker data. chromosome 15. In Figure 4 the proportion of the vari-

Finally, we note that it is possible to incorporate mod- ance explained is graphed by location on the genome.
els of crossover interference into the pseudomarker Also shown is the 5% cutoff based on a permutation
simulation module. This may substantially increase the test. QTL on chromosomes 1 and 4 explain �6 and
computational burden because the conditional inde- 13.5% of the variance, respectively. The next biggest

QTL is on chromosome 15, which explains �5.5% ofpendence assumptions that simplify the computations
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Figure 4.—Results of one-dimension-
al scan. The top shows the proportion
of the variance explained as a function
of QTL location. The pseudomarker
spacing used was 10 cM and 16 sets of
imputations were used. The two hori-
zontal lines correspond to 1 and 5% criti-
cal values based on 1000 permutations.
Strong evidence for QTL on chromo-
somes 1 and 4 and weak evidence for a
QTL on chromosome 15 are indicated.
There is a hint of two QTL on chromo-
some 1. The bottom shows a plot of esti-
mated effects and 95% confidence inter-
vals based on a single-QTL model on
each chromosome. The effect size is de-
fined as half of the effect of substituting
an A/J allele in place of a C57BL6/J
allele.

the variance. The Bayes factor estimates for comparing for interacting QTL on chromosomes 7 and 15, which
explains �5% of the variance over an additive modelthe null model of no genetic effects to a single-QTL

model are �1 for all chromosomes except chromo- (the Bayes factor is 11.4). The Bayes factor indicates
that the evidence for the 6 � 15 interaction is strongersomes 1, 4, and 15 (the respective values are 37.3, 1.1 �

105, and 1.7). Figure 5 shows the result of a two-dimen- than that of the 7 � 15 interaction even though the
size of the estimated effects is about the same (see Figuresional scan using two-QTL models fitted using PAIR-

SCAN. We find that the QTL on chromosomes 1 and 8). A look at the localization plots (see Figure 7) reveals
that the localization information is stronger with the4 together explain �22% of the variance. There is evi-

dence for interaction between loci on chromosomes 6 6 � 15 interaction than with the 7 � 15 interaction.
The combined results of these scans suggest that weand 15. The Bayes factor for interaction vs. no interac-

tion is 20.4. The interaction explains �6% of the vari- should look closely at chromosomes 1 and 4 to deter-
mine if there may be multiple QTL on either of theseance above an additive model. There is also evidence

Figure 5.—Results of two-dimension-
al scan. The proportion of variance ex-
plained by a two-QTL model with inter-
actions is plotted below the diagonal.
The difference of the variance explained
by a two-QTL model with interactions
and an additive model is shown above
the diagonal. The values above the diag-
onal were inflated by a factor of 3 to
enhance visibility. The 5% permutation-
derived threshold level based on 100
permutations for the full model (below
the diagonal) corresponds to 8.7% vari-
ance explained. The tick marks corre-
spond to the ends of the labeled chromo-
somes.
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Figure 6.—Close-up of two-dimension-
al scan on chromosomes 1, 4, 6, 7, and
15. This suggests that there may be two
QTL on chromosome 1. The interaction
effects between loci on chromosomes 6
and 15 and those on 7 and 15 are appar-
ent in the top diagonal. This was pro-
duced using 256 sets of imputations on
a 2-cM pseudomarker grid.

chromosomes and that we should examine the simulta- tions detected using PAIRSCAN are sufficient to de-
scribe the joint effect of these loci. The 6 � 15 interactionneous effects of loci on chromosomes 6, 7, and 15 to

sort out the nature and extent of the interactions. was reported by Sugiyama et al. (2001). The 7 � 15
interaction was not detected in their analysis, which mayWe carried out a TRIPLESCAN restricted to chromo-

somes 6, 7, and 15. There is no evidence for a three- be due to large intermarker spacings on chromosome 7.
Now we turn our attention to chromosome 1, whichway interaction among these markers. The Bayes factor

for the three-way interaction model vs. a model with showed some evidence for two QTL on the basis of the
output from MAINSCAN and PAIRSCAN. The Bayesall three two-way interactions is 0.2. There is also no

evidence for an interaction between chromosomes 6 factor comparing a two-locus additive model on chro-
mosome 1 to a single-locus model on chromosome 1 isand 7. Thus we conclude that the two pairwise interac-

Figure 7.—Summary of localization in-
formation of QTL on chromosomes 1, 4,
and 15. For locus pairs, we plot the 50, 95,
and 99% confidence intervals in succes-
sively lighter shades. The top left shows the
posterior distribution of the QTL on chro-
mosome 1. There is a hint of two QTL here,
but this was not supported very strongly by
the Bayes factor. The bottom left shows the
posterior distribution according to a two-
QTL model on chromosome 1. The 95%
confidence interval is pretty big, reflecting
moderate but not convincing evidence for
two QTL on that chromosome. The poste-
rior distribution of the QTL on chromo-
some 4 is shown in the top middle. The
bottom middle shows the posterior distribu-
tion assuming a two-QTL model on chro-
mosome 4. The top right shows the joint
posterior distribution of the interacting
QTL on chromosomes 6 and 15; the bottom
right shows the joint posterior distribution
of the interacting QTL on chromosomes 7
and 15. Note that the QTL on chromosome
15 is in the same place in both.
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the QTL mapping problem into the linkage part and
the genetic model part. This decomposition is used to
develop a computational strategy that uses multiple im-
putations of a pseudomarker grid to approximate inte-
grals needed to perform Bayesian inference. Our soft-
ware provides a set of flexible extensible tools suitable
for the analysis of QTL data.

The problem of model selection remains a thorny
issue in theoretical statistics and presents a serious chal-
lenge in the analysis of QTL data. For this reason we
emphasized exploratory tools over formal model selec-
tion procedures in our analysis. We provide a visual
representation of two-QTL models and two-way interac-
tions in the QTL mapping problem.

Most of the QTL analysis methods proposed so far
have relied on linear (or generalized linear) regression
models. Recently, classification and regression trees

Figure 8.—Estimated effects of QTL and their interactions (CART) models were proposed for QTL data (T. Speed,
in the hypertension cross. The estimated effects are identified personal communication) because they have a richerwith the chromosome the QTL are in. Also shown are the

interaction space. We note here that by using appro-95% confidence intervals for the effects based on the posterior
priate weight functions, WH(y, g), where the model, H,variances of the effects. The sizes of the interaction effects

6 � 15 and 7 � 15 are comparable to the main effects of 1 can be a regression tree, we can include CART in our
and 15. By adding up the squares of the effect sizes we find framework.
that the plotted QTL effects explain �41% of the total vari- Multiple-QTL models were considered by Haley andance. For comparison, we included the interaction effects 6 �

Knott (1992), who presented a simple regression ap-7 and 6 � 7 � 15, which are not in the final model.
proximation to the LOD score. The LOD score, the
Haley-Knott approximation, and the LPD will coincide

0.41. This is inconclusive evidence but it favors the sin- at locations where there is complete genotype informa-
gle-QTL model. The localization plot assuming a two- tion. At locations with incomplete genotype informa-
QTL model on chromosome 1 seems to indicate two tion, the three versions of the LOD score will differ.
QTL, but not overwhelmingly. Additional experimenta- This can be seen in Figure 2. The regression approxima-
tion may be needed to provide stronger evidence for tion to the LOD score deviates substantially from the
the presence of two QTL on chromosome 1. We note LOD score and the LPD in regions where the propor-
that Sugiyama et al. (2001) conclude that there are two tion of missing information is high. The bias in the
QTL on chromosome 1. Our reanalysis suggest weaker Haley and Knott (1992) approximation to the LOD
evidence in favor of two QTL than their original analysis. score has been investigated in detail by Kao (2000).
A localization scan of chromosome 4 suggests the possi- We have already mentioned the close connection be-
bility of multiple QTL but again there is not strong tween the LOD score and the LPD. Notwithstanding
support provided by the Bayes factor, which is 0.15. their similarities, the two can be numerically divergent.

The final model that we arrived at through this analy- There is an important conceptual difference between the
sis includes five loci on chromosomes 1, 4, 6, 7, and 15. LOD score and the LPD. The LOD score is designed
The localization information for these loci is given in to be a test for linkage wherein the location of the QTL
Figure 7. The main effects for QTL explain, respectively, (�) is a nuisance parameter and � is the parameter of
6, 13.5, 3, 0, and 5.5% of the variance. There are two two- interest. Indeed, the maximum of the LOD score is used
way interactions in the model. The interaction between as the test statistic for linkage. The LPD is designed with
QTL on chromosomes 6 and 15 explains �6% and the the reciprocal purpose of localization where the location
one between QTL on chromosomes 7 and 15 explains of the QTL (�) is the parameter of interest. The parame-
�6.5% of the variance. Taken together the model ex- ter � is the nuisance parameter and is integrated out.
plains �41% of the variance. The effect sizes are summa- The Monte Carlo error in approximating the poste-
rized in Figure 8. rior distributions by the pseudomarker algorithm is in-

versely proportional to the square root of the number
of imputations. Unlike MCMC methods, we do not have

DISCUSSION
to worry about proper mixing of the Markov chains.
Accuracy of the calculations also depends on the densityWe analyzed the stochastic dependencies between the

different observed and unobserved data structures in of the pseudomarker grid. For initial genome scans we
find that 20 pseudomarker sets at a spacing of �10 cMthe QTL mapping problem. By conditioning on the

unobserved QTL genotypes it is possible to decompose are adequate. For fine mapping, we recommend a 2-cM
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pseudomarker map on selected chromosomes with QTL mapping studies will continue to contribute to
our understanding of the nature of quantitative trait�200 replicated data sets. Adjustment for individual

situations is quite easy. More replications may be re- genetics. However, to achieve this goal we must acknowl-
edge the complexity of quantitative inheritance, whichquired when the proportion of missing genotypes is

high. The investigator will have to vary the density of is often determined by multiple interacting genetic loci,
and we must develop and apply analytic methods thatthe pseudomarker map and the number of replicated

data sets according to his/her needs. The best way to are appropriate for this problem.
know what is reasonable for the map is to start with a We thank Drs. B. Paigen, F. Sugiyama, and K. Broman for sharing
sparse pseudomarker set and repeat the analysis. If the data with us. This work has benefited enormously from the critical

comments of Dr. K. Broman and two anonymous referees. The Ameri-pictures differ markedly, more replications are needed.
can Heart Association provided financial support through a grant toTo control Monte Carlo fluctuations we also adopted
G.A.C.some additional devices explained in greater detail in

appendix f. Another option to controlling Monte Carlo
noise (which we have not currently implemented)
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The posterior distribution of the QTL locations isAPPENDIX A: FACTORIZATION OF THE JOINT
DISTRIBUTION

p(�|m, y) � ��p(y, m, g, �, �)dgd�

The joint distribution of the observed and missing
� ��p(y|g, �)p(�)p(g |m, �)p(m)p(�)dgd�data structures is

p(y, m, g, �, �) � p(y|m, g, �, �)p(m, g, �, �) � �	�p(y|g, �)p(�)d�
p(g|m, �)p(�)p(m)dg (B2)

� p(y|g, �)p(g |m, �, �)p(m, �, �)
� �p(y|g)p(g|m, �)p(�)dg (B3)

� p(y|g, �)p(g |m, �)p(m, �, �)
≈ �

q

i�1

WH(ri(�))p(�). (B4)
� (p(y|g, �)p(�))(p(g |m, �)p(m)p(�)). (A1)
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The last step, summation of the weights at location �, centrated on specific chromosomes (or chromosome
pairs).is a Monte Carlo approximation to the integration with

respect to dg. If a flat prior on � is used it reduces to a Standard errors of estimated QTL effects can be ob-
tained as the square root of the posterior variance. Againplain sum; otherwise it is a weighted sum. Note that �

and ri(�) will have dimensions 1 � p and p � n if there we use the concept of iterated expectation. Thus
are p QTL in the model.

V(�|y, m) � EV(�|g, y, m) � VE(�|g, y, m)The posterior distribution of the model parameters,
�, is ≈ �

q

i�1
�
u

WH(ri(u))V(�|y, g � ri(u))
p(�|m, y) � ��p(�, �, g |m, y)dgd�

� �
q

i�1
�
u

WH(ri(u))(E(�|y, g � ri(u))
� ��p(�, �|g, m, y)p(g |m, y)d�dg

� E(�|y, m))2. (B7)� ���p(�|g, m, y)d��p(�|g, m, y)p(g |m, y)dg

Similar comments on the summation with respect to u
� �p(�|g, y)p(g |m, y)dg apply here. Despite the intimidating appearance of

these expressions, the computation is quite simple. The
≈ �

q

i�1
�
u

WH(ri(u))p(�|g � ri(u)). (B5) variance estimate is composed of two terms. The first
term is the weighted mean of the conditional variances
V(�|y, m, g). The second term is the weighted varianceThis is a weighted average of the complete data posterior
of the conditional means E(�|y, m, g).densities p(�|g, y) over the unknown genotypes. In prac-

tice we do not use this density directly. Instead we com-
pute and report its mean and variance. For large samples

APPENDIX C: DERIVATION OF WEIGHTS FORthe posterior density will be approximately normal and
NORMAL DATAconfidence regions for posterior means can be com-

puted in the usual way. Suppose we have n observations and that the relation-
The posterior mean, E(�|m, y), is the mean of the ship of y given x, g, and � is described by a normal

conditional mean of E(�|y, m, g) averaged, over p(g |m, linear regression model. Let X be the n � p model
y). This is achieved by taking the samples of g weighted matrix corresponding to the model and let � � (, φ)
with p(y|g)p(�) as in the previous section. For each of the be the parameters in the model.
samples, we calculate the posterior distribution p(�|y, g).

y|X, � � N(X, φIn). (C1)This is then averaged with weights for the sampled g.
To compute a posterior mean, we use the iterated expec- Assume conjugate priors for  and φ. We assume that
tation formula the prior distribution of  conditional on φ is normally

distributed with prior mean 0 and variance φQ�1. TheE(�|y, m) � EE(�|y, g, m)
prior distribution of φ is inverse �2 with parameters S0

� �E(�|g, y)p(g |y, m)dg and �0. The interpretations of S0 and �0 are that they
are the prior error sum of squares and prior degrees

≈ �
q

i�1
�
u

E(�|y, g � ri(u))WH(ri(u)). (B6) of freedom, respectively. For Bayesian calculations of
this type see Lee (1997).

The summation over locations, indexed by u, requires Thus we have
a bit of attention. In principle, for a model with p QTL,
the summation on u should run through all p-tuples in p(y|X, , φ) � (2�φ)�n/2exp�� 1

2φ
(y � X)�(y � X)�

the genome. However when p � 3 this is not practical.
To reduce the computation and thus admit larger mod-

p(|φ) � (2�φ)�p/2det(Q)1/2exp�� 1
2φ

( � 0)�Q( � 0)�els, we restrict the summation to one chromosome at a
time or to pairs of chromosomes in the case of unlinked
interacting QTL. When we focus on the estimation of p(φ) � �(�0/2)�1�12S 0��0/2exp�� 1

2φ
S 0�φ��0/2�1.

effects of a subset of QTL, the others may be fixed by
including linked markers as covariates or they may sim- Hence
ply be ignored. The latter approach works because un-
linked QTL are approximately orthogonal to one an- p(y, , φ|X) � (2�φ)�n/2�p/2det(Q)1/2�(� 0/2)�1�12S 0��0/2

other in the genotype space as a result of the random
segregation of chromosomes. This obviously does not

� exp�� 1
2φ

S �, (C2)apply to linked QTL. Although this is a departure from
the strict Bayesian approach, the effect is minimal be-
cause the QTL location densities tend to be highly con- where
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S � S() � (y � X)�(y � X) � ( � 0)�Q( � 0) � S 0. weighting function for the multivariate normal pheno-
type,

It can be shown that
(det(S))�n/2n�pt/2,S() � S(̂) � ( � ̂)�(X �X � Q)( � ̂),

where t is the number of phenotypic traits being mea-where ̂ � (Q � X �X)�1(X �y � Q0). Hence integrating
sured and S is the residual sum of squares and products(C2) with respect to  we get
matrix (analogous to the residual sum of squares for
the univariate case).p(y, φ|X) �

(2�)�n/2

�(�0/2) � det(Q)
det(Q � X �X)�

1/2

�12S 0��0/2

APPENDIX D: LOD SCORE AND THE LPD� exp�� 1
2φ

S1�φ��1/2�1, (C3)

The LOD score at a given location of the QTL is
where �1 � �0 � n and S1 � S(̂). Integrating (C3) with defined as
respect to φ we get

LOD(�) � log10� sup� p(y, m|�, �)
sup� p(y, m|� � 0, �)�p(y|x, g) � p(y|X)

� (2�)�n/2�(�1/2)
�(�0/2) � det(Q)

det(Q � X �X)�
1/2 (S 0/2)�0/2

(S 1/2)�1/2
. � constant � log10�sup

�

p(y, m|�, �)�
(C4)

� constant � log10�sup
�

�p(y|g, �)p(g |m, �)dg�,This is the weight function we use for normally distrib-
uted phenotypes. Note that we can interpret S1 as the (D1)
posterior residual sum of squares and �1 as the posterior

where � � 0 is understood to mean the case when theredegrees of freedom. If we make the additional assump-
is no effect of the genotype on the phenotype. Thistion that the prior variance matrix of  is proportional
definition generalizes that proposed by Lander andto (X �X)�1, i.e., Q � 	X �X for some 	, then the above
Botstein (1989) and is equivalent the LOD score foris proportional to
MIM (Kao et al. 1999).

The LPD is defined as the logarithm (base 10) of the� 	

1 � 	�
p/2

S��1/2
1 � � 	

1 � 	�
p/2

RSS�n/2

posterior distribution of the QTL location. It is, like the
LOD score, a function of location and is defined for(since n, �1, �0, and S0 do not depend on the model
both single and multiple QTL models. Using (B2) andmatrix X), for large sample sizes, where RSS is the resid-
(B3) it is equal toual sum of squares of the regression of y on X. Addition-

ally, if we make the assumption that LPD(�) � log10(p(�|y, m))

� constant	

1 � 	
� 1

n
,

� log10���p(y|g, �)p(g |m, �)p(�)p(�)dgd��
which says that the posterior variance matrix of  is
approximately n�1 times the prior variance matrix of

≈ constant � log10��
q

i�1

WH(ri(u))�. (D2), then the weight function becomes approximately
RSS�n/2n�p/2.

The LPD replaces the supremum operation in the defi-Note that on the log scale this is identical to the BIC
nition of the LOD score with an integration. In practice,of Schwarz (1978) given by
the posterior distribution of the QTL effects is suffi-

BIC � log(RSS) � p log(n)/n. ciently sharp that there is little difference in the two.
Broman and Speed (1999) recommend using a modi-
fied BIC-type criterion of the form

APPENDIX E: BAYES FACTORS
BIC
 � log(RSS) � 
p log(n)/n,

To calculate Bayes factors, we need to calculate under
for some 
 that they pick to be somewhere between 2 each model, H,
and 3. Note that this corresponds to weak prior informa-

pH(y, m) � ���pH(y, m, g, �, �)dgd�d�tion of the order of n�
. Another interpretation would
be to suggest that the higher penalty is a correction for

� ����pH(y|g, �)p(�)��p(g |m, �)p(m)p(�)�multiple testing.
Similar calculations using an inverse Wishart distribu-

tion as the prior for the covariance matrix lead to a � dgd�d�
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can completely distort the average value. To prevent
� ���pH(y|g, �)p(�)d����p(g |m, �)p(�)dg� this, we decided to use a robustified version of the aver-

age. It is based on the observation that even though the
� d�p(m) weights are quite skewed, on the log scale the weights are

more or less symmetrically distributed, albeit somewhat
� ���pH(y|g)p(g |m, �)p(�)dgd��p(m) (E1) more heavily tailed than the Gaussian distribution. If

we pretend that the weights, W, are lognormally distrib-
uted, i.e., L � log(W) is normally distributed with some≈ �

u
�

q

i�1

WH(ri(u)). (E2)
mean � and variance �2, then

Since p(m) is the same no matter what genetic model
E(W) � E(exp(L)) � exp�� �

1
2

�2�we use, we have to calculate only the term inside the
brackets, which is just the average of the weights for all

� exp(�) � exp(E(L)).the samples g drawn from p(g |m, �) for a regularly
spaced grid of locations. This means that we can estimate the mean of W by

estimating the mean and variance of log(W). We do
just that except that we estimate the mean and variance

APPENDIX F: NUMERICAL ISSUES
by throwing out log2(q) weights that are most extreme.

Recall from (4) that the posterior density of the QTL As q ↑ ∞ the proportion of weights discarded goes to 0.
at a particular pseudomarker location is obtained by If 16 pseudomarker realizations are used, we discard
averaging the weights at the pseudomarker. These four weights (the two largest and the two smallest). If
weights tend to be very highly skewed in practice, which 256 pseudomarker imputations are used we discard the

eight most extreme weights.means that occasionally some extreme-valued weights


