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ABSTRACT
We provide a theoretical framework for quantitative trait locus (QTL) analysis of a crossed population

where parental lines may be outbred and dominance as well as inbreeding are allowed for. It can be
applied to any pedigree. A biallelic QTL is assumed, and the QTL allele frequencies can be different in
each breed. The genetic covariance between any two individuals is expressed as a nonlinear function of
the probability of up to 15 possible identity modes and of the additive and dominance effects, together
with the allelic frequencies in each of the two parental breeds. The probabilities of each identity mode
are obtained at the desired genome positions using a Monte Carlo Markov chain method. Unbiased
estimates of the actual genetic parameters are recovered in a simulated F2 cross and in a six-generation
complex pedigree under a variety of genetic models (allele fixed or segregating in the parental populations
and additive or dominance action). Results from analyzing an F2 cross between Meishan and Large White
pigs are also presented.

THERE is currently much interest in the use of mo- large number of parameters that are required. Smith
lecular markers to analyze the genetic basis of quan- and Mäki-Tanila (1990) gave recursive formulas to

titative or “complex” traits, and an increasing number of compute the identity coefficients in a single breed. Lo
experimental designs and statistical methods are being et al. (1995) provided a general framework to model
developed for this purpose (e.g., Liu 1998). A widely inbreeding and dominance in crossed populations. In
used design crosses two inbred lines. In this case the both studies, however, no marker information was used.
quantitative trait locus (QTL) and the markers are fixed The objective of this work is to present theory to ana-
for alternative alleles. Unfortunately, completely inbred lyze data from crosses of outbred lines using marker
lines are available in only a few species and are certainly information. This theory allows dominance and in-
not available in most domestic animals or in some plants breeding and the use of all available pedigree informa-
like trees. Instead, the researcher has resorted to crosses tion. The article is organized as follows. First, we present
between divergent, although outbred, lines. Thus, both the theory. Second, we illustrate the approach with simu-
the marker and the QTL may be segregating in the lated data and real data from a pig F2 cross. The main
parental lines. Furthermore neither the number of QTL emphasis is on F2 crosses, given the wide popularity
alleles nor the allelic frequencies are known. It has been of this experimental design, but we also show results
shown that assuming that the QTL alleles are fixed in concerning more complex pedigrees.
the parental lines when this is not the case may lead to
an important loss of power (Alfonso and Haley 1998;
Pérez-Enciso and Varona 2000). Under additive in-

THEORY
heritance, a mixed-model approach has been suggested
for analyzing crosses between outbred lines (Wang et A general explanatory model for performance re-
al. 1998; Pérez-Enciso and Varona 2000). However, cords is
given the well-documented phenomenon of heterosis,

y � X b � Z g � e, (1)i.e., an evidence of dominance, the assumption of addi-
tive inheritance in these methods may be an important

where y is a vector containing the phenotypes, X andshortcoming.
Z are incidence matrices, b is the vector of fixed effects,Modeling of dominance in outbred populations with
g, the vector that contains the genetic values, and e isinbreeding has proved to be a difficult task, given the
the residuals’ vector. We do not make any assumption in
(1) about the pedigree structure; y may contain records
from purebred and/or crossed individuals. In principle,
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TABLE 1

Two-breed identity modes for a single individual

nc
a N b C c F1

d F2
d E(g |N)e

0 1 — A A (2p1 � 1)a � 2p1(1 � p1)d
0 2 — A B (p1 � p2 � 1)a � (p1 � p2 � 2 p1p2)d
0 2� — B A (p1 � p2 � 1)a � (p1 � p2 � 2 p1p2 )d
0 3 — B B (2p2 � 1)a � 2p2(1 � p2)d
1 4 A — — (2p1 � 1)a
1 5 B — — (2p2 � 1)a

a Number of allele pairs identical by descent.
b Identity mode code; a prime indicates that both modes are equivalent.
c Breed origin (A or B) of the allele pair if they are identical by descent.
d Breed origin (A or B) of each of the nonidentical-by-descent alleles.
e Expectation of genetic value conditional on individual identity mode N.

pedigree. The multivariate normal distribution is a very all, but these terms do not contribute to the genetic
covariance and are not shown). Note that identity modesrobust assumption. Thus,
are grouped in Figure 1 by the number of alleles identi-
cal by descent shared by any two individuals.�y

g
e� � N ��Xb � �g

�g

Ø �, � V GZ� R
ZG G Ø
R Ø R�� , (2) Lo et al. (1995) showed that the expected genetic

value of the ith individual is

where V � ZGZ� � R, R is a diagonal matrix with
E(gi) � �

L

j�1
��

5

k�1

E(gij/Nij � k)Pr(Nij � k)�, (3)diagonal elements equal to the residual variance, �2,
�g � {E(gi)} is a vector containing the expected genetic

where E(gij|Nj � k) is the mean genetic effect at individ-values of each individual (gi), and G � {Cov(gi, gi�)} is a
ual i, locus j ( j � 1, L), given that the individual two-matrix consisting of the covariances between g elements.
breed identity mode, N, at locus j is k (Table 1). TheThe assumption of normality is required only for ob-

taining estimates of optimum statistical properties via
Equation 5 below, but the theory developed is valid in
any case. Now we need to obtain E(gi) and Cov(gi, gi�).
First, we briefly recall the theory for analyzing crossed
populations developed by Lo et al. (1995), which was
derived assuming that no marker information was avail-
able, and then we show how to obtain �g and G condi-
tional on marker information and propose a reparame-
terization for QTL analysis.

The theory developed by Lo et al. (1995) is based
on an extension to two breeds of Malécot’s (1948)
kinships’ coefficients. Take the two alleles of a locus
from a single crossed individual. The two-breed identity
mode (TIM, Lo et al. 1995) for a single individual can
take any of five mutually exclusive values, which are
listed in Table 1. If the two alleles are not identical by
descent, either both are from breed A (N � 1), or both
from breed B (N � 3), or each allele is from a different
breed origin (N � 2, 2�). If the alleles are identical by
descent, they originate either from A (N � 4) or B
(N � 5). Now consider two individuals; we can define
in similar terms a pair two-breed identity mode. A sche-
matic representation of the identity modes required

Figure 1.—Pair two-breed identity modes grouped by theto model the covariance between two individuals (see
number of allele pairs identical by descent (nc). Alleles frombelow) is depicted in Figure 1. Two related individuals
individual i are represented by open circles and those of indi-

can either share only one, two, or three alleles, or the vidual i� by solid circles. Alleles identical by descent are con-
four alleles can be identical by descent. (Of course two nected. Redrawn from Lo et al. (1995) but note that here only

relevant identity modes for the covariance are drawn.individuals can share no allele identical by descent at
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TABLE 2

Two-breed identity modes for two individuals

nc
a Mb C1

c C2
c F1

d F2
d E(g g �|N)e

1 1 A — A A [p 3
1 � (1 � p1)3]a2 � [p1(1 � p1)]d 2 � 2p1(1 � p1)(2p1 � 1)ad

1 2 A — A B [p 2
1p 2 � (1 � p1)2(1 � p 2)]a2 � [p1(1 � p1)]d 2 � (2p1 � 1)(p1 � p 2 � 2p1 p 2)ad

1 2� A — B A [p 2
1p 2 � (1 � p1)2(1 � p 2)]a2 � [p1(1 � p1)]d 2 � (2p1 � 1)(p1 � p 2 � 2p1 p 2)ad

1 3 A — B B [p1p 2
2 � (1 � p1)(1 � p 2)2]a2 � [p1(1 � p 2)2 � p 2

2(1 � p1)]d 2 � 2p 2(1 � p 2)(2p1 � 1)ad
1 4 B — A A [p 2p 2

1 � (1 � p 2)(1 � p1)2]a2 � [p 2(1 � p1)2 � p 2
1(1 � p 2)]d 2 � 2p1(1 � p1)(2p 2 � 1)ad

1 5 B — A B [p 2
2p1 � (1 � p 2)2(1 � p1)]a2 � [p 2(1 � p 2)]d 2 � (2p 2 � 1)(p1 � p 2 � 2p1p 2)ad

1 5� B — B A [p 2
2p1 � (1 � p 2)2(1 � p1)]a2 � [p 2(1 � p 2)]d 2 � (2p 2 � 1)(p1 � p 2 � 2p1p 2)ad

1 6 B — B B [p 3
2 � (1 � p 2)3]a2 � [p 2(1 � p 2)]d 2 � 2p 2(1 � p 2)(2p 2 � 1)ad

2 7 A A — — (1 � 2p1 � 2p 2
1)a2 � 2p1(1 � p1)d 2

2 8 A B — — (1 � p1 � p 2 � 2p1p 2)a2 � (p1 � p 2 � 2p1 p 2)d 2

2 8� B A — — (1 � p1 � p 2 � 2p1p 2)a2 � (p1 � p 2 � 2p1 p 2)d 2

2 9 B B — — (1 � 2p 2 � 2p 2
2)a2 � 2p 2 (1 � p 2)d 2

3 10 A — A — (1 � 2p1 � 2p 2
1)a2

3 11 A — B — (1 � p1 � p 2 � 2p1 p 2)a2 � (p1 � p 2)ad
3 12 B — A — (1 � p1 � p 2 � 2p1 p 2)a2 � (p 2 � p1)ad
3 13 B — B — (1 � 2p 2 � 2p 2

2)a2

4 14 A — — — a2

4 15 B — — — a2

a Number of allele pairs identical by descent. See also Figure 1.
b Identity mode code; a prime indicates that both modes are equivalent.
c Breed origin (A or B) of allele pair(s) if alleles are identical by descent.
d Breed origin (A or B) of each of the nonidentical-by-descent alleles.
e Expectation of the product of genetic values g and g� conditional on pair identity mode M.

genetic covariance between any two crossed individuals at every desired genome location for all pairs of related
is, assuming that loci are unlinked, individuals, conditional on marker information.

The number of parameters to be estimated can be
Cov(gi, gi�) � �

L

j�1
��

25

k�1

Cov(gij, gi″j|Mii�j � k)Pr(Mii�j � k)� dramatically reduced if we assume a biallelic QTL with
different frequencies in each breed. The model can(4)
now be reparameterized solely in terms of the additive

(Lo et al. 1995), where Cov(gi,j, gi�,j|Mii�j � k) is the genetic (a) and dominance (d) QTL effects, plus the frequen-
covariance at locus j between individuals i and i� given cies of each allele in breeds A and B, p1 and p2, respec-
that their pair identity mode M is k. Lo et al. (1995) tively. The genotypic value of homozygous individuals
showed that there are 30 distinct pair identity modes is thus a and �a for the alternative alleles, and heterozy-
when dealing with two breeds, of which 5 are zero (see gous individuals have d as genotypic value. The condi-
Figure 4 in their article). But further, it can be shown tional covariances in (4) can be obtained easily if we
that in fact only the first 15 identity modes in Lo et al. assume Hardy-Weinberg equilibrium in the purebred
(1995) are required to model correctly G. Modes 16–30 founder individuals. Consider, for instance, M � 14
in Lo et al. (1995) either do not contribute to the covari- (Table 2), i.e., the case where both individuals are in-
ance or are particular cases of previously defined modes. bred and the locus is from breed A origin. The covari-
Table 2 enumerates all 15 possible and relevant pair ance is, dropping the subscripts in M,
identity modes, classified by allele origin.

Cov(gi, gi�|M � 14) � E(gi gi�|M � 14)The principles of this theory can be applied to QTL
detection, thus permitting the QTL analysis of popula- � E(gi|M � 14)E(gi�|M � 14).
tions of any pedigree structure issued from crosses be-

Given that the individuals are inbred, their genotypetween outbred populations irrespective of whether the
will be a with probability p1 (because its origin is breedgene action shows dominance or not. But two main
A), and they share the same allele, thusobstacles persist. First, the number of genetic parame-

ters to be estimated for every locus is 20, the mean plus E(gi gi�|M � 14) � p1 a2 � (1 � p1)(�a)2 � a2

the covariance parameters. Even if we reduced the num-
andber of parameters required in Lo et al. (1995), the size

and pedigree structure of most QTL experiments do
E(gi|M � 14) � E(gi�|M � 14)not suffice to obtain meaningful estimates. Second, we

need to obtain the probabilities for each identity mode � E(gi|N � 4) � (2 p1 � 1)a.
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Other conditional genetic covariances can be obtained �
i�1

Gi�i,
similarly. All terms required are listed in Tables 1 and 2.

The TIM probabilities conditional on marker infor- where �i are the parameters to be estimated. The nonlin-
mation can be computed via a modification of the earity is the price to pay for allowing dominance gene
Monte Carlo Markov chain (MCMC) approach de- action within outbred lines. We maximized the likeli-
scribed in Pérez-Enciso and Varona (2000) and in hood (5) using a simplex algorithm. This algorithm is
Pérez-Enciso et al. (2000b). In short, the algorithm not efficient in CPU use but it is convenient because it
consists of two steps, a step where unknown phases are does not require any derivatives to be calculated.
sampled conditional on available marker information It is interesting to compare the approach followed
and current phases at other loci and a step where cross- here with other classical methods. Take p1 � 1 and p2 �
over positions are sampled conditional on current 0. This is the model used in analyzing crosses between
phases. Once crossovers are sampled it is possible to inbred lines. By substituting p1 � 1 and p2 � 0 into (3)
trace back the genome origins of any individual at any and (4) it is straightforward to show that G � Ø and
genome position. Thus, any identity-by-descent coeffi- that the only terms remaining are those involved in �g,
cient can be readily calculated, including the two-breed which are the usual regression coefficients employed in
identity modes. The process just described is repeated QTL analysis. If, in contrast, we set p1 � p2, we retrieve
and the mean over MCMC iterations is used to obtain a model for analyzing outbred populations, i.e., where
Pr(M) and Pr(N) in (3) and (4). The probabilities of breed origins are not taken into account. Similarly, a
TIM coefficients that need to be stored are 3 (M � 7, strict additive model can be studied by constraining d �
8, and 9) for the diagonal of a noninbred individual, 5 0. In summary, we should be able to test specific gene
if it is inbred (M � 7–9, 14, 15), 9 for the off-diagonal actions in the population under study by choosing an
elements if no individual is inbred (M � 1–9), and all appropriate restriction on the parameters.
15 if any of the two is inbred. See Figure 1 and Table
2. We ran the MCMC for 1000 iterations. This relatively
small number was good enough as the autocorrelation SIMULATION
between samples was very small (Pérez-Enciso et al.

Two sets of simulations, an F2 cross and a six-genera-2000b). Further, we tested the algorithm with the exact
tion pedigree, were simulated. The F2 population con-analytical result in Lo et al. (1995) when there was no
sisted of 10 and 20 founders from each of the two breeds,informative marker at all, and we also saw that 1000
20 male and 40 female F1 individuals, and 320 F2 individ-iterations sufficed. Nonetheless, it should be borne in
uals. All families contributed an equal number of de-mind that MCMC convergence problems may exist, in
scendants. Two analysis options were considered: Eitherparticular if the percentage of missing markers is large.
only performances from F2 individuals were used (n �Finally, it should be noted that Equation 4 assumes
320) or also records from all F0 and F1 individuals werethat loci are unlinked, which would preclude the analy-
available and analyzed jointly with the F2 data (n � 410).sis of linked QTL. However, we have shown that the

In addition, we also tested the method in a generalcovariances between loci are zero conditional on marker
pedigree. More specifically we simulated a six-discrete-information, provided that markers are informative and
generation pedigree (n � 410). It consisted of 10 and 20distances between successive markers are small (Pérez-
founders from each of the two breeds. The individuals ofEnciso and Varona 2000).
the next generation were produced by mating 5 siresWe used a two-step strategy for the QTL analysis.
to two dams each, sires and dams being chosen at ran-First, the TIM coefficients were calculated at the desired
dom with replacement (i.e., an individual, male or fe-genome positions. Subsequently, maximum-likelihood
male, could participate in more than one mating perestimates for a, d, p1, and p2, plus the fixed effects, were
generation), and five full-sibs per mating were gener-obtained at each genome position to determine the
ated. The exceptions were the F1 generation, where 10most likely QTL location, its effect, and its frequencies.
sires were chosen to produce the F2, and the F2, whereThe log-likelihood is
13 offspring per mating were generated. It was assumed

L � �1⁄2[Constant � log|V| that all individuals were genotyped and phenotyped. All
data were included in the analysis.� (y � Xb � �g)� V�1 (y � Xb � �g)].

The trait was assumed to be controlled by a single(5)
biallelic QTL in position 10 cM and bracketed by two
markers located at 0 and 25 cM. The markers had 12Note that here both G and �g depend nonlinearly on

the four parameters a, d, p1, and p2. In contrast, the alleles, with 6 alleles specific to each breed. Hardy-Wein-
berg equilibrium frequencies were forced for the QTLapproach in Pérez-Enciso and Varona (2000), which

deals with analysis of crosses between outbred lines un- in the founder individuals. Founder marker genotypes
were sampled at random from a uniform distributionder an additive model, allows us to factor out each

parameter separately; i.e., G can be decomposed as for allele frequencies. The additive genetic value was
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TABLE 3

Results with the simulated F2 cross

True parameters Estimates � SEb

Data included on
p1 p2 d generationsa p1 p2 a d

1.0 0.0 0 2 0.99 � 0.02 0.02 � 0.03 1.04 � 0.10 —
0–2 0.99 � 0.01 0.01 � 0.02 1.03 � 0.08 —

1.0 0.0 1 2 0.99 � 0.01 0.02 � 0.03 1.05 � 0.18 1.00 � 0.24
0–2 1.00 � 0.00 0.00 � 0.00 0.98 � 0.10 0.99 � 0.14

1.0 0.5 0 2 0.99 � 0.03 0.44 � 0.13 0.97 � 0.13 —
0–2 0.99 � 0.01 0.48 � 0.10 1.01 � 0.14 —

1.0 0.5 1 2 0.93 � 0.24 0.43 � 0.15 0.91 � 0.60 1.06 � 0.45
0–2 0.95 � 0.18 0.46 � 0.12 0.94 � 0.50 1.09 � 0.32

0.5 0.5 0 2 0.56 � 0.06 — 1.04 � 0.11 —
0–2 0.52 � 0.06 — 1.02 � 0.08 —

0.5 0.5 1 2 0.46 � 0.10 — 0.90 � 0.31 1.04 � 0.34
0–2 0.45 � 0.12 — 0.85 � 0.44 1.12 � 0.29

In all cases, a � 1 and nongenetic variance � 1; p1, p2, allele frequency in the two parental breeds; a, additive
effect; d, dominance deviation.

a 2, only F2 data were included in the analysis; 0–2, all data analyzed jointly.
b Estimates obtained at the true QTL position. Average of 30 replicates.

set to a � 1 and d to 0 or 1. Three cases for allele with a, p1, and p2 parameters; and finally a full model
containing a, d, p1, and p2.frequencies were considered: p1 � p2 � 0.5; p1 � 1, p2 �

0; and p1 � 1, p2 � 0.5. All six cases considered are
listed in Tables 3 and 4. The phenotype was obtained

REAL DATA
by adding a normal deviate N(0, 1) to the genetic value.
We report the estimates obtained by maximizing the The data were from an F2 cross with Meishan and

Large White pigs as parental populations. A comprehen-likelihood at the true QTL position. This was done to
assess the ability of the method to distinguish between sive report of the experimental design and results can

be found in Milan et al. (1998). The pedigree analyzedalternative genetic models. The performance of the
method in a chromosome scan is shown below in the comprised six Large White boars, six Meishan females

as founder animals, 36 F1, and 300 F2 individuals, whichreal data example. Thirty replicates per case were done.
Four models were used to analyze each of the data were a subset of the 1000 individuals available. Previous

analysis using the approach of Haley et al. (1994) pro-sets generated under the six genetic situations. These
were an additive model where a single allele frequency vided strong evidence of a QTL on chromosome 4 affect-

ing growth, but the results with respect to backfat werewas estimated, i.e., a and p (p1 � p2 forced) as parameters;
second, a model containing a, d, and p; third, a model less conclusive. A joint analysis of seven QTL experi-

TABLE 4

Results with the simulated six-generation pedigree

True parameters Estimates � SEa

p1 p2 d p1 p2 a d

1.0 0.0 0 0.99 � 0.04 0.01 � 0.02 1.13 � 0.10 —
1.0 0.0 1 0.98 � 0.10 0.07 � 0.18 1.03 � 0.29 1.00 � 0.34
1.0 0.5 0 1.00 � 0.01 0.46 � 0.11 1.02 � 0.14 —
1.0 0.5 1 0.99 � 0.01 0.45 � 0.17 1.02 � 0.50 1.07 � 0.48
0.5 0.5 0 0.50 � 0.07 — 0.99 � 0.09 —
0.5 0.5 1 0.49 � 0.20 — 1.04 � 0.58 1.32 � 0.30

In all cases, a � 1 and nongenetic variance � 1; p1, p2, allele frequency in the two parental breeds; a, additive
effect; d, dominance deviation.

a Estimates obtained at the true QTL position. Average of 30 replicates.
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ments suggested that the chromosome 4 effect on back- model that set p1 � 1 and p2 � 0, with the result that
the former model was not significantly better than thefat in crosses involving Meishan was much smaller than

in crosses with wild boar (Walling et al. 2000). Thus, we latter model (results not shown). Similar results, not
presented to avoid repetition, were found for the six-selected for the analysis records from backfat thickness

adjusted at 80 kg and live weight adjusted for 120 days generation pedigree.
Note, in addition, that the inclusion of parental pure-and markers from chromosome 4. Eight microsatellites

were genotyped. They were located in positions 0 bred and F1 records improves the probability of de-
tecting the correct model as the LR of the most parsimo-(S0227), 27 (SW2547), 50 (S0001), 75 (SW1089), 88

(SW270), 91 (S0214), 121 (SW445), and 141 (S0097) nious correct model increases. In the particular case
represented in Figure 2a (d � 0, p1 � p2 � 0.5), the LRscM. These distances are from the average sex map. Dif-

ferent models were fitted at 2-cM windows between posi- of less parsimonious models decrease when analyzing
all data, giving further support to the null hypothesistions 50 and 90 cM. This region should largely contain

the 95% confidence interval for the QTL, with maxima model.
Average estimates of the parameters for the F2 crosslocated in positions 75 (backfat) and 68 cM (live weight;

Milan et al. 1998). The probability coefficients Pr(N) and the six-generation pedigree are in Tables 3 and 4,
respectively. The estimates reported are those obtainedand Pr(M) were obtained after 1000 MCMC iterates

using all marker information, even if we restricted the under the correct model, the rationale being that a
test has been carried out to determine which is theanalysis to a specific chromosome region. The same

data set was also analyzed using the regression approach appropriate model, as in Figure 2. All in all, we find
an excellent agreement between actual parameters andin Haley et al. (1994), which assumes a biallelic QTL,

and a within-family approach suited for a three-genera- their estimates. The accuracy of allele frequency esti-
mates was very high if alternative alleles were fixed andtion pedigree consisting of a mixture of full- and half-

sib families (Le Roy et al. 1998). In this latter approach less so if the alleles were segregating within breeds, but
still unbiased estimates were retrieved. Standard errorsboth the sire and the dam of the F2 individuals are

assumed to be heterozygous, not necessarily for the were, in most cases, smaller when F0 and F1 records were
included in the F2 pedigree analysis.same alleles across families. Estimates are obtained via

maximum likelihood. Comparing by experimental designs, the estimates of
the six-generation pedigree had on average a larger
standard error than those in the F2 design when alleles

RESULTS
were not fixed in each parental breed. This is likely to
be due to genetic drift, which increases each generation,Simulation: A first step in the analysis is to decide

which is the most appropriate genetic model, i.e., and we found a strong interrelationship between allele
frequency and QTL effect estimates. In contrast, we alsowhether the alleles are fixed within the parental popula-

tions and whether genic action is purely additive or observed a smaller error for QTL position in the six-
generation pedigree than in the F2 design (results notthere is evidence of dominance. Consequently, we com-

puted the likelihood ratio (LR) of models including presented), as expected because of a larger number of
meioses in the former population (Darvasi and Sollerdominance and/or unequal breed allele frequencies vs.

the simplest model, i.e., no dominance and equal allele 1995).
Pig data: The results of the comparison between alter-frequencies in both breeds. Figure 2 shows the results

corresponding to the F2 population. The results are native models on the F2 cross pig data from Milan et
al. (1998) are listed in Table 5. Five models were fitted.shown for all six parameter combinations used to gener-

ate the data. Statistics are presented for two cases, Model 1 is the model assumed in a typical regression
approach including dominance; models 2 and 4 assumenamely, whether only F2 phenotypic records or all F0,

F1, and F2 records are included in the analysis. A LR test a pure additive action, whereas models 3 and 5 include
d. Models 4 and 5 allow for different allele frequenciesallowed us to retrieve the correct model in all instances

studied. Take, for example, Figure 2a, where the null in each breed, whereas models 2 and 3 do not. In addi-
tion, the parameter estimates using the regression ap-model is the true one, no LR exceeded the significance

threshold. Whenever data were generated according to proach in Haley et al. (1994, model 0a) and the within-
family analyses of Le Roy et al. (1998, model 0b) area purely additive model (Figure 2, a, c, and e), the LR

of the model including dominance did not improve shown as well. For backfat, the allelic action is additive,
as can be seen from comparing the LR for models thatupon the additive one. Otherwise (d � 1), the LR clearly

showed that a dominance parameter should be included include d vs. those that do not include d, i.e., models
3 vs. 2 and 5 vs. 4. Moreover, the allele frequencies arein the model (Figure 2, b, d, and f). Accordingly, a LR

also discriminated whether allele frequencies are equal also significantly different in each breed, as would be
expected. But it is more illuminating to ask whether the(Figure 2, a, and b) or not (Figure 2, c–f). In cases c

and d (true p1 � 1, p2 � 0), we also tested whether a breeds have alternative alleles fixed. The difference in
LR between model 5 and the model where fixed allelesmodel including parameters p1 and p2 improved over a
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Figure 2.—Twice the log-likeli-
hood ratio (LR) of different mod-
els with respect to the model with
no dominance and equal frequen-
cies in both breeds in an F2 cross
design. Open bar is the LR for
the model with equal allele fre-
quencies and dominance; cross-
hatched bar, LR for the additive
model including unequal allele
frequencies; and solid bar, LR for
the model allowing for unequal
allele frequencies and domi-
nance. Simulations were carried
out under different genetic mod-
els: (a) d � 0, p1 � p2 � 0.5; (b)
d � 1, p1 � p2 � 0.5; (c) d � 0,
p1 � 1, p2 � 0.5; (d) d � 1, p1 �
1, p2 � 0.5; (e) d � 0, p1 � 1, p2 �
0.5; and (f) d � 1, p1 � 1, p2 �
0.5. Ratios were calculated at the
exact QTL position. The two
groups of bars above “F2” and “All”
mean only F2 records or all F0, F1,
and F2 records are analyzed, re-
spectively. The solid arrows indi-
cate the most parsimonious cor-
rect model in each case. Results
are the average of 30 replicates.

are assumed (model 1) is 6.8. The exact distribution of tion changed over 10 cM according to the model cho-
sen. Figure 3 shows a plot of LR for models that includethis ratio is not known but a chi square between 1 and

2 d.f. can be a good approximation, and even in the the dominance effect or not and p1 � 1 and p2 � 0. It
can be seen that there are two local maxima in thatmost conservative case (2 d.f.) it would be significant

(P 	 0.05). The analysis would thus suggest that the region, and probably the confidence interval for the
QTL position comprises both maxima. In any case, this“fat” allele is fixed in Meishan and at low frequency but

still segregating in Large White. Note that the QTL change in QTL position is particularly worrying here
given that the effect of dominance borders significance.effect is underestimated in a model that forces alleles

to be fixed in each breed. It is well known that power Note, in addition, that the within-family analysis agrees
with the position estimated under the dominant model,decreases in a regression approach if alleles are not

fixed in each breed (Alfonso and Haley 1998; Pérez- whereas the between-breed regression estimate is close
to that obtained with the additive model. The LRs ofEnciso and Varona 2000).

In contrast to backfat thickness, all statistical evidence models that assume equal frequencies in both breeds
(models 2 and 3) were nonsignificant, which contrastssuggests that Meishan and Large White pigs have fixed

alternative alleles affecting live weight in chromosome to the results obtained for backfat thickness. This occurs
because these models assume that there is allelic varia-4. Models 4 and 5 converge to p1 � 1 and p2 � 0, with

no increase in likelihood in model 5 with respect to tion within breeds, which seems to be the case for back-
fat thickness but not for growth.model 1. It is more difficult to ascertain the effect of

dominance, the difference in LR being close to signifi-
cance. The regression approach provided estimates sim-

DISCUSSION
ilar to those obtained under the additive model 3. Note
that the QTL position estimates vary widely depending The theory developed allows us to obtain a very useful

insight into QTL genic action. It allows us to diagnoseon whether dominance was included or not; QTL posi-
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TABLE 5

Pig F2 analysis

Estimatesc

Trait Model of analysisa Statisticsb p1 p2 a d 


Backfat 0a: regression (H) 6.5 — — �0.89 0.22 75
0b: within family (LR) 38.2 — — �0.76 — 71
1: p1 � 1, p2 � 0, a, d 18.8 — — �1.34 0.08 73
2: p, a 14.7 0.66 — �1.99 — 75
3: p, a, d 14.7 0.58 — �1.91 0.00 75
4: p1, p2, a 24.3 0.79 0.00 �1.88 — 75
5: p1, p2, a, d 25.6 0.76 0.00 �1.46 �1.02 73

Live weight 0a: regression (H) 16.2 — — 2.91 0.18 68
0b: within family (LR) 26.2 — — 0.92 — 84
1: p1 � 1, p2 � 0, a, d 17.4 — — 2.34 2.28 84
2: p, a 2.5 0.62 — 2.28 — 77
3: p, a, d 4.1 0.15 — 1.94 6.44 81
4: p1, p2, a 14.6 1.00 0.00 2.61 — 69
5: p1, p2, a, d 17.4 1.00 0.00 2.14 1.97 81

a Regression (H) is the regression approach from Haley et al. (1994); within family (LR) corresponds to
the within-family method described in Le Roy et al. (1998); other models specify the parameters, and restrictions
if appropriate, that are included in the method described here.

b Statistics, F-value in the Haley et al. (1994) regression approach; otherwise, twice the log-likelihood ratio
with respect to a model that comprises the residual variance only.

c Estimates obtained at the maximum-likelihood chromosome position: p1, allele frequency in Large White;
p2, Meishan allele frequency; a, additive effect (Large White minus Meishan allele effects); d, dominance
deviation; 
, QTL position in centimorgans. The a value reported in the within-family approach corresponds
to the sire substitution effect averaged over the six sires.

whether the alleles are fixed within the parental popula- egy would provide exact estimates of the standard errors
of the parameters, whereas in this likelihood frameworktions or segregating at similar frequencies and whether

the genic action is dominant or not. Unlike other indi- with a simplex algorithm we need to resort to asymptotic
approximations. We are currently working on a generalrect approaches like within-sire regression, testing can

be done irrespective of the population structure, i.e., Bayesian strategy to address this issue. Nonetheless, we
have shown that the approach followed here performednumber of generations, and using all available pedigree

and marker information. Certainly the method can be quite well under a variety of genetic and pedigree sce-
narios (Tables 3 and 4, Figure 2).improved; for instance, it would be desirable to use

a single MCMC strategy to sample jointly the identity The ascertainment of whether the QTL alleles are
segregating within lines is an important issue in QTLcoefficients and the rest of the parameters. Such a strat-

Figure 3.—Likelihood-ratio profile in chromo-
some 4 of live weight in the French Meishan �
Large White cross. The models plotted assume
alternative fixed alleles in each breed, and addi-
tive (dashed line) or additive plus dominance ef-
fects (solid line) were included. Only a fraction
of the chromosome is represented; arrows indi-
cate the positions of the microsatellites, with their
names below.
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identification. If a QTL is found, say, in an F2 cross, the the within-family approach was similar for both traits,
0.10 and 0.08 in SD units for live weight and backfat,subsequent experimental procedure to map it finely

can be very different depending on whether all F1 are respectively. This is probably the result that each half-
sib family is analyzed separately and thus a small numberheterozygous at the QTL (alternative alleles fixed) or

only a percentage are (i.e., alleles segregating in the of observations is actually used to estimate each substitu-
tion effect, in contrast to the more parsimonious ap-parental lines). Moreover, the presence of dominance

may also alter the statistical results obtained via classical proach presented here where all pedigree and marker
information is considered jointly.regression type methods. The power of such an ap-

proach will diminish if a recessive allele is segregating Although beyond the scope of this article, the re-
searcher should be aware of possible QTL position shiftsin any of the crossed populations. Certainly, the most

convincing proof would be to analyze the purebreds according to the model of choice (Figure 3). This is
pertinent especially considering that it is customary todirectly, but usually the number of purebred individuals

typed in experimental crosses is small and would require include a dominant effect in the model in crossed-popu-
lation analyses without testing for its effect. We did notsetting up an additional experiment. Our approach is

able to extract more information than classical ap- carry out a joint multivariate analysis of live weight and
backfat, but the fact that the allele frequencies are differ-proaches from the already available data.

There are currently a large number of crosses be- ent for each trait would suggest that there are two linked
loci. This hypothesis would be in agreement with resultstween divergent lines in many different animal and

plant species. Certainly, not all the parental lines utilized from Marklund et al. (1999) who found the QTL effect
on growth, but not on fat, was diminished in a wildare completely inbred. It is thus interesting to compare

the results using a regression method and the method boar � Large White backcross when boars with different
QTL genotypes for fat were progeny tested. We alsodeveloped here. The results presented in Table 5 repre-

sent two of the possible situations that may be encoun- applied our approach to an F2 cross between Iberian
and Landrace pigs to chromosome 4 (Pérez-Enciso ettered. For the first trait, backfat thickness, there is rea-

sonable evidence that alleles may not be fixed in both al. 2000a), finding evidence of alleles fixed in Iberian
but not in Landrace pigs for carcass weight and fixedlines. Further, the statistical analysis suggests that the

QTL is segregating in Large White but not in Meishan alleles in both breeds for backfat (M. Pérez-Enciso and
A. Clop, unpublished results). All in all, this real data(Table 5), which may be explained by the very small

number of founder animals of the French Meishan pop- example illustrates the advantages of inspecting the data
under different models, given that the genetic basis ofulation (Bidanel et al. 1989). Interestingly, it was for

backfat that a joint study of seven pig F2 crosses reported all traits analyzed is not necessarily the same.
The identity modes in Lo et al. (1995) are a generaliza-an interaction between QTL effect and experiment

(Walling et al. 2000). One of the most parsimonious tion of the kinship coefficients described by Malécot
(1948), which are well known in quantitative genetics.explanations for this interaction is that the QTL may

be segregating at different frequencies in each breed, They had been proved to be a very powerful instrument
to model complex genetic relationships (Gillois 1964;and the regression approach can simply not take into

account this possibility. Note that model 4 in Table 5 Harris 1964; Lo et al. 1995) but we are not aware of
any application so far in QTL studies. A definitive advan-has only one extra parameter than model 2 but that

the increase in likelihood is quite important. For this tage of Malécot’s coefficients is that it is straightforward
to take into account other genetic situations as well.trait, thus, the power will increase to a larger extent by

allowing distinct allele frequencies in each breed than The reader can easily figure out how the relevant iden-
tity modes depicted in Figure 1 and Tables 1 and 2by including a dominance effect in the model.

In contrast to backfat, the classical model seems ap- could be modified to allow for, e.g., imprinting or sex
chromosome inheritance. We also developed a multivar-propriate for live weight and there is not much to be

gained by adding extra parameters to the regression iate approach that allows us to distinguish between plei-
otropy and linkage in a multiple QTL model; the resultsmodel. Here some uncertainty lies on the relevance of

the dominant effect, as the significance level of con- will be presented elsewhere. The daunting issue of ob-
taining the TIM probabilities conditional on markertrasting model 5 vs. 4 is �P ≈ 0.09, the probability of a

chi square distribution (1 d.f.) being �2.8. The evidence information was solved via MCMC methods, illustrating
once more the versatility of these approaches (Pérez-in favor of dominance is thus weak, in agreement with

the results of the regression analysis. The QTL position Enciso et al. 2000b). These methods are computer in-
tensive but relatively easy to implement and program.estimates obtained via the within-family analyses are in

agreement with those obtained via the TIM coefficients, Further, the number of parameters required was dra-
matically reduced by considering a biallelic locus. Aalthough the average estimate is lower. In principle,

one should also expect a within-family heterogeneity of biological justification of this model would be an ances-
tral mutation whose frequency has been changedsubstitution effects if alleles are not fixed. Nonetheless,

we found that the variance of sire effect estimates using through selection and drift at different speeds in each
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experimental population for fine genetic mapping. Genetics 141:of the breeds studied. The pig Halothane (Ryr1) gene
1199–1207.

would be a classical example. But there exist as well Gillois, M., 1964 La relation d’identité en génétique. Ann. Inst.
Henri Poincaré B2: 1–94.large allelic series with a quantitative effect, like the 
s1-

Haley, C. S., S. A. Knott and J. M. Elsen, 1994 Mapping quantita-casein in goats (Martin et al. 1995). In principle, the
tive trait loci in crosses between outbred lines using least squares.

theory can be extended to deal with a multiple breed Genetics 136: 1195–1207.
Harris, D. L., 1964 Genotype covariances between inbred relatives.population and more than two alleles. Each additional

Genetics 50: 1319–1348.breed considered adds only one parameter, the allele
Le Roy, P., J. M. Elsen, D. Boichard, B. Mangin, J. P. Bidanel et

frequency, but each additional allele increases the num- al., 1998 An algorithm for QTL detection in mixture of full
and half sib families. World Cong. Genet. Appl. Livest. Prod. 26:ber by 2 � na, where na is the previous number of alleles.
257–260.This approach is not thus suitable in a large multiallelic

Liu, B. H., 1998 Statistical Genomics. CRC Press, Boca Raton, FL.
system. A method based on analysis of variance will be Lo, L. L., R. L. Fernando, R. J. C. Cantet and M. Grossman, 1995

Theory for modelling means and covariances in a two-breedmore appropriate in this instance.
population with dominance inheritance. Theor. Appl. Genet. 90:Finally, it should be recalled that most plant and ani- 49–62.

mal individuals exploited commercially are hybrids but Malécot, G., 1948 Les Mathématiques de l’Hérédité. Masson et cie.,
Paris.that their genetic evaluation is largely based on pure-

Marklund, L., P. E. Nyström, S. Stern, L. Andersson-Eklund andbred performance. Thus a further application of the L. Andersson, 1999 Confirmed quantitative trait loci for fatness
theory developed here, beyond the detection of QTL, and growth on pig chromosome 4. Heredity 82: 134–141.

Martin, P., C. Leroux, Y. Amigues, M. Jansà Pérez, F. Remeuf etwill be to include molecular and performance data from
al., 1995 Molecular diversity of the goat alpha-S1-casein gene:hybrids in the genetic evaluation scheme. This approach impact on casein content and cheesemaking properties. Bull.

can also be used to help marker-assisted introgression, Int. Dairy Fed. 304: 12–13.
Milan, D., J. P. Bidanel, P. Le Roy, C. Chevalet, N. Woloszyn etwhere typically data from several generations are avail-

al., 1998 Current status of QTL detection in large white �able and where dominance and inbreeding may be Meishan crosses in France. World Cong. Genet. Appl. Livest.
Prod. 26: 414–417.present.
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