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ABSTRACT
Recently Kruglyak, Durrett, Schug, and Aquadro showed that microsatellite equilibrium distributions

can result from a balance between polymerase slippage and point mutations. Here, we introduce an
elaboration of their model that keeps track of all parts of a perfect repeat and a simplification that ignores
point mutations. We develop a detailed mathematical theory for these models that exhibits properties of
microsatellite distributions, such as positive skewness of allele lengths, that are consistent with data but
are inconsistent with the predictions of the stepwise mutation model. We use our theoretical results to
analyze the successes and failures of the genetic distances (��)2 and DSW when used to date four divergences:
African vs. non-African human populations, humans vs. chimpanzees, Drosophila melanogaster vs. D. simulans,
and sheep vs. cattle. The influence of point mutations explains some of the problems with the last two
examples, as does the fact that these genetic distances have large stochastic variance. However, we find
that these two features are not enough to explain the problems of dating the human-chimpanzee split.
One possible explanation of this phenomenon is that long microsatellites have a mutational bias that
favors contractions over expansions.

MICROSATELLITES are simple sequence repeats that are roughly one-seventh and one-thirtieth of the
commonly accepted values. The nonlinear distance DSWin DNA that typically have a high level of variabil-

ity due to a high rate of mutations that alter their length. does not do as well as (��)2 at dating the human popula-
tion split but has a slightly better performance for exam-For this reason they have been useful for studying popu-

lation structure on the time scale of thousands of gener- ples (ii) and (iii), yielding estimates that are about one-
third and one-eighth of the commonly accepted values.ations (see Bowcock et al. 1994; Roy et al. 1994; Gold-

stein et al. 1995b; Underhill et al. 1996; Goldstein Finally, in example (iv), the two species are too far
diverged for microsatellites to be useful molecular clocks.and Pollock 1997; Harr et al. 1998; Irwin et al. 1998;

Reich and Goldstein 1998; Goldstein et al. 1999; Results of Ellegren et al. (1997) show that roughly one-
half of the microsatellites they isolated in one speciesPritchard et al. 1999; Ruiz-Linares et al. 1999). To

make inferences from observed patterns, one needs a were monomorphic in the other and have presumably
lost their ability to mutate. This observation suggestsstatistic to measure differentiation between populations
that in the long run point mutations break up perfectand a model to give the distribution of that statistic.
repeats and reduce the mutation rates of microsatelliteHere, we consider two genetic distances: (��)2 of
loci. It is natural to ask if this mechanism can explainGoldstein et al. (1995a,b) and DSW of Shriver et al.
the underestimates that arise in examples (ii) and (iii).(1995).
To investigate this possibility, we introduced two newWe examine the behavior of two genetic distances
models. The first is a slight generalization of the model(��)2 and DSW in four increasingly divergent examples:
of Kruglyak et al. (1998), which we call the propor-(i) African vs. non-African human populations, (ii) hu-
tional slippage/point mutation (PS/PM) model. In thisman vs. chimpanzee, (iii) Drosophila melanogaster vs. D.
model point mutations spoil perfect repeats; the slip-simulans, and (iv) cattle vs. sheep. If one assumes the
page rate is zero for microsatellites with fewer than �stepwise mutation model (SMM) of Ohta and Kimura
repeat units and then increases linearly. The PS/PM(1973), then the expected value of (��)2 grows linearly
model can be used to estimate slippage rates from DNAin time. When used on example (i), the statistic (��)2

sequence data, but to address the divergence questiongives good estimates (see Goldstein et al. 1995b), but
we need a second model, called the PCR model, thatwhen applied to examples (ii) and (iii), it gives answers
keeps track of the lengths of all perfect repeats that
make up an imperfect repeat.

The PCR model is complicated, but it is possible to
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Using a � 2 � 10�8 as an estimate for the point mutation in populations A and B, and define genetic distance
between the two populations [see (1) of Goldstein etrate per repeat unit and a threshold of four repeat units

for slippage events to be possible, this formula shows al. 1995b] as
that the variance of the repeat length begins to depart

(��)2 � (�A � �B)2.from linearity when t/(10,000,000) is not small relative
to one. This result explains some of the problems with Given data, the distance is estimated by the correspond-
the use of (��)2 in the comparison of D. melanogaster ing statistic
and D. simulans, which diverged �25,000,000 genera-
tions ago, but makes the failure of (��)2 in the human

(��

�

)2 � (XA � YB)2,vs. chimpanzee split even more mysterious, since, as our
calculations have shown, point mutations will not have where XA and YB are the average lengths observed in
had a significant effect in 250,000 generations. samples from populations A and B.

To further investigate the problems in dating the hu- To motivate the definition of our second distance,
man vs. chimpanzee split, we investigated the behavior we recall (see, e.g., p. 6723 of Goldstein et al. 1995b)
of the PS/PM model when there are no mutations. This that, if X and X� are the lengths of the microsatellite
special case, called the PS/0M model, and denoted locus in a sample of size two from population A, and Y
A0

t , is equivalent to the binary branching process of prob- and Y� are a similar random sample of size two from
ability theory, so it is possible to do many exact calcula- population B, then
tions. Theorem 3 gives expressions for the first four mo-
ments of A0

t . Expressions for the third moment show (��)2 � E(X � Y)2 �
E(X � X�)2 � E(Y � Y �)2

2
,

that the distribution of A0
t has a positive skewness, which

contrasts with the symmetric distributions of the SMM, where in each case we take the square before computing
but is consistent with the skewness observed in microsa- expected value. Replacing the squares in the last for-
tellite data. mula by absolute values, we can follow Shriver et al.

Calculations for the fourth moment show that if 	 is (1995) and define the genetic distance
the per locus slippage rate, and 
 is the initial activity
of a microsatellite, i.e., the length minus the threshold

DSW � E|X � Y| �
E|X � X �| � E|Y � Y �|

2
.� for slippage to occur, then the kurtosis becomes large

when 	t/
2 is large relative to one. In general fourth
Given microsatellite lengths X1, . . . Xm from populationmoments of the microsatellite lengths are larger under
A, and Y1, . . . Yn from population B, DSW is estimatedthe PS/0M model than under the SMM. Consequently,
bymicrosatellite statistics that use these moments, such as

those of Reich and Goldstein (1998) and Gonser et
D̂SW �

1
mn �

n

i�1
�
m

i�1

|Xi � Yj| �
1

m(m � 1) �
1�i�j�m

|Xi � Xj|al. (2000), will have much different distribution under
PS/0M than under SMM. In the case of our four exam-
ples the kurtoses are (i) 3.02, (ii) 3.93, (iii) 6.75, and

�
1

n(n � 1) �
1�i�j�n

|Yi � Yj|.(iv) 10.7, compared to 3 for the normal distribution.
In the case of the human-chimpanzee split, (ii), this

Suppose that microsatellites follow the SMM of Ohtaimplies that confidence intervals are 1.21 times as large
and Kimura (1973) in which microsatellites change byas they would be under the SMM. However, this again

1 unit at a rate 	 independent of their length. In thisdoes not explain the magnitude of the failures of (��)2

case Goldstein et al. (1995a) have shown that if oneand DSW in dating the human-chimpanzee split. The last
assumes the divergence of the two populations occurredobservation and the fact that the simulated microsatel-
� generations ago, thenlite distributions given in Figures 1 and 3 have many

more large microsatellites than are typically observed (��)2 � 2	�.
lead us to conclude that there are forces that constrain

Shriver et al. (1995) simulated the behavior of DSWthe growth not yet incorporated into our models. We
under the SMM and concluded that over short time-return to this point in the discussion.
scales DSW was linear. In appendix a we prove the follow-
ing result about the nonlinear behavior of DSW under

GENETIC DISTANCES the SMM when two populations of Ne diploid individuals
diverged � generation ago.Our first step is to define the two genetic distances

(��)2 and DSW and to compute their values for the four
examples. We then introduce our two new models, state Theorem 1: If 2	� is large and � � Ne then
the theoretical results we have obtained, and use them
to study the four examples. To define (��)2, let �A and DSW ≈ �2

�
· √2	� � 4	Ne �

4	Ne

√8	Ne � 1
. (2)

�B be the mean length of alleles at a microsatellite locus
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When � � Ne, the terms involving Ne can be dropped respectively, in these two species. The data are given in
Table 1. From this, we can compute (��)2 values of 7.56,and
86.19, and 40.19, respectively. Even though the second

DSW ≈ 2(	�/�)1/2,
estimate is �11 times the first, we can use all 25 loci in
Table 1 together to get (��)2 ≈ 40. Using (1) now withso in the long run DSW grows like a constant times �1/2.
the slippage rate estimate 	 � 5.6 � 10�4 gives 35,700
generations, or �700,000 years, which is less than one-

FOUR EXAMPLES
seventh the accepted age.

Assuming the SMM and that the above parametersTo test the behavior of the statistics (��)2 and DSW we
consider four increasingly divergent examples. remain constant, coalescent simulations show that the

(��)2 and DSW estimates are significantly smaller thanDivergence of human populations: Goldstein et al.
(1995b) investigated 30 microsatellite loci and esti- those expected under the SMM. Specifically, for two

samples of 20 individuals with 25 unlinked microsatel-mated that the value of (��)2 between African and non-
African populations was 6.47. Using this in (1) with their lites in two separate random-mating populations of size

104, which were separated until 275,000 generations agomutation rate estimate of 5.6 � 10�4 gives a prediction
of 5776 generations for the divergence time. Assuming and with mutations following the SMM with 	� 5.6 �

10�4, we expect a 95% confidence interval for (��)2 ofa human generation time of 27 years, they then arrived
at the estimate of 156,000 years, a figure that they argued 179–465, whereas the data were only 40, and a 95%

confidence interval for DSW of 7.97–14.6, whereas thewas in agreement with previous genetic estimates and
with archaeological data. data were 5.475.

Drosophila species: The divergence time between D.Rubinsztein et al. (1995) studied 24 microsatellite
loci in East Anglians and Sub-Saharan Africans and ob- melanogaster and D. simulans is estimated to have oc-

curred �2.5 million years ago (see Hey and Klimantained an estimate of 1.45 for DSW. Assuming 	 � 5.6 �
10�4 and taking Ne � 5000 as the size of one of the two 1993). Wetterstrand (1997) used eight di-, four tri-,

and four tetranucleotide repeats and estimated (��)2 �subpopulations, we can use (2) to give a prediction of
9880 generations for the divergence time. Multiplying 19.393 between these species. Using the mutation esti-

mate of 6.3 � 10�6 from Schug et al. (1997), she thenby 27 years leads to an estimate of 267,000 years, which
is much larger than the estimate of Goldstein et al. used (1) to estimate that the divergence time occurred

1.52 million generations ago. Assuming 10 generations(1995b). One possible explanation is that we have cho-
sen the wrong effective population size for our estimate. per year, she computed a divergence time of 152,000

years, which is about one-sixteenth of the estimate ofIf instead we use Ne � 750 then an estimate of 5630
generations results, which is similar to the value esti- Hey and Kliman (1993).

One of the problems with this estimation is that tri-mated by Goldstein et al. (1995b).
Humans vs. chimpanzees: Rubinsztein et al. (1995) and tetranucleotide repeats have considerably smaller

slippage rates than dinucleotide repeats in Drosophilaalso studied 24 microsatellite loci in chimpanzees. Com-
bining this with their human data, they obtained an (see Schug et al. 1998). With this in mind, we applied

Wetterstrand’s analysis to data on 31 dinucleotide re-estimate of 5.475 for DSW for the human-chimpanzee
comparison. They commented that the ratio of this esti- peat loci from Hutter et al. (1998) given in Table 2.

The average value of (��)2 for these loci is 16.09. Usingmate to the East Anglian vs. African comparison, 5.475/
1.45 � 3.78, was surprising since the ratio of the diver- the estimate 	 � 9.3 � 10�6 from Schug et al. (1998)

in (1) we estimate the divergence time to be �865,000gence times for the two splits is at least 50. The nonline-
arity of DSW shown in Theorem 1 helps explain this discrep- generations. Using the previous estimate of 10 genera-

tions per year, this translates into 86,500 years, whichancy. If we use the slippage rate of 	 � 5.6 � 10�4 from
the previous example for both humans and chimpan- is about one-thirtieth of the estimate of Hey and Kliman

(1993).zees and assume an effective population size of Ne �
104 for each population, then using Theorem 1 we arrive Independently, Harr et al. (1998) also used (��)2 to

estimate the divergence times in the phylogeny of D.at an estimate of � � 88,200 generations for their diver-
gence time. If we use an average lifetime of 20 years melanogaster, D. simulans, D. sechelia, and D. mauritiana.

From the possible choices of the mutation rate 	 theyfor humans and chimpanzees this translates into 1.76
million years, about one-third the accepted estimate of list, we choose 10�5, which is the closest to that of Schug

et al. (1998). In this case their estimates differ from5–6 million years (see, e.g., Goodman et al. 1998 or
Kumar and Hedges 1998). those of Hey and Kliman (1993) by factors of 10–30.

Our second statistic DSW does much better on the dataSince Rubinsztein et al. (1995) report only the ge-
netic distances DSW for their loci, we need to turn to set of Hutter et al. (1998). The estimate of DSW from

their data is 3.64, so assuming an effective populationother sources for data we can use to calculate (��)2.
Bowcock et al. (1994), Deka et al. (1994), and Garza size of N � 106 and using (2) with 	 � 9.3 � 10�6, we

obtain an estimate of � � 3,330,000 generations. Withet al. (1995) studied 10, 7, and 8 microsatellite loci,
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TABLE 1

Human/chimpanzee data

Variance

Locus Human repeat motif ��a (��)2 Human Chimp

Bowcock et al. (1994)
ACTC 2.55 6.50 117.22 5.45
084XC5 0.95 0.90 5.83 2.55
D13S118 (CA)15 0.8 0.64 3.01 3.80
D13S119 1.75 3.06 8.67 10.61
D13S125 3.0 9.0 12.27 30.14
D13S133 5.15 26.52 105.69 33.12
D13S137 4.95 24.50 12.13 23.40
D13S193 (AC)14 1.15 1.32 11.84 30.85
D13S227 0 0 5.35 13.59
Utsw1523 1.65 2.72 1.31 4.65

Heterozygosity (%)

Locus Human repeat motif ��a (��)2 Human Chimp

Deka et al. (1994)
D13S71 (CA)17 3.06 9.36 74.2 18.6
D13S118 (CA)15 7.06 49.29 72.2 73.4
D13S121 (AC)18 0.94 0.89 76.7 87.7
D13S122 (GT)20 16.8 283 83.3 62.4
D13S124 2.26 5.14 66.9 81.9
D13S193 (AC)14 6.45 41.66 74.0 71.9
D13S197 (AC)6(GC)8(AC)12 14.6 214 87.4 1.8

Garza et al. (1995)
Mfd3 (CA)20 0.3 0.09 74.5 83.4
Mfd32 (CA)12 �2.4 5.76 70.5 79.9
Mfd38 (CA)27 2.3 5.29 84.0 89.9
Mfd59b (CA)5(TN)12(CA)21 8.3 68.89 87.5 86.8
Mfd75 (AC)20(TC)12 7.8 60.84 87.9 69.7
Mfd104 (CA)25 �10.6 112.36 83.2 89.9
Mfd139 (CA)15 7.7 59.29 88.3 65.6
Mfd142 (CA)20 3.0 9.00 75.4 68.6

a (��) in repeat units.
b In Mfd59 N indicates A or T.

10 generations a year this becomes 330,000 years, which show clear signs of mutations other than microsatellite
slippage events. At RM103 allele sizes are 115–151 bpis about one-eighth of the estimate of Hey and Kliman

(1993). in cattle vs. 73 bp in sheep, but the example sequence
given for the repeat in cattle is (CA)16. Thus at least partAgain coalescent simulations with the above parame-

ters show that these estimates are significantly smaller of the average 61.6 bp difference must be due to a major
deletion in the sequence flanking the microsatellite inthan those expected under the SMM. Assuming the two

populations are separated until 25 million generations sheep or to an insertion in cattle. At RME11 we have
the surprising result that this locus is much longer inago we expect a 95% confidence interval of 315–728

for (��)2 while the data are �20 and a 95% confidence sheep than in cattle but that this longer and hence
presumably more mutable microsatellite is monomor-interval of 10.5–18.0 for DSW while the data are 3.64.

Cattle vs. sheep: These two species diverged �16 mil- phic in sheep. Note also that this is the only locus of
bovine origin with a large negative ��. This suggestslion years ago, which, assuming a generation of 2 years,

translates into 8 million generations. Ellegren et al. that again much of this difference in length is due to
mutations involving the flanking sequence.(1997) examined 13 loci of bovine origin and 14 of

ovine origin. Discarding 3 loci of bovine origin for which If we remove these two loci, which have an average
(��)2 of 653, the remaining 22 loci have an averagethere was not reliable information about their length

in sheep, the data are given in Table 3. (��)2 of 74.4 per locus. If we use an average generation
time of 2 years for cattle and sheep, then using (1) weTwo of these loci studied by Ellegren et al. (1997)
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TABLE 2

Drosophila data, (��) in repeat units

Heterozygosity (%)
Focal species

Locus repeat motif �� (��)2 DSW D. mel D. sim

D. melanogaster derived
DM28 (GT)10 1.60 2.55 1.08 43 48
DM30 (TG)6 0.97 0.95 1.01 36 27
DM40 (TC)9 1.52 2.33 0.67 82 75
DM55 (AC)10 0.58 0.34 0.24 59 73
DM58 (GT)10 2.10 4.41 1.82 88 34
DM73 (AC)23 11.73 137.51 16.70 90 76
DM75 (GT)10 �2.84 8.09 2.89 71 69
DM85 (CA)5 10.47 109.59 17.69 50 19
DM88 (GA)13 �2.21 4.88 2.58 67 59
DM92 (CA)12 3.70 13.69 4.43 68 66
DM94 (TG)7 �5.72 32.71 4.76 82 83
DM97 (GT)5 �2.69 7.24 3.47 64 48
DM100 (CT)12 �1.62 2.61 1.65 65 46
DM114 (AC)7 4.05 16.40 6.02 74 44
DM122 (AC)12 2.02 4.08 1.51 78 68

D. simulans derived
DSIM3 (CA)11 2.06 4.23 3.35 0 29
DSIM6a (GT)9 5.61 31.51 7.67 39 73
DSIM6b (CT)6 �1.85 3.42 4.20 0 54
DSIM10 (AC)9 �0.75 0.56 1.09 41 75
DSIM18 (GT)8 �0.05 0 0.59 64 0
DSIM25 (TG)12 �1.78 3.15 0.20 69 66
DSIM28a (GT)5 0.65 0.42 0.22 53 54
DSIM29 (GT)14 �4.76 22.66 3.06 77 53
DSIM30 (GT)11 2.80 7.84 3.67 33 69
DSIM36 (GT)10 �1.10 1.21 1.55 0 77
DSIM42b (GT)13 �3.04 9.22 4.43 67 71
DSIM45 (TG)8 5.46 29.82 6.46 75 83
DSIM50 (GT)11 0.09 0.01 0.26 62 33
DSIM86 (GT)8 1.00 1.00 0.94 31 67
DSIM103 (GT)11 3.84 14.78 3.08 74 80
DSIM119 (GT)8 4.65 21.62 5.59 71 41

can estimate that the average slippage rate must be PS/PM model: There are three types of changes that
can occur:	 � 4.65 � 10�6. We could find no information about

slippage rates in cattle or sheep, but this is about one-
Proportional slippage: A microsatellite of length � � �thirteenth the rate of 6 � 10�5 that Ellegren (1995)

becomes length � 
 1 at rate b(� � �) each. Microsa-observed for microsatellites in pigs.
tellites of length � � � do not experience slippage
events.

TWO MODELS WITH POINT MUTATIONS Point mutations: For 1 � j � �, a microsatellite of length
� becomes length j at rate a.In all but the first example of the African vs. non-

Birth of microsatellites: � → � � 1 at rate c.African split in the human population, if we use the
SMM with either of our statistics (��)2 or DSW, then we For later purposes, it is convenient to write the new
underestimate divergence times. In view of this, it is proportional slippage rule succinctly as b(� � �)�,
natural to ask if there is some mechanism that interferes where
with the normal rate of growth of these divergence statis-
tics. One possibility is that point mutations spoiling per-

(� � �)� �




� � � if � � �

0 if � � �fect repeats reduce microsatellite mutation rates over
time. To investigate this we introduce a new model

denotes the positive part of � � �; i.e., � � � if thecalled the PS/PM model that is a modest generalization
of the one proposed by Kruglyak et al. (1998). difference is positive and 0 otherwise.
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TABLE 3

Cattle/sheep data

Heterozygosity (%)
Focal species

Locus repeata ��b (��)2 Cattle Sheep

Bovine origin
RM103 (CA)16 61.6 3749 70 0
RM088 (CA)14 23.3 542.9 74 0
RM024 (CA)11 9.0 81.00 29 0
RM041 (CA)18 8.8 77.44 85 0
RM012 (CA)10 4.6 21.16 48 0
RME11 (GTT)9 �38.4 1474 78 0
RME23 (GT)11 29.4 864.4 83 29
CSSM31 (CA)25 12 144.0 28 67
RM011 (CA)15 9.8 96.04 76 52
RM044 (CA)20 �0.4 1.6 85 89

Ovine origin
McM136 (CA)18 �34.6 1197 0 85
McM373 (GT)25 �23.7 561.7 0 86
CSRD2105 (CA)19 �18.5 342.3 0 80
OARJMP8 c �9.2 84.64 0 63
CSRD240 c �8.1 65.61 0 80
OARCP34 (AC)17 �5.6 31.36 0 70
Maf209 (TG)24 4.5 20.25 0 54
McM147 (TG)20 �19.2 368.6 41 85
McM058 (AC)25 �17.6 309.8 70 89
CSRD2171 (CA)15 �16.6 275.6 46 65
Maf70 (AC)39 �7.4 54.76 79 82
McM064 (AC)21 �6.7 44.89 80 46
OARFCB128 (GT)22 �3.2 10.24 81 76
OARFCB5 (GT)14 4.9 24.01 34 75

a References can be found on page 855 of Ellegren et al. (1997).
b �� in base pairs.
c Not in cited reference.

When � � 1 the PS/PM model reduces to the original keep track of the left one-half of a newly imperfect
repeat that has been hit by a mutation. This viewpoint,model of Kruglyak et al. (1998). The motivation for
along with appropriate bookkeeping, can be used to fitthe change from � � 1 to a general � comes from
the model to data and estimate mutation rates (seeseveral studies. Goldstein and Clark (1995) studied
Kruglyak et al. 1998). However, if we are going to look17 microsatellite loci in Drosophila, plotted variance of
at microsatellites through the eyes of an experimentalistrepeat count vs. maximum repeat count, and found
who only tracks the length of PCR-amplified fragments(see p. 3884) a straight line that hit zero at seven repeat
of DNA, we need to define a new process that keepsunits. Brinkman et al. (1998) studied 10,844 parent/
track of the lengths of all the perfect repeats in anchild allelic transfers at nine short tandem repeat loci,
interrupted repeat as a vector (X 1

t , X 2
t , . . . Xn

t ). To ex-finding 23 mutations. There were no mutations at loci
plain what we have in mind, consider the concrete se-with fewer than nine repeats and an approximate linear
quencegrowth of mutations after that point (see Figure 3 on

p. 1412). Finally, Rose and Falush (1998) studied dinu- ca ca ca ca ca CT|ca ca GA|ca ca ca ca ca ca ca CG|.
cleotide repeats in the yeast genome and compared
their frequency with what would be expected on the Here we used lower case letters for the perfect repeat
basis of random chance. The ratio was close to 1 for segments to make them more clearly visible. In dividing
one to four repeat units and then the logarithm of the this imperfect repeat into segments it is convenient to
ratio increased linearly (see the middle figure on their include in each piece the final pair of nucleotides that
p. 614). spoil the pattern. Thus the vertical bars mark the ends

In formulating the PS/PM model introduced above, of the perfect repeat segments, and we record the state
our thought experiment consists of picking two nucleo- as (6, 3, 8). The reason for this convention will become
tides at random and seeing how many times they are clear as we develop properties of the model.

In words, in our PCR fragment size model, each ofrepeated as we scan to the right, so we only need to



845Divergence of Microsatellites

the lengths of the perfect repeat units Xt
i evolves ac- begin to make a difference when the number of genera-

tions t ≈ 1/a�.cording to the rules of the PS/PM model. In using this
model we are concerned only with the life and death To understand the implications of Theorem 2 we re-

turn to our four examples. Thinking of dinucleotideof existing microsatellites, so we ignore the birth of new
ones. repeats, we assume a point mutation rate of a � 2 �

10�8 per repeat unit (see Drake et al. 1998). Based onPCR model: If the state at time t is (X 1
t , . . . Xn

t ), then
there are two types of changes for any of the lengths the work of Rose and Falush (1998) we choose � �
Xi

t with 1 � i � n. 5, so in all cases a� � 10�7, and we expect point muta-
tions to have a significant effect after �10 million gener-

Proportional slippage: X i
t → Xi

t 
 1 at rate b(Xi
t � �)�. ations. In the African vs. non-African comparison of

Point mutation: (X 1
t , . . . , Xi

t, . . . Xn
t ) → (X 1

t , . . . , Xi
t � human populations, t � 6000 generations, so a�t �

y, y, . . . Xn
t ) at rate a if 1 � y � Xi

t � 1. 6 � 10�4 and the correction factor is 0.9997. For hu-
mans vs. chimpanzees, t � 250,000, so a�t � 2.5 �Note that because we include the final imperfect repeat
10�2 and the correction factor is 0.9876, which is againunit in each block, the lengths of the two new pieces

�1. Coalescent simulations show that the 95% confi-created by a point mutation add up to the original
dence intervals for (��)2 and DSW for the PCR modellength. One final minor point is that since our new
have changed by �10% from those for the SMM forbookkeeping system includes the final imperfect repeat,
this example, so the data are not consistent with thethe � here should be equal to � � 1, where � is the
PCR model either. (For the simulations we assumedparameter of the PS/PM model.
that for all microsatellites their most recent commonLet Lt � Ri X i

t be the total length of the microsatellite
ancestor was a perfect repeat of length 19 and the perand let
repeat slippage rate was b � 1.9 � 10�5. This assumption

At � �
i
(Xi

t � �)� corresponds to a per locus slippage rate of the most
recent common ancestor microsatellite being 	 � 5.6 �

be its activity; i.e., 2bAt is the rate at which slippage events 10�4 as in the SMM.) For cattle vs. sheep, t � 8,000,000
occur at time t. Since point mutations do not change generations, so a�t � 0.8 and the correction factor is
the total length, and under proportional slippage the 0.688. For D. melanogaster vs. D. simulans, t � 25,000,000,
microsatellite is equally likely to gain or lose a repeat so a�t � 2.5 and the correction factor is 0.367. Coales-
unit, ELt � L0. That is, the average value of the length cent simulations for this example show the 95% confi-
stays constant in time. It is somewhat remarkable that dence intervals for (��)2 and DSW are 79.2–342 and 6.34–
there is a simple formula for the variance of Lt despite 11.8, whereas the observed statistics were �20 and 3.64,
the complexity of the PCR model. respectively. (For the simulations we assumed that for

all microsatellites their most recent common ancestor
was a perfect repeat of length 15 and the per repeatTheorem 2: If the initial activity of the microsatellite is
slippage rate was b � 5.0 � 10�7.) As predicted by Theo-A0 then at any time t � 0
rem 2, the mean (��)2 for the simulations was 184. Figure
1 shows the results of simulating the PCR model tovar(Lt) � 2bA0t · �1 � e�a�t

a�t �. (3)
obtain the probability density of the length of a single
microsatellite that has evolved for 25 million genera-

This result is derived in appendix b. Theorem 2 concerns tions with the parameters of this example. Note that
the variance of the process, not the population samples. 23% of the microsatellites are longer than 18 repeat
The relationship between this quantity and (��)2 is that units, while only 2 of 186 dinucleotide microsatellites
if each sample is of size one then 2 var(Lt) � (��)2. in the original 1-Mb sample of D. melanogaster DNA in
And when the samples are larger than size one and Kruglyak et al. (1998) were this long. The last two
the time to the most recent common ancestor of each examples show that the PCR model leads to significant
sample is much less than the time to the most recent reductions in predicted values of (��)2, but not enough
common ancestor of these ancestors, then 2 var(Lt) ≈ to account for the 13- and 30-fold underestimation ob-
(��)2. Note that if we let 	 � 2bA0, the initial per locus served.
slippage rate, then the first factor is simply 	t, the answer
for the SMM. We call the second term in parentheses
the correction factor, since it indicates how much the vari- A MODEL WITHOUT POINT MUTATIONS
ance has been reduced from the prediction of the SMM
due to the effect of point mutations. Using the series Our discussion of Theorem 2 suggests that when a�t is

small, as is the case for comparisons between humanexpansion e�x � 1 � x � x 2/2 � · · · we see that when
a�t is small, the correction factor is ≈1. In the other populations or between humans and chimpanzees, we

can ignore the effects of point mutations. If we set thedirection if a�t � 1 then the correction factor is 1 �
e�1 � 0.632 and a significant reduction has occurred. point mutation rate a � 0 in the PS/PM model and

add a superscript 0 to remind ourselves that we haveFrom this computation, we see that point mutations
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Figure 1.—PCR model
simulation. Probability den-
sity of the length in repeat
units of a single microsatel-
lite after 25,000,000 genera-
tions is shown. Initially the
microsatellite was a perfect
repeat with length 15, � �
5, a � 2 � 10�8, and per
repeat slippage rate b �
5.0 � 10�7. These are the
parameters we used to study
the D. melanogaster vs. D. sim-
ulans split.

done this, then the activity A0
t � Ri(Xi

t � �)� follows a moments. The SMM is symmetric so E(Xt � �)3 � 0,
but as (6) shows, the proportional slippage model hasvery simple dynamic, which we call the proportional

slippage/zero mutations (PS/0M) model. positive skewness. Farrall and Weeks (1998) per-
formed an analysis of 4558 AC dinucleotide repeat lociPS/0M model: If A0

t � k then it changes to k 
 1 at rate
bk. The process A0

t jumps from k to k � 1 at rate bk, and assayed in the CEPH pedigrees and found positive skew-
ness in the distribution of microsatellite allele lengths.from k to k � 1 at rate bk, and is thus identical to the

binary branching process Zt of probability theory, in which Rubinsztein et al. (1994) had earlier observed this skew-
ness and suggested that it was evidence for “a bias inZt is the number of particles at time t and each particle

splits into two or dies at rate b each (see, e.g., Athreya favor of gains” (see p. 1096 of Rubinsztein et al. 1999).
However, our results show such a skewed distributionand Ney 1972). The following is shown in appendix c:
can result from the PS/0M model that has no muta-
tional bias.Theorem 3: If we use E
 to denote the expected value for

Computing the fourth moment reveals another differ-the process starting from A0
0 � 
, then

ence between our proportional slippage model and
E
(A0

t � 
) � 0 (4) stepwise mutation. In the SMM the difference in micro-
satellite length, Xt � Yt, between two individuals withE
(A0

t � 
)2 � 2
bt (5)
a most recent common ancestor t generations ago is

E
(A0
t � 
)3 � 6
(bt)2 (6) the sum of independent random variables. Thus, if t is

large, (Xt � Yt)/√2	t has approximately a normal distri-E
(A0
t � 
)4 � 24
(bt)3 � 12
2(bt)2 � 2
bt. (7)

bution and the kurtosis
In words, proportional slippage is equally likely to in-
crease or decrease the average activity by one, so the K �

E(Xt � Yt)4

[E(Xt � Yt)2]2
≈ 3.average activity does not change in time. The second

equation, which can be derived by setting a � 0 in
In contrast, (7) and (5) show that when 2�bt is largeTheorem 2, says that even though the slippage rate varies
the kurtosis in the proportional slippage model isin time in the PS/0M model, the variance of at

0 is linear
in time, just as in the SMM, which has constant slippage

K �
3bt



� 3 �
1

4
bt
≈ 3�1 �

	t
2
2�, (8)rates.

Substantial differences between the PS/0M model
and the SMM appear when we look at third and higher where 	 � 2
b is the initial per locus slippage rate.
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If the kurtosis is large then the distribution of Xt � show that for the human-chimpanzee and the D. melano-
Yt will have a heavy tail and estimation of quantities such gaster-D. simulans splits the observed (��)2 and DSW statis-
as (��)2 will be difficult. To see when the kurtosis K tics are not within the expected 95% confidence inter-
will become large, we note that (8) implies this will vals. These observations suggest that there may be some
occur when 	t/2
2 is large. To see that this answer is additional mechanism(s) preventing microsatellites from
reasonable, note that the expected number of slippage getting too long.
events in t generations is 	t and recall that in n steps a
random walk typically moves about √n steps. Thus the
kurtosis becomes large when the “typical amount of DEATH OF MICROSATELLITES
change” in the microsatellite, (	t)1/2, exceeds its initial

Our final topic is to compute the probability of mi-activity 
 and hence there is significant probability of
crostellite death in the PS/0M model, i.e., the probabil-microsatellite death.
ity a microsatellite will reach 0 activity in t generations.In the African/non-African split if we assume t �
Since, as noted above, the PS/0M model is equivalent6000 generations, use an average activity 
 � 15, which
to the binary branching process of probability theory,corresponds to an average size of 20 repeat units, and
we can compute not only all of the moments of A0

t butset 	 � 5.6 � 10�4 then 	t/2
2 � 0.0075 so the kurtosis
also the exact distribution of A0

t . It follows from resultsis 3.02. For the human-chimpanzee split, t � 250,000,
on page 109 of Athreya and Ney (1972) that	 � 5.6 � 10�4, and 
 � 15, so 	t/2
2 � 0.311 and

K � 3.93. For D. melanogaster vs. D. simulans, t �
25,000,000, 	 � 10�5, and 
 � 10, so 	t/2
2 � 1.25 Theorem 4: Letting P
 denote the probability law for the
and K � 6.75. Finally, for cattle vs. sheep, we take t � PS/0M model starting from A0

0 � 
,
8,000,000 and 
 � 10, so if we use the estimate 	 �
6 � 10�5 from pig microsatellites, 	t/2
2 � 2.4 and

P
(A0
t � 0) � � bt

1 � bt�



(9)K � 10.2. One should note, however, that the values
for D. melanogaster vs. D. simulans and cattle vs. sheep

while for k � 1,are overestimates of the kurtosis since they are based
on the proportional slippage model, and our earlier
calculations showed that in these cases point mutations P
(A0

t � k) � �
k∧


j�1
�
j ��

k � 1
j � 1�� 1

1 � bt�
2j

� bt
1 � bt�


�k�2j

. (10)
had a significant effect on the variance.

To interpret the numerical values of the kurtosis, we
To apply Theorem 4 to our four examples, we begin

observe that if a random variable V has kurtosis K then
by recalling that b � 	/(2
), where 	 is the per locus
slippage rate and 
 is the activity, that is, the lengthvar (V 2)

(EV 2)2
�

EV 4 � (EV 2)2

(EV 2)2
� K � 1 minus � � 4. In the African vs. non-African human

comparison, t � 6000, 	 � 5.6 � 10�4, and 
 � 15 (i.e.,
and hence the standard deviation of V 2/EV 2 is an average length of 19 repeat units), so (9) shows that
√K � 1. This shows that if the kurtosis is 3.93 as it is the probability of having no activity after t � 4 � 103

in the human vs. chimpanzee comparison, then, instead generations is (0.11/1.11)15 � 10�15. In the human vs.
of the 3 for the normal distribution, the width of confi- chimpanzee comparison, t � 250,000, 	 � 5.6 � 10�4,

and 
 � 15, so the probability of having no activity afterdence intervals will be √(3.93 � 1)/(3 � 1) � 1.21
t generations is 0.054.times as large or, equivalently, 1.212 � 1.46 times as

Figure 3 shows the distribution of the lengths in thismuch data will be needed to obtain the same accuracy
case as computed from (10). Note the positive skewnessof estimation.
in the distribution as predicted by Theorem 3. NoteThe last conclusion shows that estimates of (��)2 un-
also that our numerical solution has 17% of the microsa-der the proportional slippage model are not very much
tellites having �30 repeat units while only 1 of 205more variable than under the SMM. However, the fluc-
dinucleotide microsatellites in the original 1-Mb sampletuations under the SMM in this case are huge. Figure
of human DNA in Kruglyak et al. (1998) has this2 gives a simulation of (��)2 under the parameters of
length. This again suggests that there may be somethe human-chimpanzee split. We used two populations
additional mechanism(s) preventing microsatellitesof size Ne � 10,000 individuals, a divergence time of
from getting too long.250,000 generations, and a mutation rate of 5.6 � 10�4

For the D. melanogaster vs. D. simulans and cattle vs.per locus per generation. It is interesting to compare
sheep comparisons, the PS/0M model overestimates thethe simulations where 51% of the (��)2 values are �120
number of microsatellites with no activity. But this is towith the data in Table 1 where the largest (��)2 among
be expected since our earlier results show that point25 loci is 112. Indeed, as (1) predicts, the average value
mutations have slowed down microsatellite mutationof (��)2 in the simulation is 2	� � 280.

Further, coalescent simulations of the PS/0M model processes over this amount of time.
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Figure 2.—SMM simula-
tion. Probability density of
(��)2 in repeat units for
samples of size 20 from two
populations with Ne �
10,000 that diverged � �
250,000 generations ago is
shown; per locus slippage
rate 	 � 5.6 � 10�4. These
are the parameters we used
to study the human-chim-
panzee split. In contrast, in
Table 1 only 2 of 25 esti-
mates of (��)2 are �100.

Figure 3.—Exact PS/0M
calculation. Probability den-
sity of the length in repeat
units of a single microsatel-
lite after 250,000 genera-
tions. Initially the microsa-
tellite has length 19, � � 4,
and per repeat slippage rate
b � 1.9 � 10�5. These are
the parameters we used to
study the human-chimpan-
zee split. Note the positive
skewness in the distribution.
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DISCUSSION many helpful comments. This work was partially supported by National
Institutes of Health (NIH) grant GM36431 to C.F.A., NIH grant

In summary, microsatellite mutation models that in- GM36431-14S1 to C.F.A. and R.T.D., and National Science Foundation
grant DMS9877066 to R.T.D.corporate point mutations and proportional slippage

events fit the data better than the SMM. However, these
two features are not enough to explain, for example,
the observation that the genetic distance statistics (��)2
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be 0 only after an even number of steps, and simple Taking expected value of each side,
path counting gives

Eg(W) ≈ g(EW) � g″(EW) ·
var(W)

2
. (A7)

P(S 2k � 0) � �2k
k � 1

22k
�

(2k)!
k!k!

·
1
22k

,
Our next goal is to show that if 2	� is large and � �

N we can drop the second term from (A7) to end upwhere (n
m) is the usual binomial coefficient, which gives

withthe number of ways of choosing m things out of a set
of n and k! � 1 · 2 · · · k.

E|SU�V| ≈ g(EU � EV) ≈ �2
�

· (2	� � 4	N)1/2,Let T be a random time, e.g., U or U � V. Writing
1(T �n) for the function that is 1 if T � n and 0 otherwise,
we have |ST | � R∞

n�1(|Sn| � |Sn�1|) · 1(T �n), so taking ex- which with (A5) gives (2). To do this we note that for
pected values and using the independent of T and Sn large x, g(x) ≈ Cx1/2 so g″(x) ≈ (C/4)x�3/2 and the ratio
with (A3) we have of the two terms is

E|ST| � �
∞

n�1

P(Sn�1 � 0) · P(T � n). (A4) g″(EW) · var(W)/2
g(EW)

≈ 1
8

·
var(W)
(EW)2

.

Changing variables n � 2k � 1 and using (A1) shows To see when this will be small we use formulas for the
that in the case T � U we have mean and variance of the Poisson and geometric distri-

butions to conclude
E|SU| � �

∞

k�0

(2k � 1)(2k � 3) · · · 3 · 1
2k k!

(1 � p)2k�1.
EW � 2	� � (1 � p)/p � 2	� � 4	N

var(W) � 2	� � (1 � p)/p2 � 2	� � 4	N(1 � 4	N)Differentiating the function f(x) � (1 � x)�1/2 we find
its kth derivative is since p � 1/(1 � 4	N). From this we see that the ratio

of interest is
f (k)(x) �

(2k � 1)(2k � 3) · · · 3 · 1
2k

· (1 � x)�(2k�1)/2.
1
8

·
2	� � 4	N � (4	N)2

(2	�)2 � (4	� � 4	N)(4	N)
. (A8)

Recalling the formula for the Taylor series of a function
f, If 2	� is large and � � N we can drop the 2	� � 4	N

from the numerator and then divide top and bottom
f(x) � f(0) � �

∞

k�1

f (k)(0) ·
xk

k!
, by 4	2 to see that the last expression is

�
1
8

·
(2N)2

(� � 2N)2
�

1
18

(A9)and comparing with the formula for E|SU| we have that

when � � N. In words the error we make by neglectingE|SU| �
1

(1 � (1 � p)2)1/2
�

4	N

√8	N � 1
, (A5)

the second term in (A7) is at most 5.5%, and as �/N
increases, the error will become smaller.

the last equality following from 1 � p � 4	N/(4	N � 1).
In the case T � U � V, P(U � V � 2k � 1) is given

by APPENDIX B

Writing Xt � (X 1
t , . . . Xn

t ) and e i for the vector thatP(V � 2k � 1) � �
2k

j�0

e�2	�(2	�)j

j!
· (1 � p)2k�1�j.

has one in the ith place and zero otherwise, it follows
from the definition of the PCR model and the Kolmo-(A6)
gorov differential equations for the associated Markov

Together with (A2), (A4), and (A5) this can be used to chain that
compute E|SU�V| numerically, but it does not seem possi-
ble to sum the series to get an exact solution. To begin d

dt
Ef(Xt) � E[A1 f(Xt) � A2 f(Xt)], (B1)

to derive an approximation for E|SU�V|, we note that if n is
large, Sn/√n ≈ �, where � has a normal distribution, so where the two parts of the right-hand side correspond
E|Sn| ≈ n1/2E|�| � (2n/�)1/2. If we let g(n) � E|Sn| then to proportional slippage and point mutation events:
E|SU�V| � Eg(U � V ). Writing W � U � V to simplify

A1 f(X) � b�
i
(X i � �)�[ f(X � e i) � 2 f(X) � f(X � e i)]formulas and expanding in Taylor series,

g(W) � g(EW) � g�(EW) · (W � EW)
A2 f(X) � a�

i
�

Xi�1

y�1

[ f(X 1, . . . , X i � y, y, . . . , X n) � f (X)].

� g″(EW) ·
(W � EW)2

2
� · · · .

If we let g1(Xt) � RiXi
t be the total length then A2g1(Xt) �
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0 since point mutations do not change the length and
var(Lt) � Eg2(Xt) � g2(X0) �

2bh(X0, �)
a�

(1 � e�a�t).A1g1(Xt) � 0 by computation so

(B4)Eg1(Xt) � g1(X0). (B2)

To prepare for the computation of the variance, let
APPENDIX Ch(Xt, j) � Ri(Xi

t � j)�, where j � �. Since proportional
slippage is a fair game and no slippage occurs for pieces From the definition of the PS/0M model and the
of length j, A1h � 0. To compute the other term, we Kolmogorov differential equations, it follows that
note that

d
dt

E� f(Zt) � EA f(Zt), (C1)
A2h(Xt, j) � a�

i
�

Xi
t�1

y�1

[(X i
t � y � j)� � (y � j)� � (X i

t � j)�]

where A f(x) � bx[ f(x � 1) � 2 f(x) � f(x � 1)]. If we
let f1(x) � x then A f1(k) � 0 so E�Zt is constant and

� a�
i
[�(X i

t � 1)(X i
t � j)� � �

(Xi
t�1�j)�

z�1

2z].

E�Zt � �. (C2)

Letting f2(k) � (k � �)2 we have A f2(k) � bk · 2 so usingTo evaluate the sum we use the identity Rk
z�1 2z � k(k �

(C2) and integrating1) to conclude

E�(Zt � �)2 � 2b �
t

0

E�Zs ds � 2b�t. (C3)
�

(Xi
t�1�j )�

z�1

2z � (Xi
t � 1 � j)�[(Xi

t � 1 � j)� � 1]
Letting f3(k) � (k � �)3 we have A f3(k) � bk · 6 (k �

� (Xi
t � 1 � j)(Xi

t � j)�. �) so

To check the second equality note that if Xi
t � j � 1 it E�(Zt � �)3 � 6b �

t

0

E�(Zs(Zs � �)) ds.
says 0 � 0, while for Xi

t � j � 1 the positive parts are
irrelevant. Combining our computations, To compute the right-hand side we note that E�(Zs(Zs �

�)) � E�(Zs � �)2 � �E�(Zs � �) � 2b�s by (C3) andA2h(Xt, j) � a�
i

� j(Xi
t � j)� � � aj h(X, j). (C2), so we have

E�(Zt � �)3 � 6b2�t 2. (C4)Using this with (B1) and solving the differential equa-
tion we have Letting f4(k) � (k � �)4 we have A f4(k) � bk ·

[12(k � �)2 � 2] so
Eh(Xt, j) � h(X0, j)e�ajt. (B3)

E�(Zt � �)4 � b �
t

0

E�[12Zs(Zs � �)2 � 2Zs]ds.
Turning now to g2(Xt) � (RiX i

t)2, we have A2g2(Xt) �
0 since point mutations do not change the total length.

To compute the right-hand side we note that E�(Zs(Zs �For the other term we note that if Lt � RiX i
t then (Lt �

�)2) � E�(Zs � �)3 � �E�(Zs � �)2 � 6b2�s2 � 2b�2s by1)2 � 2L2
t � (Lt � 1)2 � 2 so A1g2(Xt) � 2bh(Xt, �).

(C4) and (C3), so we haveUsing (B3) we have d/dt Eg2(Xt) � 2bh(X0, �)e�a�t. Inte-
grating gives E�(Zt � �)4 � 24b3�t3 � 12b2�2t2 � 2b�t. (C5)


