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ABSTRACT

Portions of the cloned mating-type (MT) loci (m¢" and mit™) of Chlamydomonas reinhardtii, defined as the
~1-Mb domains of linkage group VI that are under recombinational suppression, were subjected to North-
ern analysis to elucidate their coding capacity. The four central rearranged segments of the loci were
found to contain both housekeeping genes (expressed during several life-cycle stages) and mating-related
genes, while the sequences unique to m¢* or m¢~ carried genes expressed only in the gametic or zygotic phases
of the life cycle. One of these genes, Mid1, is a candidate participant in gametic cell fusion; two others,
Mtaland Ezy2, are candidate participants in the uniparental inheritance of chloroplast DNA. The identified
housekeeping genes include Pdk, encoding pyruvate dehydrogenase kinase, and GdcH, encoding glycine
decarboxylase complex subunit H. Unusual genetic configurations include three genes whose sequences
overlap, one gene that has inserted into the coding region of another, several genes that have been
inactivated by rearrangements in the region, and genes that have undergone tandem duplication. This
report extends our original conclusion that the M7 locus has incurred high levels of mutational change.

HE mating-type (MT) locus of the haploid green

alga Chlamydomonas reinhardtii, located 30 cM from
the centromere of linkage group (chromosome) VI, is in-
volved in generating mating-type plus or minus gametic
phenotypes in response to nitrogen starvation (Goob-
ENOUGH ¢t al. 1995). The mt" and m¢ versions of this lo-
cus segregate 2:2 at meiosis, but early genetic analysis
documented that numerous genetic markers that map
to the region fail to recombine with one another, sug-
gesting that recombinational suppression is responsible
for the observed segregation patterns (GiLLHAM 1969).
This inference was confirmed with the cloning of both
the mt™ and mi~ loci (FERRIS and GOODENOUGH 1994).
The locus (Figure 1) consists of an ~1-Mb region of re-
combinational suppression, in the center of which is an
~200-kb domain [the rearranged (R) domain] that has
undergone numerous translocations and inversions in-
volving four large segments of the domain (Figure 1).
These rearrangements presumably suppress meiotic
crossing over in the flanking telomere-proximal (T) and
centromere-proximal (C) domains of the locus.

Of the genetic markers under recombinational sup-
pression, three define genes that are selectively tran-
scribed in response to nitrogen starvation and are di-
rectly involved with generating either the plus or the
minus gametic phenotypes.
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1. The Fusl gene, originally marked by the ¢mpl muta-
tion, encodes an 810-amino-acid glycoprotein that is
necessary for gametic cell fusion. It is located in re-
gion ¢ of the mi" R domain (Figure 1) and has no
homolog in the m¢™ locus (FERRIS et al. 1996).

2. The Mid gene, originally marked by the imp11 muta-
tion (the mutant allele and mutant strain are hence-
forth designated mid-1), encodes a 147-amino-acid
regulatory protein, related to a family of nitrogen-
sensitive transcriptional regulators (SCHAUSER et al.
1999), that induces cells to differentiate as minus ga-
metes. It is located in region fof the m¢™ locus and
has no homolog in the m¢" locus (FERRIS and GoobD-
ENOUGH 1997).

3. The Sadl gene, marked by the impl0/impl2 muta-
tions (HWANG et al. 1981) and the aglmutation (MAT-
SUDA ¢t al. 1988), encodes a 3875-amino-acid protein
that serves as the flagellar sexual agglutinin of minus
gametes. It is located just centromere-proximal to
the m¢~ R domain (Figure 1), with an allele located
in the homologous position in the m¢" locus, an allele
thatis ordinarily not expressed because its expression
is Mid-dependent and plus cells lack the Mid gene.
Afull report on the characterization of the Sadl gene
is in preparation.

Although several genes involved with mating map to
the MT locus, including several new genes that are de-
scribed in this report, many other gamete-specific genes
are not linked to MT and are designated as “autosomal”
(GOODENOUGH et al. 1995; KURVARI et al. 1998). Thus, al-
though the mid-1 strain carries the m¢~ chromosome VI
and hence lacks an m¢* locus, it nonetheless differen-
tiates as a plus gamete and requires only a Fusl trans-
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gene to achieve mating competency (FERRIS and GOOD-
ENOUGH 1997), indicating that most genes necessary for
plus gametogenesis, including the agglutinin gene, are
autosomal. To ask why some mating-related genes reside
in the MT locus and others in autosomes under Mid
regulation is a way of phrasing the unanswered question
as to the “purpose” of the M7 locus.

The MTlocus is also involved in mediating uniparen-
tal transmission of organelle genomes during the zygotic
phase of the C. reinhardtii life cycle. All four meiotic prod-
ucts of zygote germination ordinarily inherit chloroplast
DNA (cpDNA) from the plus parent only and mitochon-
drial DNA from the minus parent only, the nontrans-
mitted organellar DNAs having been selectively degraded
during zygote maturation (ARMBRUST 1998; REMACLE
and MATAGNE 1998). The EZY1 locus comprises seven
to eight tandem iterations of a gene that is transcribed
immediately after zygote formation and encodes a 414-
amino-acid protein that associates with cpDNA and pre-
sumably plays some role in its selective transmission
patterns (ARMBRUST et al. 1993). The Ezyl gene cluster
is located centromere-proximal to the Sadl gene in both
the mt* and mi™ loci (Figure 1).

Mutant alleles in the M7 locus that fail to recombine
also mark several genes that are expressed in vegetative
(mitotic) cells and play no known specific role in game-
togenesis or zygote development. Five of these “house-
keeping” genes have been cloned and at least partially
characterized; all lie outside the R domain at positions
designated in Figure 1. The Nic7 (nicotinamiderequiring),
Ac29 (acetate-requiring), and Thil0 (thiamine-requiring)
gene sequences have been identified by their ability to
complement mutant alleles (FErRr1s 1995). The Ac29gene
has been shown to encode a 495-amino-acid protein
homologous to the Arabidopsis protein ALBINO3 (SUND-
BERG et al. 1997), which is involved in the biogenesis of
the chloroplast light-harvesting complex (NAVER et al.
2000), and the Thil0 gene encodes hydroxyethylthiazole
kinase (K. SHIMOGAWARA, personal communication), an
enzyme in the biosynthetic pathway of thiamine. The
Mat3 gene encodes a 1209-amino-acid homolog of the
retinoblastoma (Rb) protein and is involved in regula-
tion of the cell cycle (ARMBRUST et al. 1995; UMEN and
GOODENOUGH 2001b), and the I'al gene encodesa 1787-
amino-acid protein involved in flagellar morphogenesis
(FINST et al. 2000).

The finding that such housekeeping genes are inter-
mixed with life-cycle-specific genes suggests that the MT
locus arose in an “ordinary” chromosome, in much the
same way that the sex chromosomes of mammals were
once ordinary chromosomes and continue to encode
non-sex-related proteins (LAHN and PAGE 1999). How-
ever, all of the previously known housekeeping genes
mapped outside the rearranged R domain, leaving open
the possibility that the DNA within the R domain itself
might be either restricted to sex-related functions or
largely noncoding—Iike most of the mammalian Y chro-

mosomes. Northern analysis of the region, reported in
this article, documents that this is not the case: Genes
prove to be abundant within the R domain, and many
of them are expressed in vegetative cells. Therefore, the
R domain of chromosome VI has been subjected to nu-
merous local rearrangements while continuing to main-
tain (most of) its prior genetic activities.

We also report the characterization of several genes
that are found in one MT locus but not the other, ex-
panding our understanding of the coding capacity of
MT and providing additional evidence for high muta-
tional change in the region (FERRIS el al. 1997).

MATERIALS AND METHODS

Northern analysis: The C. reinhardtii strains used to prepare
RNA for Northern analysis were wild-type strains CG-620 (mt*)
and CC-621 (mt") all strains are available from the Chlamydo-
monas Genetics Center, Duke University (Durham, North Car-
olina). Cultures were maintained in continuous light on Tris-
acetate-phosphate (TAP) medium (Harris 1989) solidified
with 1.5% agar. Vegetative RNA was prepared from cells in
logarithmic growth in flasks of TAP medium. Gametes were
obtained by transferring cells maintained on plates for at least
7 days (MARTIN and GOODENOUGH 1975) to nitrogen-free
high salt minimal media (HARRIs 1989) for 1-2 hr. Zygotes
were produced by mating equal numbers of plus and minus
gametes and harvesting after 30 min or 3 hr. Preparation of
Northern blots was as described (FERRIS et al. 2001). Northern
blots were stripped and reused several times during the course
of these experiments. Most of the probes were prepared using
restriction fragments purified from the AEMBL3 genomic
phage clones that comprise the chromosome walk through
the MT loci (FErris and GOODENOUGH 1994), radiolabeled
with [a**P]dCTP (DuPont/New England Nuclear Research
Products) by random priming.

Isolation of cDNA clones: The ¢cDNA clones for pro(+),
pr6(—), Mtal, Mta2, and Ezy2 were identified by screening
plaque lifts of a cDNA expression library in Uni-ZAPXR (Stra-
tagene, La Jolla, CA) prepared from 1-hr zygotic poly(A)+
RNA (ARMBRUST et al. 1993) by hybridization with appropriate
radiolabeled genomic probes. Inserts from positive clones
were excised as Bluescript SK plasmids with R408 helper phage
according to the manufacturer’s instructions. The cDNA that
was eventually used as probe 6 was first cloned fortuitously as
a consequence of its cross-hybridization to a probe derived
from DNA flanking the Mid gene; subsequent analysis then
identified the location of the corresponding gene in the T
domain.

DNA sequencing and analysis: The strategy for DNA se-
quencing included subcloning, gene-specific primers, nested
deletions using the double strand nested deletion kit (Phar-
macia, Piscataway, NJ) and use of the GPS-1 genome priming
system (New England Biolabs, Beverly, MA). Some sequence
data were obtained by making single-stranded DNA according
to AUSUBEL et al. (1989), which was used for dideoxy sequenc-
ing with the sequenase kit (United States Biochemical, Cleve-
land). The bulk of the sequencing was performed with the
ABI PRISM dye terminator cycle sequencing ready reaction
kit using double-stranded plasmid DNA and subsequent analy-
sis on an ABI DNA sequencer. Sequence data were compiled
and analyzed using the Genetics Computer Group sequence
analysis software package for VAX/VMS computers (DEVE-
REUX et al. 1984). Sequences were further investigated using
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the NCBI BLAST program, the TMpred, and the COILS pro-
gram (Luras 1996).

The sequences described in this article have the following
GenBank accession numbers: Nic7 partial genomic, AY032929;
pr6(—) cDNA, AY032930; pro(+) cDNA, AY032931; Mtdl cDNA,
AF417574; Pr46 genomic, AF387366; Pdk genomic, AF387365;
Ezy2genomic (mit"), AF399653; W-Ezp2 genomic (mi~ ), AF399654;
autosomal a region, left border of the duplication, AF417573;
autosomal « region, right border of the duplication (Mta2
and Mta3 genes), AF309495; mi™ a region, left border of the
duplication, AF417572; mt* aregion, right border of the dupli-
cation (Mtal, ¥-Mta2, and W-Mta3 genes), AF417571.

RNase protection analysis: Total RNA was isolated essen-
tially as described by Kirk and Kirk (1985). Poly(A) + RNA was
isolated with the BioMag mRNA purification kit (Perseptive
Diagnostics). The generation and use of the Ezyl antisense
probe was described previously (ARMBRUST et al. 1993). The
Ezy2 probe was generated by subcloning into Bluescript IT SK
a 600-bp BamHI/ Xhol fragment from the coding region of the
Ezy2 cDNA. The resulting plasmid was linearized with Smal,
and T7 RNA polymerase was used to transcribe an antisense
probe of 197 nucleotides. The protected Ezy2 probe is 172 nu-
cleotides. The Ambion (Austin, TX) RPA II kit was used for
all RNase protection assays. Ten micrograms of total RNA was
used for each RNase protection assay.

Uniparental inheritance crosses: Genetic crosses were per-
formed using standard protocols (HArr1s 1989). The strains
used in the control cross were CC-118 (mtt sru-2-60) and CC-124
(wild-type mt™). A mid-1 mt~ (Fusl) cross to CC-421 (nic7 ac29a
mt spru-1-27-3), described previously (FErRris and Goob-
ENOUGH 1997), generated a progeny clone (B32) mid-1 mt~
(Fus1) spr-u-1-27-3 that was crossed to CC-1952 (wild-type mit™).
The following were added to the media as necessary: 4 g/
ml nicotinamide, 100 wg/ml spectinomycin, and 100 pg/ml
streptomycin.

RESULTS

Transcriptional patterns in the MT locus: methodol-
ogy: Northern blots containing poly(A)+ RNA from
vegetative cells of both mating types, gametes of both
mating types, and zygotes 30 min and 3 hr into develop-
ment were prepared, and these were screened with 128
probes from the MT locus. The data are presented on
the GENETICS website at http:/www.genetics.org/supple-
mental. The probes were chosen to give near total cover-
age of the R domain (~90% covered, with six gaps of
2-3 kb, and most <1 kb). The C and T domains were
covered less extensively (except near the R domain bor-
ders), primarily using probes known to give single-copy
bands on Southern blots (FErRrIS and GOODENOUGH
1994). The T domain had 35% coverage from probe 1
to the T/R border; the C domain had 75% coverage
from the R/C border to the swamp (Figure 1; ¢f. FERRIS
and GOODENOUGH 1994).

From these primary data we attempted to identify all
the bona fide genes within the R domains of the mt™ and
m¢~ loci, an analysis complicated by false negatives and
false positives.

False negatives (a gene failing to be identified by the
Northern analysis) could result for several reasons.

1. The message is of low abundance and the blots are
not sensitive enough. For example, probe 54, known

to contain part of the Mid gene, and probe 93, known
to contain part of the Mat3 gene, did not generate
Northern-blot signals under the conditions used.

2. Signals produced by cross-hybridizing repetitive se-
quences in the probe may obscure gene-specific sig-
nals. For example, one cannot discern the Nic7 mRNA
against the smeared hybridization signals produced
by probe 5 (Figure 2A).

3. The gene may not be expressed under the growth
conditions used or during the life cycle stages tested.

4. The gene may not have been represented in any of
our probes, although this is unlikely for the R do-
main. Given these considerations, the gene density
displayed in Figure 1 is very likely to be an underesti-
mate.

False positives result if the probe cross-hybridizes to
messages derived from elsewhere in the genome. This
could result from repetitive-sequence elements in the
probe that are present in unrelated messages, most
likely in the 3’ untranslated region (UTR), or a probe
that detects a transposon or a duplicated gene. In the
case of duplicates, the copies in the M7 locus might be
functional (although we have no documented examples
of this), or, like the genes in the a region of m¢* (see be-
low), they might be pseudogenes. In constructing Fig-
ure 1 and Table 1 we endeavored to eliminate false
positives, but this is necessarily subjective. In general,
multiple bands or smears were considered false posi-
tives, as were cases in which a DNA fragment known to
be presentin only the mi" or m¢~ locus generated signals
in RNA blots derived from both mating types.

Several regions where messages were identified by
Northern blots were analyzed in more detail by DNA
sequencing to confirm that the Northern analysis accu-
rately predicts genes. This was considered particularly im-
portant to verify the existence of vegetatively expressed
genes within the R domain and to identify new genes
involved in the mating process. The Chlamydomonas
expressed sequence tag (EST) data from the Kazusa
Institute (AsaMizu et al. 1999, 2000) and from the Chla-
mydomonas Genome Project (http://www.biology.duke.
edu/chlamy_genome) have been very useful for the first
of these purposes. Not surprisingly, however, since these
libraries were derived from vegetative cells, no ESTs
were identified for any of the gamete- or zygote-specific
genes reported here.

Transcriptional patterns in the mtlocus: observations:
Figure 1 shows the location of major transcriptional units
in the mtt and m¢ loci, with additional information on
the various transcripts provided in Table 1. Genes desig-
nated by boxes are expressed during the vegetative
phase of the life cycle; most of these were also expressed
in gametes and early zygotes (Table 1). These presum-
ably represent genes whose products function through-
out the life cycle, and they are henceforth referred to
as housekeeping genes. Genes designated by circles are
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Ficure 2.—Northern blots hybridized to selected MT locus
probes. (A-D) Poly(A)+ RNA was isolated from mi¢" vegetative
cells (veg"), mi vegetative cells (veg™), mt* gametes (gam™),
mt gametes (gam~ ), zygotes 30 min after mating (zyg 30'),
or zygotes 3 hr after mating (zyg 3 hr). The size of the RNA
is indicated on the right (in kilobases). (A) Blot hybridized
with probe 5 (Nic7 gene). (B) Blot hybridized with probe 6.
(C) Blot hybridized with probe 61 (Mtdl gene). (D) Blot
hybridized with probes derived from the Mtal and Mta2
c¢DNAs. (E) Blot hybridized with an Mtal cDNA probe. Total
RNA was isolated from veg® and gam®, from zygotes 2.5 hr
after mating (zyg 2.5 hr), and from gametes of an mt"/mt-
diploid (diploid gamete). (F) Poly(A)+ RNA from the desig-
nated stages hybridized with the 6.5-kb X&ol fragment from
the 16-kb repeat of the Ezy2 locus of mit* (Figure 7); the 3.9-
kb Ezy2 signal is visible only in the 1-hr zygote sample (the
minor band beneath it is assumed to be artifactual since it is
not always present; ¢f. Figure 9).

expressed only in gametes, with (+) transcripts found
onlyin plus gametes, (—) transcripts found only in minus
gametes, and (+/—) found in both; the expression of
these genes is presumably regulated directly or indi-
rectly by nitrogen starvation. Genes designated by trian-
gles are expressed only in early zygotes (whether their
expression continues into the late stages of zygote devel-
opment/germination has not been investigated); the
expression of these genes is presumably regulated di-
rectly or indirectly by gametic cell fusion (MiNAMI and
GoODENOUGH 1978; FErRRIS and GOODENOUGH 1987).

The following sections describe genes or M7 regions
that were subjected to in-depth analysis.

Nic7: Probe (Pr) 5is a 2.1-kb genomic fragment from
the center of the Nic7gene in the T domain, as defined by
rescue of the nic7 mutation using transformation (FERRIS
1995). Probe b5 hybridizes to several bands in Northern
blots (Figure 2A), precluding identification of the Nic7
transcript. The 2079-bp DNA sequence of this probe was
determined (GenBank no. AY032929). A segment of the
(GT), repeat (KANG and FAWLEY 1997) in the fragment
may be responsible for the cross-hybridization. (GT re-
peats are commonly encountered in the EST libraries.)

Database searches with this partial Nic7 sequence yielded
no matches to C. reinhardtii ESTs (which is not surprising
given that Nic7 is probably a low-abundance message,
and the sequence is not near the 5’ or 3’ ends). After
excluding six putative introns from the Chlamydomonas
sequence, a significant homology (63% identity) was
found to an Arabidopsis protein predicted from geno-
mic sequencing (GenBank no. BAB09392). The func-
tion of the Arabidopsis gene is unknown. However, both
sequences display a weak homology to prokaryotic quin-
olinate synthetase A genes (e.g,, 24% identity to the Escheri-
chia coli nadA sequence). Since quinolinate synthetase
participates in one pathway of NAD biosynthesis (MAGNI
et al. 1999), and since nic7 mutants require nicotinamide,
the Nic7 gene (and its Arabidopsis counterpart) may
code for this enzyme.

Pr6: The Pro gene, detected by a cDNA called probe
6, is not expressed in vegetative cells but is transcribed
at low levels in gametes, abundantly in 30-min zygotes,
and somewhat less abundantly in 3-hr zygotes (Figure 2B).
The gene is located in the T domain (Figure 1).

Two distinct classes of Pr6 cDNA clones, with slightly
different sequences, are present in 1-hr-zygote cDNA li-
braries, indicating that both the m¢" (CC-620 parent) and
mt (CC-621 parent) alleles are expressed. Restriction-
site polymorphisms allowed us to assign the two cDNA
types to their respective alleles (FERRIS and GOODENOUGH
1994), hereafter called pr6(+) and pr6(—). The pro(—)
c¢DNA encodes a 72l-amino-acid protein (GenBank
no. AY032930), whereas the pr6(+) cDNA (GenBank no.
AY032931) contains an extra 8 bp in its coding region,
generating a stop codon-producing frameshift that
would result in a truncated 455-amino-acid protein. Syn-
onymous and nonsynonymous codon differences also
differentiate the two alleles (Table 2).

A single recombinant between nic7and ac29has been
isolated (SMYTH et al. 1975), and this nic7 ac29a mi~ strain
(CC-350) and its derivatives (including CC-421) contain
the pro(+) allele in an m¢ strain (confirmed by PCR
amplification and sequencing). Zygotes produced in
crosses between CC-350 derivatives and mi* strains are
viable despite the fact that they carry two copies of the
Pro(+) frameshift allele and no copies of the Pr6(—)
allele, indicating that the Pr6 protein either is nonessen-
tial for zygote maturation (at least in the laboratory) or
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TABLE 2

Level of homology between gene pairs

Section Length (bp) Codons*
compared (first gene/second gene) Indels % change (S/N)
Probe 6 gene pro(—) vs. pro(+)

Coding’ 2166/2183 3 1.6 18/15¢
3" UTR 528/438 5.6 NA
Mia2 gene (autosomal gene vs. mt" pseudogene)

5" UTR 179/180 1 5.0 NA
Introns 646/656 5 3.4 NA
Coding 1032/1025 1 2.0 10/9
3" UTR 659/720 1 3.3 NA
Mia3 gene (autosomal gene vs. mt" pseudogene)

5" UTR 204/204 0 3.4 NA
Intron 360/330 4 4.7 NA
Coding 486,486 0 1.0 3/2
3" UTR 1114/1129 6 4.6 NA
Ezy2 gene (mt" gene vs. mt pseudogene)

5" UTR 341/322 3 3.1 NA
Introns 24841/1978 29 5.2 NA
Coding 2436/2439 14 3.8 15/66
3" UTR (part) 303/298 10 5.4 NA
YptC4 gene (137c vs. S1IC5’)

Intron 6 485,/480 2 3.3 NA
GplI gene (CC-621 vs. S1CH)

Introns 300/305 2 3.7 NA
Coding 488/488 0 1.6 4/4

“Number of codons that contain base pair changes, shown as a pair of numbers—the first is the number
of changed codons that are synonymous (S); the second is the number of nonsynonymous (N) codons.

"The coding portion is defined as the longer coding region of the pr6(—) allele.

©12 synonymous changes before the frameshift, 6 after; 6 nonsynonymous changes before the frameshift,

9 after.

“The internal duplication in the mt* gene was scored as a single indel within an intron.

*GenBank U13167 and U55893.
/Our unpublished data.

remains functional in its truncated form. Uniparental
inheritance of chloroplast markers occurs normally in
crosses using the Pr6(+ )-carrying strains (our unpub-
lished results).

The sequence of Pr6p is 40% identical, over 190 amino
acids, to E. coli Endopeptidase IV (P08395), the signal
peptide peptidase (ICHIHARA et al. 1986); a compar-
able level of similarity is found to an Arabidopsis EST
(GenBank no. AAF24059). The homology resides in the
C-terminal portion of the Pr6p protein thatis presumed
to be missing from the Pr6(+) frameshifted version.

Pyruvate dehydrogenase kinase: The results using probes
37-39 highlight the problems of false positives and nega-
tives. Probe 38 hybridizes to a 1.6- and a 1.9-kb message;
probe 39 hybridizes to a 3.2-and a 1.1-kb message; probe
37, which partly overlaps probe 38, gives a negative result.
The four signals all appear to be false positives; in fact,
the message for the protein encoded in this region is
not visualized.

We sequenced a 5813-bp region from segment 2 of

the mt” R domain (Figure 1) that covers the region
represented by these three probes plus a few hundred
flanking nucleotides. A BLAST search identified three
C. reinhardtii ESTs to this sequence—two from the
Chlamydomonas Genome Project mt" set (AW758420
and AW758419 are the 5 and 3’ ends, respectively,
of the same clone) and one from the Kazusa mi set
(AV643090)—which all correspond to the same mRNA.
We sequenced the AV643090 clone completely to iden-
tify intron borders and the 3’ end of the gene. This region
contains a 4974-bp gene (GenBank no. AF387365) pre-
dicted to produce a message of ~2.6 kb, which does
not correspond to any of the bands seen on Northerns.

The predicted protein product is homologous to both
pyruvate dehydrogenase kinase (Pdk) and the closely
related branched chain a-keto acid dehydrogenase ki-
nase (Bckdk), containing all the conserved motifs
(THELEN et al. 1998). Since Pdk has been characterized
in plant mitochondria whereas Bckdk has not yet been
identified in plants, we have opted to call the gene Pdk.



Chlamydomonas Mating-Type Locus 189

GdcH Prd6b
—a sl

FIGURE 3.—Genomic structure of the
Pr46/ GdcH region of segment 3. Open
boxes represent untranslated regions;
solid boxes represent coding sequences;
thin lines represent introns. Only the 3’
half of the GdcH gene is within the se-
quenced region. Arrows indicate direc-
tion of transcription. Key to the restric-
$ B tion sites used here and in Figures 5 and
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The Pdk gene resides near one end of segment 2 (Fig-
ure 1) such thatits 3" UTR extends beyond the sequence
discontinuity that marks the end of segment 2. This
means that the final 146 bp of the m¢” 3" UTR and the
final 125 bp of the mt" 3" UTR are unrelated.

Glycine decarboxylase complex subunit H, Pr46a, and
Pr46b: Probe 46, a 5.4-kb Sal fragment from segment 3
of the mt* R domain, hybridizes to a single 1.1-kb tran-
script seen only in vegetative cells; however, the sequence
of probe 46 matched ESTs representing three different
transcripts, two of 1.1 kb and one of 1.4 kb (Figure 3).
In mt* and m¢ genomic Southern blots, probe 46 hy-
bridized to a single band, indicating that these three
genes are present only in the M7 locus.

The sequence of the leftmost message (Figure 3) en-
codes the mitochondrial enzyme glycine decarboxylase
complex subunit H (GdcH), which participates in photo-
respiration (OLIVER 1994). The 3 half of the GdcH gene is
included in probe 46, and it is well represented in the
C. reinhardtii EST database. Several alternative poly(A)
addition sites are represented in the EST collections,
the most common (shown in Figure 3) located within
the first intron of the adjacent gene (Pr46a). That is,
there is partial overlap between the GdcH and Pr46a
transcripts (Figure 3).

Gene Pr46ais represented by four ESTs, all from the
Kazusa collection and hence derived from the mi¢™ allele
of the gene. One of these (AV390703) was sequenced
to determine the intron locations and the 3’ end. The
predicted Pr46a protein of 96 amino acids is highly
conserved (80% identity to an Arabidopsis protein, 75%
identity to a Caenorhabditis elegans protein) but of un-
known function. The sequence does not appear in the
yeast genome. A number of polymorphisms exist be-
tween the m¢™ and mit~ alleles, only one of which is in the
coding region, resulting in an Ile in mt" and a Thr in mt
at position 69, a poorly conserved region of the protein.

Gene Pr46b is represented by a single EST in the
Kazusa collection (AV626473); this was sequenced to
determine the positions of the two introns and the 3’
end. One EST from the Chlamydomonas Genome Proj-
ect collection confirmed the 3’ end, and a second in-
cludes additional 5’ sequence. The predicted Pr46b pro-
tein of 267 amino acids shows 30% identity to a human
cDNA (GenBank no. AK023156) and its mouse homo-
log (GenBank no. AK006639), of unidentified function.

HH gn 7 B, BamHI; E, EcoRl; H, HindIll; S,
Smal; Sa, Sall; Sc, Sad; X, Xhol; and Xb,
Xbal.

Again there are polymorphisms between the mt* geno-
mic sequence and the m¢ cDNA: The six changes in
the sequenced coding regions are all synonymous, sug-
gesting that the gene is under selection.

Remarkably, the Pr4#6aand Pr46b mRNAs also overlap,
in this case by 1005 bp: The 3" end of one message is
within the last intron of the other gene and vice versa
(Figure 3). The 3" UTR of each message overlaps part
of the 3" UTR and part of the coding region of the
other, but there is no overlap of their coding regions.

Region f: In a previous publication we documented
that the Mid gene, marked by the mid-1 mutation, resides
in region f, which is flanked by segments 3 and 4 and
unique to the m¢” R domain (FERRIS and GOODENOUGH
1997; Figure 1). Subsequently, Christoph Beck and col-
leagues generated a strain (CC-3712) with a deletion
that covers all of region fplus 8-9 kb of segment 3 and
10-12 kb of segment 4 (our unpublished data). The de-
letion mutant (mid-2) has the expected pseudo-plus ster-
ile phenotype of a mid mutant (GOODENOUGH et al. 1982)
but undergoes apparently normal vegetative growth un-
der laboratory conditions. Since no transcripts other
than Mid hybridize to the regions deleted in mid-2, these
regions, corresponding to probes 51-59 and 103, may
be free of other genes.

Gene MtdI: Region d is a single-copy sequence found
only within segment 4 of the m¢ locus (FErRrIs and Goop-
ENOUGH 1994; Figure 1). Probe 61, a restriction frag-
ment from region d, hybridizes to a 2.2-kb mRNA, found
in minus but not plus gametes and barely visible in the
30-min zygote sample (Figure 2C). The cognate gene
for this message is called Mid1. Several Mtdl cDNA clones
were isolated, one of which was sequenced. The 2274-
bp message codes for the 625-amino-acid protein shown
in Figure 4. No homologs of this protein are in current
databases.

Whatever function the Mtdl protein provides to mt”
gametes, it cannot be essential in the laboratory, since
mt" gametes transformed with the Mid gene can mate as
minus and produce meiotic progeny with a m¢™ partner
even though the MidI gene is absent from both parents
(Ferris and GOODENOUGH 1997). Fusion between the ga-
metes in such crosses is very slow, however, which sug-
gests a role for Mtdl in efficient cell fusion, perhaps as
a component of the membrane overlying the m¢” mating
structure (WEIss et al. 1977; GOODENOUGH et al. 1982).
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1 MVAATPVQFVLPPLPEAPTAARARIDGLSLADSGGGAGVRTVRLREALYG
51 AGPYESADASMAELAAQOTASLDRDKARSALAAVWOATVLGRPNREANOVA
101 TAAAGGVLLLVDVAVORLAGVRLEGGARSCSREDEEEAVMALLVLENLSC
151 NVSLHRDMVLGAPGPHLLOMLVALAKDNTAAAAVRVNAAKVLVNLIFSQI
201 ELAAAATEAGALPAAVSLLOAGQOKQALAETDAEVALGLHRQGAWLLSHLT
251 AGQGCQARELLAAQPOALARIKDLLTTSRDTATLIRCCEVVCNLARGDVG
301 PHAELIRAGLVOVLLKLVEVETEAPAPTGAARSEGSSVDLLLPALTALAA
351 TAAGGAACARGLLAHAPLLRTLTGALEWSNLISRDHDLSRVMLAAHSLVY
401 VLGRE GVRAGVVVDAGMGATPAAATEDAQOVLOESGYVSFA
451 AAMAALGLQOPRYTAAILGTELESGPHSAVASAAYQVNTELLEPMMRHDNA
501 RMVVNTCARLYQIAVCLRDSPECRSVLSNTSLSLALSDLLRSQHSSVLOA
551 ALCLTDALAALPEWPQLAANGVLDRLCDLLHD&SAQPQEHKAGTADTAG
601 DPLVVLLAERALVTMFLTRGQHQAE

Ficure 4.—Predicted sequence of the Mtdl protein. Pre-
dicted transmembrane domains are in shaded boxes; canoni-
cal N-glycosylation sites are underlined.

The predicted Mtd1 protein (Figure 4) has five NXT/S
N-glycosylation consensus motifs and three predicted
transmembrane segments, which, if threaded sequen-
tially, would place the NXTs in an exterior orientation.

Genes Mital, Mta2, Mia3, W-Mta2, and W-Mia3: Re-
gion awas originally defined (FERrRIS and GOODENOUGH
1994) as a 20-kb sequence between segments 1 and 3
in the m¢" R domain that is not present in the mt” R do-
main. However, a homologous sequence is present in
an autosome, meaning that plus cells carry two copies
of the sequence and minus cells carry one. The extent of
the duplicated sequence has been defined by comparing
restriction maps, cross-hybridizing probes, and sequenc-
ing selected sections (Figure 5). Sequences that join the
duplicated mt* region to segments 1 and 3 (Figure 5)
are absent from both the m¢ locus and from the auto-
somal domain.

Eleven probes (111-121 in Figure 5) were used in
the Northern analysis. Of those flanking the duplicated
a region, probes 111 and 112 detect the same 6.5-kb
RNA, probe 119 detects a 3.0-kb RNA, and probe 120
detects a 0.9-kb RNA. However, since these signals are
present in m¢ lanes as well, we interpret them to be
false positives.

Probe 118, which lies within the duplicated « region,
detects a 1.8-kb message at all life-cycle stages analyzed.
The entire probe has been sequenced, and guided by
EST matches we found that this message derives from
a gene we call Mia3. The gene (GenBank no. AF309495)
has one intron and encodes a predicted gene product
of 166 amino acids, with a molecular weight of 18.5 kD,
an isoelectric point (p/) of 11.3, and no homologs in
the database. Since the Mta3 sequence lies within the
duplicated region, the Mta3 ESTs from the vegetative
plus library could have originated either from the auto-
somal copy or from the copy in the m¢* locus. However,
the three ESTs analyzed all contain sequence polymor-
phisms specific to the autosomal copy, suggesting that
the mt* copy may not be transcribed. This inference is
supported by the finding that the m¢™ copy carries a mu-
tation that deletes the intron 5’ splice site so that an
alternative splice junction would have to be used for the
mt" Mta3 gene to be functional. Our working assumption,

therefore, is that the m¢™ copy of Mta3 is a pseudogene,
W-Mta3, and that the expressed Mia3 gene is autosomal.

Probe 117, which also lies within the duplicated « re-
gion, detects two messages—one 2.2 kb and one 0.8 kb—
both of which are absent from vegetative cells, present
in gametes and 30-min zygotes, and at reduced levels in
3-hr zygotes (Figure 2D). The 2.2-kb species is present
in gametes of both mating types, whereas the 0.8-kb spe-
cies is present in plus gametes only (Figure 2D). cDNA
clones that correspond to each have been isolated.

The smaller 0.8-kb message derives from a gene we
call Mial, which is present in the mi" copy of the a re-
gion but absent from the autosomal copy. The Mtal
gene is expressed in mi*/mi diploid gametes (Figure
2E), indicating that its expression is not repressed by the
Mid protein (diploids differentiate as minus gametes;
EBErRsoLD 1967). The mt*-unique gene Fus! is also ex-
pressed in diploid gametes (FERRIS ¢f al. 1996), suggest-
ing that gamete-specific genes unique to the mt* locus
have lost, or never acquired, Mid repressibility.

The Mtal gene encodes a predicted 126-amino-acid
protein, Mtal (Figure 6), of 14.6 kD, pI7. Its C terminus
is predicted to adopt a coiled-coil motif, generating
BLAST matches to proteins such as lamin B. Amino
acids 48-102, the main components of the coiled-coil
domain, comprise five imperfect repeats of an 11-amino-
acid sequence (Figure 6). A strikingly similar 11-amino-
acid repeat domain is found in the ROPE protein of
Plasmodium chabaudi (WERNER et al. 1998), where the
motif is proposed to form a leucine histidine-zipper that
interacts with other proteins.

The larger message detected by probe 117 derives from
a gene that is expressed from the autosomal a region
in gametes of both mating types but not vegetative cells.
As reported elsewhere (FERrris e al. 2001), this gene en-
codes a 386-amino-acid hydroxyproline-rich glycopro-
tein of unknown function. In our previous publication
(FERRIS et al. 2001) we called the gene a2 and the pro-
tein A2; using the nomenclature adopted for the present
article, we call the gene Mta2 and the protein Mta2.

When the autosomal and mi* genomic sequences are
compared, it becomes clear that the Mtal coding region
has been inserted into the Mta2 gene in the mt™ locus
(Figure 5): The promoter region, the 5" UTR (and its
intron), and the first nine codons of Mtal correspond
to the Mta2 sequences in the autosome, after which the
two sequences diverge completely, with the rest of the
Mtal sequence being totally unrelated to the autosomal
Mta2 sequence. Downstream of the 3’ end of the Mtal
gene, Mta2 sequences pick up again: Although most of
the second Mta2 exon and a portion of its second intron
are missing, the remainder of the gene is present. Since
these Mta2 sequences are not included in the Mtal
transcript, this means that transcriptional termination
signals downstream of the Mtal gene prevent expression
of the adjacent Mta2sequences. We therefore designate
this region as W-Mta2.
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1 MRTSLWGHARPHAPPHTHPVVGYSQFPRFFPSROFSMGCIINQLDAD

48 LKATKLVHEQE
VRELKLVYEEE
ARELRRVHEEA
VGELNRVHAEV
VGELKRVHAEE

103 VCMLKEEVAELQRELESGTRGLRR

F1Gure 6.—Predicted sequence of the Mtal protein, with
the five 11-amino-acid long repeats aligned. The H and L
residues conserved in the homologous protein from Plasmo-
dium (WERNER e/ al. 1998) are shown in boldface type.

Table 2 shows the level of homology between Mta2
and W-Mta2 and between Mta3 and W-Mia3. The density
of codon and noncodon differences is comparable in
the two gene pairs, consistent with the possibility that
the two pseudogenes were created at a similar time
during C. reinhardtii evolution.

Insertions in the a region: As detailed in the pDISCUS-
SION, the configuration of the a sequences in the m¢*
locus is most readily explained by proposing that the
Mtal gene transposed into the region, thereby inactivat-
ing the resident Mta2 gene and creating V-Mta2. The
presence of three insertions between the W-Mia2 and
W-Mta3 sequences (Figure 5), which may have partici-
pated in Mta3 inactivation, offers additional evidence
of transpositional activity in the region.

The first insertion is a 1278-bp sequence related to
the TOC2 element described by Day (1995). The inser-
tion has a perfect 14-bp inverted repeat at the two ends
that is identical to one of the 14-bp TOC2 inverted
repeats. The 60 bp at the left end of the insertion is an
83% match to one end of TOC2, and the 26 bp at the
right end is a 92% match to the other end of TOC2
and, like TOC2, the insertion has created a 7-bp target-
site duplication. However, the bulk of the insertion oth-
erwise bears little resemblance to TOC2 or to any other
sequence in the database.

The second insertion is a 249-bp sequence that resem-
bles the 12-kb Gulliver transposon (FErris 1989): It has
perfect 15-bp inverted repeats at the two ends that are
a 14/15 match for the Gulliver right-end inverted repeat
and creates an 8-bp target-site duplication like Gulliver.
However, the sequence between the inverted repeats
bears no resemblance to the limited sequences available
for full-length Gulliver elements (FErRRrIS 1989).

The third insertion is a 361-bp sequence with a direct
repeat of 34 bp at each end (1-bp mismatch). There is no
unambiguous target-site duplication and no homology
to previously characterized Chlamydomonas transposons.

The Ezy2 gene cluster: An obvious structural differ-
ence between the mt™ and m¢ locus is a 16-kb DNA se-
quence tandemly repeated six to eight times in segment
3 of the m¢* R domain (Figure 1). This sequence is found
in the mf locus as a single copy, split in two, a portion
resident at the end of segment 3 and the remainder resi-
dent in the C domain (FErris and GOODENOUGH 1994).

To determine whether gene(s) are located within the

16-kb element, an mt" genomic clone of the repeat
unit was used to probe Northern blots. No signals were
detected using vegetative or gametic samples, whereas
a single 3.9-kb mRNA was detected in the 1-hr zygote
sample (Figure 2F). A ¢cDNA library generated from
1-hr zygotes was also screened with the probe, and one
full-length ¢cDNA was recovered and sequenced. An
open reading frame of 3078 bp defines the unit gene,
hereafter called Ezy2 (Farly zygote 2; Figure 7). A geno-
mic copy was also sequenced, which showed polymor-
phisms in its 3" UTR sequence to the full-length cDNA.
Additional partial cDNAs were also characterized, some
displaying polymorphisms to the full-length clone, sug-
gesting that several, and perhaps all, of the £zy2 repeats
are transcribed.

The predicted Ezy2 polypeptide is shown in Figure 8.
It displays a putative 42-amino-acid chloroplast transit
peptide (Figure 8, boxed): An alanine follows the initia-
tor methionine and the N-terminal region displays a
high content of valine, alanine, and serine, albeit there
are fewer arginines than expected for a transit peptide
(Vox HENE et al. 1989). The VXA predicted cleavage
site (FRANZEN et al.1990) follows position 42, generating
amature polypeptide of 983 amino acids. The predicted
size of Ezy2, minus the transit peptide, is 104 kD, and
the predicted p/is 9.9, meaning that it might interact
with DNA or with an acidic protein such as Ezyl (Arm-
BRUST el al. 1993). However, no obvious DNA-binding or
protein-binding motifs are present within the sequence,
and no informative matches have been identified in the
database. An intriguing feature of the sequence is that
it displays a perfect internal direct repeat of 214 amino
acids (Figure 8, boldface type followed by italics).

Figure 9A shows the pattern of Ezy2 expression during
zygote development as monitored by RNase protection
assays. The message appears almost immediately after
zygote formation, peaks at 30 min, is greatly reduced
by 2 hr, and is undetectable by 4 hr into zygote develop-
ment. By comparison, Ezyl expression peaks later (Fig-
ure 9A), as does the expression of most other zygote-
specific genes (FERRIS and GOODENOUGH 1987; UcHIDA
et al. 1993; KURIYAMA el al. 1999; Suzuki et al. 2000).

To determine whether the bisected copy of Ezy2 in
the m¢ locus is expressed, a mating was performed be-
tween a normal minus strain and a mid-1 m¢~ strain trans-
formed with the FusI gene [mid-1 m¢ (Fusl)]. The mid-1
mutant, lacking a functional Mid gene, differentiates as
plus and, when transformed with Fusl, is able to mate
with minus gametes and form apparently normal zygotes
(FERRTIS et al. 1996) that carry two copies of the bisected
Ezy2 gene in their mt~ chromosomes but no copies of
the fulllength Ezy2 sequences because they lack m¢* chro-
mosomes. When these zygotes were subjected to RNase
protection assays, no Ezy2 expression was detected (Fig-
ure 9B), indicating that the bisected sequence is a non-
functional gene that we henceforth designate W-£zy2.
As a control, RNase protection was also performed using
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the Ezyl sequence, a gene tandemly repeated in both
the mi" and mit loci (Figure 1 and ARMBRUST et al. 1993),
and expression was detected (Figure 9B), demonstra-
ting that transcription of m#linked genes is not generally
impaired in these unusual zygotes.

The mt* Ezy2 gene is ~6 kb, with a contiguous “spacer”
of ~10 kb, meaning that the repeats in mit segment 3
span ~~100-140 kb. The gene has one intron in the 5’
UTR and seven introns in the coding region (Figure 7).
The 214-amino-acid internal repeat is encoded by exons
3 and 4 (Figure 7). The first internal repeat is 829 bp
and the second is 842 bp, the length differences created
by three insertions/ deletions (indels) in the intervening

|MAVACAVAVR PLVQVAVASA VSTAAPASSK PAVKLAASAV SAVALTTVSV
SAGLLATTAV EDPRFHAADC QSRSADASAS CEDLQPSTST CTSAVRDANR
PTRRVRRSGS KAQRRGSTTL TASVPSMAAA VVLPPKIALR RRHRLRLRAG
HSATAAATDK TPREQPDKPA ALPEDLLPAD ATSTSSTGKI SSAAVCCGLL
AHCSAAQLHA ILCGLVQAVA SSSVKGNNRK LLLGSKLRKL LEGVGVAPAN
GKAYTAADVA ALSGPKLERL RATLKSQPGL LLWFLLFTAP AKLQALQAAL
LPGGAGDRSF EEWRAAIDAV AGSGHEQLAA AQEVRGRQSA CVEGSTAGNT
ATTATITTTN NNPASHGGVY TALTGTEVTG KKPAALPEDL LPADATSTSS
TGKISSAAVC CGLLAHCSAA QLHAILCGLV QAVASSSVKG NNRKLLLGSK
LRKLLEGVGV APANGKAYTA ADVAALSGPK LERLRATLKS QPGLLLWFLL
FTAPAKLQAL QAALLPGGAG DRSFEEWRAA IDAVAGSGHE QLAAAQEVRG
RQSACVEGST AGNTATTATI TTTNNNPASH GGVYTALTGT EVTGKAAANK
DLSRTRTTSH RNRCVSESGS TRNKSRSSSS RSSSTHSVEY AEPKAGCSQP
AATVPGCVPE IISAAIPPLA PLALHIRRAI VKELLEARPP GWNTFLYSWL
QAAGLSEFLP ANGTCRMYMA DRKQLVLRVG AMREEQVDAF LTCMCKAHGH
STWLARYLHM LGPEVSQLLS QGRYSDELLA ALRAAGQKTL ADAVMEHFWG
RDPDPEDSEA GEMDVKPWAE RLGLLRFDML AEQLRLPPNA DGSVEKNFSNG
LYFKVDPLEV WSKYTDGEPS AGALSGMRAT DKEARDKQVK QLRGVPLLYL
WRIGGRVVYV GMSGGWVKGR RIARYLAEGP GFSESSKMLP WLTAIDEGKE
TELRVITLEG LKALEGMSEG MSEEEVQKKV QKKVKELEKH FLCHVDCPCN
KVNNGSYRVE TPRQASWTNS RRSTR

FIGure 8.—Predicted sequence of the Ezy2 protein. The
putative chloroplast transit peptide is boxed. The first internal
214-amino-acid repeat is in boldface type, and the second is
in italics.

Xhol fragments used as probes are in-
dicated by the double-headed arrows.
Indicated at the top are the portion
of the 16-kb repeat that resides in
segment 3 of m¢” and the portion that
resides in the C domain of mt (¢f.
Figures 1 and 10). (Bottom) Compar-
ison of the FEzy2 and W-Ezy2 gene
structures. The direction of transcrip-
tion is indicated; a pair of double-
headed arrows shows the location
and extent of the exon-intron dupli-
cation. The structure shown for the
W-Ezy2 gene is hypothetical in the
sense that it is no longer transcrip-
tionally active.
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intron. The introns are otherwise identical, and one
synonymous codon difference is found between the du-
plicated exons. Restriction analysis indicates that the
internal repeat is present in all the mt* Ezy2 copies.

The genomic sequence of W-Ezy2 was also deter-
mined. Whereas the restriction maps of the mt" versions
of Ezy2 are very similar, the restriction maps of Fzy2 and
W-Ezy2 share few common sites (FErRriS and Goob-
ENOUGH 1994). However, the overall sequence homol-
ogy between them is sufficiently high, and the intron/
exon structure sufficiently well preserved, to allow an
unambiguous alignment (Figure 7). In the W-Ezy2 se-
quence, the spacer domain has been truncated at a
downstream position, the missing portion now being
located in the C domain (Figure 7). The most obvious
difference between the coding regions of Ezy2 and
W-Lzy2is that W-Ezy2lacks exon 4 and hence the internal
direct repeat (Figure 7). In addition, a frameshift at the
5" end of W-Ezy2 shifts the location of the first candidate
initiator methionine to a more downstream position
(Figure 7), and numerous nucleotide differences and
indels have accumulated throughout the two versions
of the gene (Table 2).

Zygote development in the absence of a mt* locus:
As noted earlier, because the mid-1 mi~ mutant lacks a
functional Mid gene, it expresses plus gametic traits;
moreover, if it has been transformed with the FusI gene
from the mi¢" locus, it is able to fuse with m¢~ gametes,
generating zygotes that have two copies of the m¢ ver-
sion of chromosome VI. These zygotes are apparently
able to mature and germinate normally, indicating that
the program for zygote development does not require
genes such as Mtal or Ezy2 that are exclusively encoded
in the mt* locus.
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F1GURE 9.—RNase protection analysis of Ezy2 gene expres-
sion. (A) Total RNA was extracted from gametes and from
zygotes 5, 10, 30, 60, 120, or 240 min after zygote formation
and was hybridized with Ezyl or Ezy2 antisense RNA probes.
The Ezyl probe is 176 nucleotides (nt), and the protected
fragmentis 118 nt. The Ezy2 probe is 197 nt and the protected
fragment is 172 nt. (B) RNase protection analysis of Ezyl and
Ezy2 message levels in either wild-type zygotes or zygotes re-
sulting from a cross between m¢  and mid-1 (Fusl) gametes.
Total RNA was isolated from wild-type mt*/mit” zygotes 1 hr
after the gametes were mixed or from the m¢ mid-1 (Fusl)
zygotes at the indicated intervals. The lower expression of the
Ezyl message in the mutant zygotes is presumably due to the
fact that cell fusion is not efficient in these matings.

We went on to ask whether the uniparental transmis-
sion of plus cpDNA is affected in these zygotes. Table 3
compares the transmission patterns of chloroplast mark-
ers in control crosses and crosses in which a mid-1 mt
(Fusl) strain served as the plus parent. Inheritance of
chloroplast traits is seen to be biparental in the crosses
involving the strain lacking an m¢* chromosome.

DISCUSSION

Coding capacity of the MT locus: The rearranged R
domain of the C. reinhardtii MTlocus as well as the flank-
ing T and C domain sequences that are under recombi-
national suppression are shown to contain genes that
are expressed throughout the life cycle of the organism
as well as genes expressed exclusively during the gametic
or the zygotic phases of the life cycle. Although a compa-
rable transcription map has not yet been generated for
other regions of the C. reinhardtii genome, this distribu-
tion of genes is what one would expect if an ordinary
chromosome had undergone large-scale rearrangements

and had also gained a few gene sequences in one homo-
log but not the other. Large-scale rearrangements are
found in the mouse T'locus, which includes genes affect-
ing male fertility (SILVER 1985; LyoN et al. 2000), and
in the self-incompatibility loci of Brassica plants (Cas-
SELMAN et al. 2000; KusaBa et al. 2001), and genes-
without-homologs characterize mating-type loci in the
fungi (KRONSTAD and STABEN 1997; BADRANE and MAY
1999) and XY chromosome pairs in mammals (LAHN
and PAGE 1999). Unusual architecture therefore ap-
pears to be a common feature of sex-related chromo-
somal domains.

A particular goal of this study was to ascertain whether
the four large segments of rearranged DNA in the R
domain contain active genes or are instead noncoding
structural elements, as is the case, for example, for most
of the mammalian Y chromosome (LAHN and PAGE
1997). Numerous active genes were in fact identified
throughout the R domain (Figure 1 and Table 1). One
of the genes (Pdk) encodes pyruvate dehydrogenase
kinase, an enzyme that plays a key role in controlling
pyruvate dehydrogenase activity and hence the TCA
cycle and cellular respiration (Zou et al. 1999). A second
(GdcH) encodes glycine decarboxylase complex subunit
H, an enzyme of the photorespiration pathway (OLIVER
1994; SriNivasaN and OLIVER 1995). Two other se-
quenced genes (Prd46a and Pr46b), while of unknown
function, have well-conserved homologs in several multi-
cellular eukaryotes. Therefore, the R domain of chro-
mosome VI appears to have maintained many, and per-
haps all, of its prior genetic activities while having been
subjected to numerous local rearrangements and inser-
tion/deletion events.

It is widely assumed that one of the functions of mei-
otic recombination is to promote genomic integrity, and
it has been demonstrated that chromosomes prevented
from engaging in meiotic recombination are subject to
deterioration, a model for the ontogeny of XY differenti-
ation (CHARLESWORTH 1991; Rice 1994). One would
therefore not expect important enzymes such as quinoli-
nate synthetase, glycine decarboxylase, hydroxyethylthi-
azole kinase, and pyruvate dehydrogenase kinase, and
important transcriptional regulators such as Rb, to be en-
coded in genomic regions that are under heavy recombi-
national suppression. Presumably any costs incurred by
this suppression are offset by the advantage it confers, but
the nature of the advantage has yet to be determined.

MT-unique sequences: We also examined closely six
regions of the MT locus that are found in one chromo-
some but not the other; these are hereafter referred to
as MT-unique sequences. We were unable to detect any
genes in two of these—region bin mi" and region ¢in
mt (see data at http:/www.genetics.org/supplemental)—
albeit it is of interest that region b is duplicated, in
inverted orientation, at a site 1 ¢cM telomere-proximal
to the mt" locus (FErRRIS and GOODENOUGH 1994), yet
another example of autosome /M7 duplication. The re-
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TABLE 3

Uniparental inheritance of chloroplast markers

Individual progeny

Zygotes®

plus parent minus parent UP+ UP—

UP— (%) UP+ BP UP-—

Exceptional (%)

Control cross (mt™ X mi™)

CC-118 sr* CC-124 87 sr' 0 sr® 0 22 0 0 0
mid-1 mt~ (Fusl) X mit" crosses

mid-1 (Fusl) CC-421 53 spr' 42 spr' 44 9 5 7 57

B32 CC-1952 40 spr* 74 spr® 65 4 15 13 88

Individual progeny were scored as UP+ if they have the drugresistance phenotype of the plus parent or
UP— if they have that of the minus parent (of if they were among the few progeny that were clearly a mixture
of sensitive and resistant cells). Zygotes were scored as UP+ if all the individual progeny from that zygote were
UP+, as UP— if all were UP—, and biparental (BP) if there were progeny of both types. Zygotes that are BP

or UP— are considered exceptional.

“Only zygotes with three or four surviving progeny are included.
"Includes five progeny containing both spr' and spr* cells.

maining four M7-unique sequences appear to contain
one active gene apiece. Each is restricted in expression
to the gametic phase of the life cycle; two are plusspecific
and two are minus specific.

1. Region a in mt™ contains the gene Mial that is ex-
pressed in plus gametes only. The Mtal protein is
predicted to contain a leucine-histidine zipper and
is of unknown function.

2. Region ¢ in m¢" contains the Fusl gene, encoding
the Fusl protein, that is expressed in plus gametes
only and is necessary for plusmediated gametic cell
fusion (FERRIS et al. 1996).

3. Region d in m¢ contains the Mtdl gene that is ex-
pressed in minus gametes only. The predicted Mtdl
gene product is a putative triple-span membrane pro-
tein with putative extracellular N-glycosylation sites.
When mt" gametes are transformed with the Mid gene,
which causes them to differentiate as minus, their
flagellar agglutination is strong but their cell fusion
is very slow and erratic. Since such gametes lack the
Mtd1 gene, there is a pleasing symmetry to the possi-
bility that regions ¢ and d might contain genes Fus]
and Mtdl that code for plus and minus cell-fusion
proteins, respectively. The Mtdl sequence shows no
homology to known membrane-fusion motifs, so if
it proves to participate in membrane fusion it may
do so by a novel mechanism.

4. Region fin mt contains the Mid gene that is ex-
pressed in minus gametes only. The Mid protein is
necessary for minus gametic differentiation (FERRIS
and GOopENOUGH 1997). Whereas there would be
a pleasing symmetry in the postulate that the Mtal
protein is necessary for plus gametic differentiation,
this is ruled out by the ability of mid-I and mid-2
mutants to differentiate as plus gametes in the ab-
sence of an Mtal gene.

In addition to these four genes, the Ezy2 gene is M1~

unique as well, being expressed from the mi* locus only.
It differs from the four genes above in three respects:
It is present in multiple tandem copies; its expression
is initiated in the zygote rather than in the gamete; and
it is not strictly unique to the m¢" locus in that a nonex-
pressed Ezy2 pseudogene is located in the m¢ locus.
Codon bias: The first two genes to be sequenced from
the C. reinhardtii MTlocus were Fusl (FERRIS et al. 1996)
and Mid (FErRris and GoopeENOUGH 1997), and both
had the surprising property of lacking the codon bias
found in all other C. reinhardtii genes, generating the sug-
gestion that bias might be relaxed because these genes
both reside in the R domain and/or because both lack
homologs. Table 1 documents that neither suggestion
is generally applicable: The R-domain genes identified
in this study all show moderate to strong codon bias (B
value) and a high percentage of GC, including Mtal
and Mtd1, which have no homologs, and Ezy2, which no
longer has a functional homolog. Therefore, the absence
of bias in Fusl and Mid remains unexplained, although
it may indicate that they have been without homologs
longer than the other genes (KLiMAN and Hey 1993).
Chloroplast DNA inheritance: During the first 2 hr
of zygote maturation in C. reinhardtii, cpDNA derived
from the mt” parent is normally degraded by nuclease di-
gestion whereas cpDNA from the m¢" parent is preserved
and later selectively replicated (UMEN and GOODENOUGH
2001a), resulting in the uniparental-plus pattern of in-
heritance of chloroplast-encoded traits (ARMBRUST 1998).
It has been postulated that this system is analogous to
modification/restriction systems in bacteria, with the
plus cpDNA being selectively “protected” by methylation
so that it resists cutting by methylation-sensitive restric-
tion enzymes in the zygote (SAGER and KiTcHIN 1975).
However, recent studies do not support such a model
(UMEN and GooDENOUGH 2001a), and the molecular
basis for uniparental-plusinheritance awaits elucidation.
MATAGNE and MATHIEU (1983) observed that when



196 P. J. Ferris, E. V. Armbrust and U. W. Goodenough

heterozygous diploid (mt"/mi”) minusstrains were crossed
with either haploid plus or homozygous diploid (m¢"/
mi") plus strains, cpDNA transmission was biparental.
These findings were interpreted to indicate that “protec-
tion” of plus cpDNA in the mtt/mt parentis dependent
on the presence of the mt* locus and is not subject
to “minus dominance” (i.e., is not Mid-repressible). We
show here that the Mtal gene is restricted in expression
to mi" gametes and is not Mid-repressible (Figure 2E).
However, our results would seemingly argue against a
role for Mtal, or any other gene in the mit* locus, in
cpDNA protection since, in the absence of a mt* chro-
mosome (e.g., in mid-1 mt" (Fusl) X mt™ crosses), zygotes
give rise to viable meiotic progeny. If both plus and
minus cpDNA were unprotected and hence destroyed
in the early zygote, the cross would presumably be lethal,
as is indeed the case in a related system (VANWINKLE-
SWIFT et al. 1994).

The mid-1 mt~ (Fusl) X mit cross is not lethal, but nei-
ther is it normal: cpDNA is inherited biparentally (Ta-
ble 3), suggesting that the missing m¢" chromosome is
somehow necessary for the selective destruction of minus
cpDNA in the zygote. For example, if the m¢™-encoded
Ezy2 protein participates in cpDNA destruction and is
selectively targeted to minus chloroplasts in the zygote
(perhaps because minus chloroplasts carry specific re-
ceptors for Ezy2 translocation; ¢f. BAUER et al. 2000),
then biparental inheritance would be expected to occur
in the absence of Ezy2.

Taken together, the results available at present are
best explained by proposing that the m¢" locus encodes
both a protection function and a destruction function,
with Mtal being a candidate participant in protection
and Ezy2 in destruction. Both of these functions would
be operative in the heterozygous-diploid crosses of
MATAGNE and MATHIEU (1983), generating two sets of
protected genomes and hence biparental inheritance.
By contrast, neither set of functions would be operative
in our crosses, which would also result in biparental
inheritance because neither set of unprotected genomes
would be destroyed.

Evolutionary history of the MT locus: A common way
to model the evolution of separate sexes (heterothal-
lism, dioecy) is to start with a self-fertile (homothallic,
monoecious) ancestor and propose steps that would
lead to self-sterility (e.g., CHARLESWORTH 1991). A homo-
thallic lineage ancestral to C. reinhardtii can most simply
be thought of as having a Mid gene in chromosome VI
that switched “on” in some cells and “off” in others, the
former cells expressing minus-specific genes and hence
differentiating as minus gametes, and the latter cells
expressing plusspecific genes and differentiating as plus
gametes. Indeed, this is the inferred pattern of gene
expression in the distantly related homothallic species
C. monoica (VANWINKLE-SWIFT et al. 1998). The loss of
Midfrom a copy of chromosome VIwould then generate
a selfssterile plus-only clone carrying a proto-m¢* locus,

while the loss of the off switch from the Mid gene in
another copy of chromosome VI would generate a self-
sterile minus-only clone carrying a proto-mt~ locus.

To model the subsequent “invasion” of the homothal-
lic population by these two chromosomes, one can in-
voke the benefits of outcrossing as driving the process.
Alternatively, or in addition, one can invoke positive
selection for advantageous genes linked to the proto-mt¢
loci and propose that the linkage would come to be
buttressed by recombinational suppression (CHARLES-
WORTH 1991; Rict 1994; TRICKETT and BuTLIN 1994;
but see FiLATOV et al. 2000). One suggestion along these
lines has been that linkage disequilibrium came to pre-
serve an adaptive association between mating type and
genes involved in organelle DNA inheritance (HURsT
1992; HursT and HamiLToN 1992).

We can now consider possible origins of the M7-unique
genes, using Fus/ as an example. There are two possibili-
ties: Either Fusl originally happened to reside in the
proto-MT region of chromosome VI and was subse-
quently lost from the proto-mt~ chromosome or it was
originally autosomal and then moved into the proto-m¢*
locus, subsequently losing its autosomal representation
and its Mid-repressibility. In either case, once any mat-
ing-related gene like Fusl became M7-unique, it would
become dependent on its M7-linkage for correct expres-
sion in plus or minus gametes. Thus, the acquisition of
one or more MT-unique gametogenesis genes would lead
to a selective advantage for chromosomal rearrangements
or other changes that (further) suppress recombination
in the region, thereby assuring that a gene like Fus! is ex-
pressed in m¢t gametes and not expressed in mi~ gametes.

A mating-related gene could originate in or move into
an MT locus by chance, and the loss of additional gene
representation and of Mid regulation could also occur
by chance. Alternatively, there may be some selective
advantage to a cis-configuration of gametogenesis genes,
as opposed to regulating their expression in trans. Since
our results indicate that such “gene acquisition” events
have occurred several times during the evolutionary his-
tory of the MT locus in C. reinhardtii, a selective advan-
tage is suggested, but its nature remains to be identified.

Mutational profile of the MT locus: The most striking
feature of the MT locus is its unusual chromosomal or-
ganization (FErRrIS and GOopENOUGH 1994). The pres-
ent study provides additional examples of unconven-
tional configurations.

As summarized in Figure 5, the a region, present in the
mt" locus and absent from the m¢ locus, is a sequence
that is duplicated in an autosome and flanked by DNA
that carries no identified genes. The autosomal copies
of the aregion genes (the gamete-specific Mia2 and the
housekeeping Mia3) are functional, whereas their m¢*
counterparts are pseudogenes (W-Mta2 and V-Mta3).
Of particular interest is the gamete-specific Mtal gene
in the mt™ locus, which co-opts the upstream regulatory
elements and the first nine codons of an MtaZ2 sequence
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and then diverges into a unique open reading frame
(ORF), the resulting gene being a chimera (Figure 5).

The most likely scenario for the generation of this
chimera is to propose that the Mtal sequence inserted
into a preexisting Mta2 gene, thereby capturing a ga-
mete-specific promoter, which is analogous to the acqui-
sition of a testis-specific promoter by the Cdic gene in
Drosophila melanogaster (NURMINSKY et al. 1998). This sce-
nario leaves open many questions: Where did the Mtal
sequence come from? Was it autosomal or M7-linked
and what were its original upstream sequences? Did an
intact Mta2 gene originally exist in the mt" locus, which
was then disrupted by the Mtal transposition event? Or
was the chimeric sequence constructed in an autosome,
perhaps in a duplicated copy of Mta2, and then trans-
posed to the mt™ locus?

The GdcH, Pr46a, and Pr46b genes in segment 3 illus-
trate a different kind of unusual gene overlap. As sum-
marized in Figure 3, each of these genes overlaps one
of the others at its 3" end, but none of these overlaps
have led to gene inactivation since all three are tran-
scribed. Nothing is known about how these relationships
were established, but, given the high density of rearrange-
ments in the MTlocus, it is possible that the three genes
were once separated and were subsequently brought to-
gether. This is, to our knowledge, the first report of
nuclear gene overlap in C. reinhardtii.

The major rearrangements involving segments 1-4 have

no change in mt+

Y e mt+

77—  mt*

present day
”Q mit+

Frcure 10.—Postulated sequence for the evolu-
tion of Lizy2 genes. The original Ezy2, present in
both mating types, is depicted as a single-copy
gene flanked by an untranscribed “spacer” and
containing one copy of the now duplicated exon
3. A double-stranded break occurred within the
spacer region of the m{” copy, allocating a portion
of the spacer to what is now the m{" C domain
(boxed arrowhead) and the rest of the gene/spacer
to what is now the m¢” segment 3. [Segment 3 is
presently inverted and is also separated from the
C domain by segment 4 (Figure 1); the timing
of these rearrangements vis-a-vis the evolution of
the Ezy2 sequences is unknown.] The loss of the
C-domain spacer sequences may have participated
in rendering the m¢" copy of the gene transcrip-
tionally inactive and hence a pseudogene, or tran-
scriptional inactivation may have occurred for
other reasons: For a zygote-specific gene linked
to mating type, loss of gene activity in one of the
two loci may be difficult to select against. The
mt* copy, meanwhile, underwent a duplication
of exon 3 and then subsequently underwent an
expansion in copy number, perhaps in part to
make up for the loss of the mt™ copy. An alternative
scenario would propose that Ezy2 was originally a
multigene family in both mating types, each gene
containing an unduplicated exon. In mi", the sub-
sequent chromosomal rearrangements deleted all
but one copy, which subsequently became a pseu-
dogene. In mt*, the exon duplication occurred in
one copy and then spread by concerted evolution
(SwansoN and VAQUIER 1998).

generated two mutations characterized in this study. First,
the distal portion of the 3’ UTR of the Pdk gene, located
at one edge of segment 2, contains region-b sequences
in the mt™ locus and completely different segment 1 se-
quences in the m¢ locus (Figure 1). Presumably one of
these sequences represents the original 3’ UTR and the
other was created by rearrangement; it is not known
whether these differences affect the properties of the
two gene transcripts. Second, rearrangements involving
segment 3 of the mt locus have disrupted the FEzy2 gene.
The large number of differences between FEzy2 and
W-Ezy2 compared to other gene/pseudogene pairs in
the MTlocus (Table 2) suggests that this event occurred
in the more distant past.

The Ezy2 configurations are particularly intriguing in
that they entail four different kinds of alterations: (1)
rearrangement of gene order; (2) inactivation of the gene
in the mt locus; (3) endoduplication of an exon in
the mt* locus gene; and (4) tandem duplication of the
endoduplicated gene to generate six to eight copies.
Figure 10 presents a possible scenario for the sequence
of these three events, with details given in the legend.

Several highly expressed autosomal zygote-specific
genes have previously been found to exist as near-neigh-
bor duplicates, including two cases in which both copies
are functional (UcHIDA et al. 1999; Suzuxr et al. 2000)
and one case in which one copy is now a pseudogene
(MATTERS and GOODENOUGH 1992). Two additional ex-
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amples of apparent near-neighbor duplicates of zygote-
specific genes—detected by Pr 72/74 and by Pr 100
(Table 1)—have been found in this study. However, the
long tandem iteration of FEzy2 genes and the nearby
tandem cluster of zygote-specific Ezyl genes in both
chromosomes (Figure 1) clearly represent a distinctive
phenomenon and one that appears to be a recurring
theme in sexual evolution. In D. melanogaster, for exam-
ple, arecent 10-fold tandem iteration of a sperm-specific
gene is found in the X chromosome (NURMINSKY et al.
1998), and tandemly repeated genes are the rule in the
human Y chromosome (reviewed in LAHN and PAGE
1997). Indeed, features of the AZFregion of the human
Y (SAXENA et al. 1996) offer striking parallels to the MT
locus. AZF contains multiple copies, >99% identical in
sequence, of a gene called DAZ (Deleted in Azoosper-
mia), an RNA-binding protein essential for male fertil-
ity. The DAZ sequence is found as well in human chro-
mosome 3, where expression is restricted to the germ
cells of both sexes. During primate evolution, a copy of
this autosomal gene transposed to the Y, where one of
its exons underwent internal amplification, after which
the modified gene itself underwent amplification.

The data reported here, combined with previous stud-
ies, reveal the MT locus to be an unusual and dynamic
region of the C. reinhardtii genome, harboring transloca-
tions, inversions, large indels, genes without homologs,
genes that transpose (FERRIS and GOODENOUGH 1997),
tandem gene duplications, gene inactivation events, and,
in two genes, unusual codon bias. Moreover, the sex-
related genes in the locus have been shown to be under-
going rapid evolution between species (FERRIS et al.
1997). And yet, despite these anomalies, the locus con-
tinues to encode large numbers of housekeeping genes
that presumably occupied this region of chromosome
VI long before it took on its modern configuration and
novel functions. Since most of the C. reinhardtiilife cycle
is carried out in the haploid state, the presence of these
presumably essential genes may keep a selective brake
on what would, in a predominantly diploid organism,
be a far more extensive, Y chromosome-like reconfigu-
ration of the region. If so, then the M7 locus may offer
aunique opportunity to observe sex-chromosome evolu-
tion in progress.
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