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ABSTRACT
A new genetic estimator of the effective population size (Ne) is introduced. This likelihood-based (LB)

estimator uses two temporally spaced genetic samples of individuals from a population. We compared its
performance to that of the classical F-statistic-based Ne estimator ( ) by using data from simulated
populations with known Ne and real populations. The new likelihood-based estimator ( ) showed
narrower credible intervals and greater accuracy than ( ) when genetic drift was strong, but performed
only slightly better when genetic drift was relatively weak. When drift was strong (e.g., Ne � 20 for five
generations), as few as �10 loci (heterozygosity of 0.6; samples of 30 individuals) are sufficient to consistently
achieve credible intervals with an upper limit �50 using the LB method. In contrast, �20 loci are required
for the same precision when using the classical F-statistic approach. The estimator is much improved
over the classical method when there are many rare alleles. It will be especially useful in conservation
biology because it less often overestimates Ne than does and thus is less likely to erroneously suggest
that a population is large and has a low extinction risk.

THE effective size of a population can be defined ations to estimate the “variance effective size,” NeV (Rob-
erds et al. 1991; Hedgecock et al. 1992; Husband andas the size of an ideal population (Wright-Fisher

model) in which genetic drift occurs at the same rate as Barrett 1992; Taylor et al. 1993; Burczyk 1996; Jorde
and Ryman 1996; Miller and Kapuscinski 1997; Saa-in the studied population (Wright 1931). The effective
dreva 1997; Sitnikov et al. 1997; Laikre et al. 1998;population size (Ne) is an important parameter in evolu-
Planes and Lecaillon 1998; Tarr et al. 1998; Fiumeration and conservation biology because it influences the
et al. 1999; Funk et al. 1999; Kantanen et al. 1999).amount of genetic drift in populations. Genetic drift
Given two genetic samples from one population, spacedinfluences the rate of loss of genetic diversity, the rate
by a known number of generations, estimation of NeVof fixation of deleterious alleles, and the efficiency of
can be conducted by moment-based methods (Waplesnatural selection at maintaining beneficial alleles.
1989) and some recently published likelihood-basedUnfortunately, Ne is notoriously difficult to estimate
(LB) methods (Williamson and Slatkin 1999; Ander-by demographic methods in the field (Frankham 1995),
son et al. 2000).because it requires data such as variance in lifetime

LB estimators should provide better precision com-reproductive success, which is difficult to obtain for
pared to moment-based estimators, because they usemany wild populations. Genetic methods of estimating
more of the information from the data (EdwardsNe are becoming more widely used because of the in-
1972). For example, the Williamson and Slatkincreasing availability of polymorphic molecular markers
(1999) LB method showed better precision and accu-(for reviews, see Waples 1991; Schwartz et al. 1998).
racy compared to the F-statistic estimator of NeV (WaplesHowever, a serious problem with existing genetic estima-
1989). This initial study was restricted to diallelic locitors of Ne is their poor precision; e.g., their confidence
because of the numerical complexity of using loci withintervals often include infinity (Hill 1981; Waples 1991;
a large number of alleles. However, Anderson et al.Luikart and Cornuet 1999; Luikart et al. 1999).
(2000) have developed an “importance sampling” ap-The most widely used genetic method consists of mea-
proach that enables multiallelic loci to be analyzed. Thissuring the variance of allele frequencies between gener-
approach is based on analysis of the Wright-Fisher
model, in which the gene frequencies in the entire
population in each generation are considered. We pro-
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cluding that of the Wright-Fisher model, the gene gene-
alogy tends to the coalescent as the population size
becomes large (Donnelly and Tavaré 1995; Mohle
2000). Thus the coalescent-based approach will give very
similar answers to that of Anderson et al. (2000) when
the population sizes are large. Since the method deals
only with the genealogy and not with the population
gene frequencies it is potentially more efficient than
the method of Anderson et al. for larger population sizes.
In addition, in populations with low Ne that do not follow
the Wright-Fisher model, the gene genealogy might be
better approximated by the coalescent. In this article
we demonstrate that, in fact, the method performs satis-
factorily with data generated from a Wright-Fisher
model with small Ne sampled over a single generation.

The objectives of this article are twofold: (i) to pre-
sent a new likelihood-based estimator of Ne, on the basis Figure 1.—Model used by the new likelihood-based estimator.
of coalescent theory, which allows the use of multiallelic We assume that samples are taken from a closed population at
markers and can be extended to incorporate Bayesian two different times. The population is represented by the dotted

arrow. Following the conventions of genealogical modeling weprior information about the Ne value (e.g., knowledge
take time to be increasing into the past, with the most recentthat Ne � 500) and (ii) to evaluate the accuracy and
sample (a0) taken at time t � 0 and the earlier sample (aT) takenprecision of this method in comparison to the classical at time t � T. a0 is assumed to have a genealogy, described by

estimator based on F-statistics (Krimbas and Tsakas the standard coalescent model, and af represents its founders.
1971; Nei and Tajima 1981; Pollak 1983; Waples
1989), which uses the same genetic data from temporally

characteristics: (i) multiallelic loci [e.g., five alleles withspaced samples. Our evaluation is conducted empiri-
heterozygosity (H) of 0.6] because they provide morecally, using data from simulated populations with known
precise and accurate estimations (Luikart et al. 1999)Ne and from real populations. The model used to simu-
and are becoming increasingly available for natural pop-late populations is individual based, which provides real-
ulations (e.g., microsatellites); (ii) sets of 5–20 unlinkedistic samples, complementary to the real data sets, for
loci, typical of most field studies; and (iii) samples ofevaluating the usefulness of the estimators in natural
30 or 60 individuals separated by one or five generationspopulations.
(i.e., one or five episodes of genetic drift). However, weThe biggest problem with existing methods is their
also conducted some evaluations with different allelelarge confidence intervals (Waples 1991; Luikart et al.
frequencies (five alleles with equal frequencies, H �1999). For example, the �2 approximation method (used
0.8) and diallelic loci (H � 0.2) that more closely corre-for ) is known to be slightly too conservative (i.e.,
spond to allozyme loci or single nucleotide polymor-confidence intervals are too wide; Waples 1989). Thus
phisms (SNPs).it is worth comparing the performance of the new method

In materials and methods, we describe (i) the newthat we introduce to the widely used, “classical” method.
likelihood-based estimator for Ne (noted ), (ii) theWe tested whether the precision of our LB method can
classical F-statistic-based estimator (noted ), (iii) thebe improved by incorporating Bayesian prior knowledge
model used to simulate data sets, (iv) the real dataabout Ne, e.g., by setting NeMAX (the maximum possible
sets, and (v) the methods we used to assess the relativeeffective size) to 500 or 5000. Like numerous LB estima-
performance of both estimators.tors, the method we present is computationally inten-

sive. On a Pentium II, 400 MHz PC, it requires 2–10 hr
to estimate Ne for one data set with 10–20 loci and MATERIALS AND METHODS
samples of 30 individuals. The program is slower with

Likelihood-based estimator: The method used to estimatemore loci or individuals. The slow speed is mainly of
likelihoods for Ne given the data is based on the genealogicalconcern for studies like ours involving thousands of
approach described in O’Ryan et al. (1998) and Beaumont

population replicates (typical users can simply run the and Bruford (1999), which is very similar to that described
program overnight to get a single estimation). The in Nielsen et al. (1998) and Saccheri et al. (1999; see also

Ciofi et al. 1999; Chikhi et al. 2001). The model is illustratedspeed compares favorably with that reported by Ander-
in Figure 1. We assume that samples are taken from a closedson et al. (2000). Because of the slow speed, we could
population at two different times. In principle the methodnot evaluate many scenarios [i.e., combinations of Ne, can be easily extended to deal with samples taken at many

sample size (S), time between the two samples (T), times, but only a pair of samples is considered here. Following
number of loci, and allele frequency distributions]. We the conventions of genealogical modeling we take time to be

increasing into the past, with the most recent sample takentried to focus on realistic scenarios having the following
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at time t � 0 and the earlier sample taken at time t � T. For is the configuration prior to the first coalescent event and gnc

is the configuration prior to the sampling event at T (i.e., gnc �a particular locus, the two samples at times t � T and t �
0 consist of two vectors of counts, aT and a0, of nT and n0 af). The states (gnc, . . . , g1, g0) form a Markov chain where

the number of lineages increases by 1 at each step. Let bchromosomes distributed among k distinct alleles. The num-
ber of distinct alleles is taken to be that observed in both denote a vector of length k with 1 at position b and 0 elsewhere,

b being a particular allelic class. In the following, g(b)
r denotessamples combined; each individual sample may have �k al-

leles, and this number is denoted k0 and kT for the samples the number of genes in the allelic class b within the r th state.
The r th state in the sequence can be generated fromtaken at times 0 and T. The samples are assumed to be sampled

independently with probabilities p(aT|nT, k, x) and p(a0|T, Ne,
n0, k, x), where Ne is the effective population size and x is the Pr(g(r) � g(r�1) � b|g(r�1)) �

g (b)
(r�1)

n(r�1)

,
parametric gene frequency at time T. The samples at each of
m loci are also assumed to be sampled independently and

where n(r�1) � Rjg ( j )
(r�1). Thus p(G|af, nc) is the product of thesetherefore an overall likelihood L(T, Ne, x1, x2, . . . , xm) can

probabilities over nc coalescent events, and p(a0|G) � 1 if g0 �be obtained by multiplying the probabilities across samples
a0, 0 otherwise.and across loci. Metropolis-Hastings simulation is then used

Equation 2 has the general form p(x) � Ryp(x|y)p(y), whichto integrate out the xi as described below.
can be estimated by the classical Monte Carlo method asProbability of the first sample: It is assumed that the nT chromo-
1/sRs

i�1p(x|yi), where the yi are drawn from p(y) (see, e.g., Tan-somes are sampled with replacement from a population having
ner 1993). For example, we could simulate the number ofunknown gene frequency x. Hence aT follows the multinomial
coalescent events to obtain n f, simulate a sample from x, anddistribution with probability p(aT|nT, k, x).
simulate G. Unfortunately p(a0|G) � 0 for most G. An alterna-Probability of the second sample: The sample at t � 0 is assumed
tive approach is to use importance sampling (see, e.g., Tannerto have a genealogy, described by the standard coalescent
1993), where Ryp(x|y)p(y) is estimated as 1/sRs

i�1p(x|yi)p(yi)/model, with n0 lineages at t � 0, nc coalescent events between
p*(yi), where p*(y) is chosen to be as close as possible to p(y|x);t � 0 and t � T, and n f � n0 � nc lineages at t � T. Since
the variance due to importance sampling would be zero if itmutations are assumed not to occur, n f � k0. Let af be the
could be made equal to p(y|x)—this follows because p(x|y)vector of counts of the n f distinct lineages that remain at t �
p(y)/p(y|x) � p(y|x)p(x)/p(y|x) � p(x) for any draw fromT, distributed among the k allelic classes. Those lineages are
p(y|x). In general it is not possible to draw exactly from p(y|x)sampled with replacement from the population with probabil-
but this can be approximated quite closely. Following theity p(af|n f, x). It is possible to calculate the probability of
method of Griffiths and Tavaré (1994), we can simulate aobtaining nc coalescent events, p(nc|T, Ne, n0) (Tavaré 1984),
sample sequence with known probability as follows. For awhich depends on the effective population size, Ne. In the case
configuration at event r, gr, there are m prior configurationsof fluctuating populations, Ne is the harmonic mean effective
with one lineage less in each of the allelic classes, where m ispopulation size over the interval T as discussed in O’Ryan et
the number of allelic classes in which there is at least oneal. (1998). The distribution of coalescent events in an interval,
lineage. The configuration gr�1 with one lineage less in allelicand hence the joint likelihood of sample configurations, is
class b is chosen with probabilityidentical between all models of population change, including

stable populations, as long as Ne is measured as the harmonic (g (b)
r � 1)/(nr � 1)

�m
j�1((g ( j)

r � 1)/(nr � 1))
�

g (b)
r � 1

nr � m
, (3)mean Ne over the interval (Marjoram and Donnelly 1997).

Given the configuration in the founder lineages, af, it is
possible to calculate the probability of obtaining the configu- where j subscripts are the allelic classes represented in gr. The
ration in the sample, p(a0|af, n0, nc), by nc successive iterations ratio p(G|af, nc)/p*(G) is then given by the product of
of choosing a lineage uniformly at random and duplicating
it (Slatkin 1996). Thus by enumerating all possible af for g (b)

r � 1
nr � 1 �g (b)

r � 1
nr � m

�
nr � m
nr � 1

(4)each value of n f � n0 � nc, nc � 0 . . . n0 � k0 it is possible to
calculate the probability of obtaining the sample configuration
at time 0 as the sum

over all coalescent events in G. Thus to estimate (2) we can
use the following algorithm, which calculates 1/s � S, withp(a0|T, Ne, n0, k, x) � �

af,nc

p(a0|af, n0, nc)p(af|x, nf � n0 � nc)
S � Rs

i�1p(a0|Gi) � Pi � p(af|x, nf)p(nc|T, Ne, n0), and Pi �
p(Gi)/p*(Gi). This algorithm involves two nested iterations: a

� p(nc|Ne, T, n0). (1)
first iteration, which builds the summation S over sampled
genealogies, and another iteration, nested in the previousAlthough it is feasible to evaluate this sum for small samples,
one, which calculates each Pi by sampling the number ofit is impractical for typical cases. We use here an alternative,
coalescent events in the genealogy Gi. Let nr be the numberefficient method of evaluation described by Griffiths and
of lineages, m the number of allelic categories in the currentTavaré (1994) and used by O’Ryan et al. (1998). For a more
configuration, and � the total time elapsed since the start ofdetailed discussion of the method see Griffiths and Tavaré
the building of the current genealogy. The genealogies are(1994), Felsenstein et al. (1999), and Stephens and Don-
built starting at � � 0, with the data configuration a0, so thatnelly (2000).
for all i, p(a0|Gi) � 1. Then coalescent events are simulatedWe are interested in estimating p(a0|T, Ne, n0, k, x). Rewriting
using a waiting time, t, until the total time elapsed becomes(1) in a more general way,
	T/Ne. In the following algorithm, t is a random variable,
sampled from an exponential distribution with scale (nr

2 ),p(a0|T, Ne, n0, k, x) � �
G

p(a0|G)p(G|af, nc)p(af|x, nf � n0 � nc)
which changes each time we refer to it:

� p(nc|T, Ne, n0). (2) 1. set S to 0;
2. do s times:

The summation is over all genealogical histories G, each of (a) set Pi to 1; set nr to n0; set � to t;
which can be represented as a sequence of configurations G � (b) while (� 
 T/Ne and nr � m) do:

i. with probability given by Equation 3, choose an(g0, g1, . . . , gnc), where, looking back in time from t � 0, g0
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allelic category in the current configuration and TABLE 1
decrease the count by 1. Decrease nr by 1;

Data sets used to test for the convergence of the Metropolis-ii. multiply Pi by the importance weight (Equation 4);
Hastings procedure embedded in NeLBiii. set � to � � t ;

(c) if (nr � m and � 
 T/Ne) then
set Pi � 0 (probability of obtaining the data is zero with this True Ne T S L Gelman-Rubin criterion
number of coalescences) else

10 1 30 10 (1.01, 1.02)i. let afi be the current configuration (i.e., allele
50 1 30 20 (1.01, 1.03)counts among founder lineages), containing nfi
20 5 30 10 (1.01, 1.04)genes;
50 5 30 20 (1.04, 1.09)ii. add to S the product of Pi by p(afi|x, nfi), the

multinomial probability of choosing the current
All data sets use loci having five alleles each (H � 0.6).configuration from x;

Results for the Gelman-Rubin criterion are presented in paren-3. evaluate S/s.
theses (value of statistic, upper 97.5% credible limit). T, num-

Thus the method estimates p(a0|T, Ne, n0, k, x) with some ber of generations between samples; S, sample size in individu-
error depending on the number of iterations, and the number als; L, number of loci used.
we actually used is discussed below.

Posterior distribution: Assuming independence the probabili-
ties can be multiplied across samples and loci as described 500 importance samples, and reestimated this for current and
above to give a likelihood L(Ne, T, x1, . . . , xm). We integrate candidate values at each iteration of the Metropolis-Hastings
out the xi using Metropolis-Hastings sampling, following the algorithm. The number of 500, although giving appreciable
approach described in O’Ryan et al. (1998). error in estimation of L(Ne, T, x1, . . . , xm), had been suggested

In Metropolis-Hastings sampling we propose candidate val- by pilot simulations in O’Ryan et al. (1998) in which it gave
ues x� from some distribution conditional on the current value indistinguishable results from simulations with 10,000 itera-
x, p(x�|x) and calculate the ratio tions for subsets of the samples used in that study, and these

latter simulations gave indistinguishable results (using smaller
X �

L(x�)/p(x�|x)
L(x)/p(x|x�)

, (5) data sets) from Metropolis-Hastings sampling using exact like-
lihoods calculated according to Equation 1. We have not yet
determined a lower limit of the number of iterations thatwhich gives the likelihood of a candidate value, weighted by
will give reasonable performance. It should be noted that Xthe probability of choosing it from the current value, relative
(Equation 5) in the Metropolis-Hastings simulations is theto the current value, weighted by the probability of choosing
ratio of importance weights and it is straightforward to showit from the candidate value. If X 	 1 we accept x�; otherwise
that the ratio of estimates using exactly one iteration of thewe accept it with probability X, retaining x otherwise. The
Griffiths and Tavaré procedure is a valid acceptance criterionlikelihoods include a weighting by priors. Provided certain
(in which case we are integrating over G as well). We haveconditions hold (see Tanner 1993), the resulting sequence
investigated this case and find that simulations using one itera-of accepted and retained values has a stationary distribution
tion, however, have a very low acceptance rate.that is L(x)/�L(x)dx. In the case of jointly distributed variables

Convergence of the Metropolis-Hastings procedure: For the datamarginal distributions can be estimated by looking at only
sets described here, the Metropolis-Hastings procedure wasone variable (e.g., T/Ne here). Since T is known, using this
run for single chains of 20,000 iterations, sampling every 5approach we can estimate the posterior distribution p(Ne|a0,
iterations. The validity of this number was assessed for fouraT, T), which will be proportional to the likelihood for Ne if
representative data sets, by running five independent chainsa uniform prior for Ne is assumed. We need to specify the
from different starting points for each set, and using the Gel-upper limit, NeMAX, because convergence of the MCMC simula-
man-Rubin criterion to assess convergence, implemented intion is not otherwise guaranteed. Therefore our approach is
CODA (Best et al. 1995). The Gelman-Rubin statistic takesmore accurately described as Bayesian, with an informative
the values from the last one-half of the sampled points fromrectangular prior on Ne. Here we assume rectangular priors
the chains and estimates the square root of the ratio of theon Ne between zero and some upper limit (NeMAX—usually 500)
variance in Ne when the chains are combined to the averageand uniform Dirichlet, D(1, . . . 1), priors on x. However,
of the variance within each chain. The idea is that initially,since the tests of power and precision given in this article are
with independent starting points, the variance across chainsinherently non-Bayesian (since the answer is known), we use
will be substantially greater than the variance within, reflectingthe term “likelihood-based” to describe the general approach
the different starting points. However, when the chains areand restrict the use of the term Bayesian when comparing the
run long enough the variances should converge and the ratioeffect on inference of different values of NeMAX. When real
should tend to 1. Gelman (1996) suggests as a “rule of thumb”data are analyzed, it is clearly sensible to take a fully Bayesian
that the value of the ratio of variances should be �1.1–1.2approach, with a prior that reflects background information
(i.e., value of the statistic �1.05–1.1). The method also calcu-(which is then unlikely to be rectangular).
lates the upper 97.5% credible limit for the statistic. The fourCandidate values for Ne are proposed, using a lognormal
data sets used and the results obtained for the Gelman-Rubindistribution centered around the current value. Candidate
criterion are presented in Table 1. These results show that wevalues for x for each locus are proposed by randomly partion-
can be reasonably confident that error due to Markov chaining the alleles into two groups and using a beta-distribution,
Monte Carlo (MCMC) estimation is a small fraction of theas described in Ciofi et al. (1999) (although the Dirichlet
variability in estimation of Ne across data sets.method described in O’Ryan et al. 1998 also works well), and

Point estimates and confidence intervals: From the output ofthe likelihood L(Ne, T, x1, . . . , xm) is estimated as described
the MCMC simulations the following summary statistics areabove. The performance of Metropolis-Hastings sampling
estimated: the mode and 0.05 and 0.95 quantiles (giving awhen the likelihood is estimated with error has not been
90% credible interval). The 0.05 and 0.95 quantiles are ob-intensively studied. As in O’Ryan et al. (1998) and Ciofi et

al. (1999), we estimated p(a0|Ne, T, n0, k, x) for each locus, using tained from the ranked output in the standard way. The mode
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is obtained by kernel density estimation. We used a logistic (Krimbas and Tsakas 1971; Pollak 1983), where A is the
number of alleles at the locus and xi and yi are the frequenciesfunction as a kernel with a bandwidth (standard deviation)

given by of the ith allele in the first and second samples, respectively.
Other estimators of F give generally similar results to those

obtained with Fk (Waples 1989; Richards and Leberg 1996;� � k
0.5(q2 � q1)

n0.2
,

Luikart et al. 1999). Confidence intervals (90%) for Ne were
computed using a �2 approximation, known to be unbiased,

where n is the sample size (the number of updates), q2 is the but too conservative (Waples 1989; Luikart et al. 1999).
value of the 0.625 quantile, and q1 is the value of the 0.375 Model for simulating data sets: The simulated populations
quantile. The constant, k, was set to be 1 for all the simulations. were generated using an individual-based model with Mende-
This formula was obtained by trial and error in pilot simula- lian inheritance. Populations were initiated by randomly sam-
tions and was set to tend toward under- rather than over- pling alleles from independent loci (defined by an array of
smoothing. A logistic kernel was used because it was easy to allelic frequencies; see Table 2). Simulations were based on
define truncated kernels at 0 and NeMAX, which reduced the a Wright-Fisher model, with two modifications: (i) separate
degree of underestimation of the density at the boundaries. sexes (with an equal sex ratio) and (ii) strict allogamy (no
For appropriate bandwidths (slightly larger values of k) the selfing). These modifications should lead to an Ne slightly
method gives results very similar to those obtained using the larger than the actual number of breeders (Nb, individuals),
program Locfit (Loader 1996) implemented in R (Ihaka and as shown in Caballero (1994, Equation 16). We verified this
Gentleman 1996, http://www.r-project.org/), which is based fact by estimating the variance of reproductive success, S 2

k by
on local-likelihood density estimation methods. V(ki), which we found to be �1.91 (instead of 2) for Nb � 10.

Many data sets may have little information on the upper In this case, Ne � 10.2. This difference between Ne and Nb is
limit of Ne (i.e., the likelihood function tends to a nonzero negligible and is even smaller when Nb 	 10. Individuals were
constant for large Ne), in which case the 90% credible interval sampled under sampling scheme II of Nei and Tajima (1981;
depends strongly on the prior used. We use a rectangular Pollak 1983; Waples 1989), in which, at given generation,
prior in the study here, but for real data a more smoothly the sample and the 2Ne gametes representing the effective
varying prior may reflect background information more size are both independent binomial samples from the pool
closely. This estimator was implemented in a computer pro- of gametes of the preceding generation.
gram (TM3) available from http://www.rubic.rdg.ac.uk/ We studied only cases with relatively small Ne because it is
�mab/software.html. A program for converting GENEPOP known that estimators of Ne give reasonably small confidence
files to input format for the TM3 program is also available. intervals when Ne is large and when using realistic sample sizes
The mode estimated from the MCMC output is referred to (e.g., 10–20 loci and 30–60 individuals; Luikart et al. 1999;
as the likelihood-based estimator . Waples 2000). Because the Ne is usually �N (the census size)

F-statistic-based estimator: We estimated NeFk
for each popu- in natural populations (see Frankham 1995; Schwartz et al.

lation using the equation 1998), it is realistic to model a population where Ne is only
10 or 20 and to sample 30 or more individuals. This model was
implemented in a computer program available from pierre.�

T
2 � (F � 1/2S0 � 1/2St)

(6)
berthier@zoo.unibe.ch.

Real data: To test further the Ne estimators, we applied
(Nei and Tajima 1981), where T is the number of generations them to real data, which potentially follow a model very differ-
between the two samples and S0 and ST are sample sizes (of ent from the ones used both by the estimators and by our
individuals) in the first and second sample, respectively. This simulation model. For example, real data can show migration
equation is appropriate because the individuals sampled to (killifishes), selection and linkage among loci (Drosophila; see
estimate F are independent of the individuals reproducing to discussion), overlapping generations (otter), and nonstable
make the next generation (sampling scheme II of Waples population size (mosquito fish). Our purpose here is not to
1989). use these data sets to quantify the problems introduced by

We estimated F as did Waples (1989) as the mean of Fk those violations of the model underlying the Ne estimators,
over loci. Fk was calculated for each locus from the equation but rather to illustrate that the violation of assumptions can

lead to changes in the estimators’ performance. We used mi-
crosatellite data from four animal populations:Fk �

1
A � 1

· �
A

i�1

(xi � yi)2

(xi � yi)/2
(7)

TABLE 2

Allele frequency arrays used for the initiation of each locus for simulated data sets

Allele

Name H 1 2 3 4 5 6 7

A 0.6 0.2 0.59 0.1 0.07 0.04 — —
B 0.8 0.2 0.2 0.2 0.2 0.2 — —
C 0.2 0.885 0.115 — — — — —
D 0.8 0.35 0.16 0.15 0.11 0.10 0.07 0.06
E 0.4 0.76 0.14 0.1 — — — —
F a 0.6

Arrays are given a name for further reference.
a Data sets with variation of H among loci as follows: A, one locus; D, two loci; and E, two loci (H � 0.6).
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TABLE 3

Effective population size estimates and confidence intervals for empirical data sets

F-statistic based Likelihood based

Populations True Ne S T L NeFk �2 NeLB
Percentiles

Killifish ? 52 3 12 17 5–51 14.2 9.7–26.7
Drosophila

100a 100.8 36 67 7 191.7 100.5–320.0 83.3 66.39–128.7
1spm24 18.8 18 11 7 44.0 21.6–80.7 11.8 7.9–17.6

Otter ? 17; 28 1 12 15.6 4.1–∞ 15.6 9.6–452.8
Mosquito fish

A5 2 40 2 8 12.4 9.4–16.1 2.6 2.4–3.5
B4 16 40 2 8 35.4 24.6–52.1 21.6 18–32.1

Empirical data sets used are Aphanius iberus (killifish), Drosophila melanogaster, Lutra lutra (otter), and Gambusia
affinis (mosquito fish).True Ne was estimated with pedigrees for Drosophila populations (England 1998). For
mosquito fish populations, true Ne was estimated to be the number of adult founders (see methods; Spencer
et al. 2000). S, sample size (or S0; S1 when sizes of the two temporal samples are different); T, number of
generations between samples; L, number of microsatellite loci used.

i. Spanish killifish Aphanius iberus : A captive population was based method will in itself increase the accuracy of the
method. However, this effect is generally small, and casesfounded in 1994 using 83 individuals from a wild population

and a subsequent incorporation of 68 new individuals oc- where it has an effect are clear in the results and discussion.
In addition, the credible intervals from the likelihood estima-curred 1 year later from the wild into the captive population

(S. Schönhuth, unpublished data). The first sample was tor are a priori not expected to have the same coverage proper-
ties as the confidence intervals from the F-statistic-based esti-taken among the 83 founders (originating from the wild

population) and the second sample was taken from the mator—the former is a fixed interval, and the “truth” is a
random variable, while the latter is a random interval, andcaptive population after the incorporation of the 68 new

individuals. the truth is fixed. However, since the assessment is frequency
based (where the truth is fixed) it seems reasonable to assessii. Two Drosophila melanogaster populations (1spm24 and

100a), which originated from the wild (at the Tyrrells Win- the coverage properties of the two estimators, while accepting
that they mean different things. It is also worth noting that aery near Sydney, Australia), were genotyped (first sample);

submitted to a bottleneck for a duration of 1 and 57 genera- general result in classical theory is that the credible intervals
and confidence intervals will converge to have the same cover-tions for, respectively, 1spm24 and 100a (see Table 3); and

then genotyped a second time 10 generations later, during age properties, providing that the posterior distribution is
asymptotically normal (see, e.g., Gelman et al. 1995, Chap. 4),a rapid expansion period to a population size of 500 and

750 individuals, respectively. The Ne value given in Table and this is likely to be the case here with increasing numbers
of loci (but not sample size).3 is the harmonic mean of the Ne for the generations

between samples. The Ne for each generation is estimated In assessing the performance of each estimator we at-
tempted to answer the following questions: (i) Are the pointfrom the pedigrees (England 1998).

iii. Eurasian otter Lutra lutra (Dallas et al. 1999), for which estimates biased?, (ii) how accurate are the two estimators?,
(iii) how large can we expect the confidence intervals to be?,samples from 1983 to 1988 were pooled to represent one

sample, as were samples from 1991 to 1997. and (iv) how often do the confidence intervals contain the
true value? We answer these questions by using simulated dataiv. Two western mosquito fish (Gambusia affinis) populations

(A5 and B4), established experimentally by a bottleneck sets and compare the performance of the estimators using
summary statistics computed from the set of replicates ob-of one pair and eight pairs, respectively, from a wild popula-

tion “source” (Spencer et al. 2000). For each of these two tained with each tested scenario. The parameters investigated
include the true Ne value, the sample size (S), the number ofpopulations, the first temporal sample was taken in the

source population. Experimental populations were then loci (L), the allele frequencies in the population from which
is taken the first sample (AF; Table 2), and the number ofallowed to expand after the founder event and the second

temporal sample was taken two to three generations later. generations between samples (T). Each scenario (i.e., parame-
ter set) was evaluated using 200 populations simulated inde-Female founders were obtained from a general laboratory

stock and may have not been virgin at the release time, so pendently (i.e., replicates).
The bias of the point estimates was investigated by reportingthat the Ne at establishment could be underestimated by

the actual number of founders. the median of the 200 point estimates from the simulations.
The median was used rather than the mean because the distri-Comparison of estimators: The first goal of this article is to
bution of point estimates can be strongly skewed (for example,describe a new estimator for Ne. The second goal is to provide
in the case of the F-statistic-based estimator, there are occasion-an evaluation of its performance in comparison with a widely
ally point estimates of infinity). We also report the standardused estimator, so that researchers can use it with some confi-
error of the mean. The accuracy of the point estimators wasdence, on the basis of realistic examples. We take a frequentist
investigated by reporting the square root of the mean of theapproach and use simulations to compare the two methods.
squared differences between the estimation values and theAlthough this is inconsistent with the Bayesian paradigm be-

hind the new estimator, it is the most practicable way to com- true value (the square root of the mean square error, √MSE).
pare the two approaches. There are two issues to consider The properties of the estimated confidence intervals (or

credible intervals in the case of the likelihood-based estimator)here. Having an upper limit of Ne � 500 in the likelihood-



747Effective Population Size

TABLE 4

Ne estimates and confidence intervals for data simulated with true Ne � 10, 20, or 50 for
one or five generations (T)

F-statistic based Likelihood based

L AF NeFk (SE) √MSE Summary of CIs NeLB
(SE) √MSE Summary of CIs

Ne � 10, T � 1
5 A 11.1 (500) 7071.6 2.8–∞ 8.4 (2.5) 34.3 2.9–463
5a A 10.0 (0.3) 4.4 3.0–49.4 7.3 (0.3) 4.2 2.8–57.7

10 A 9.7 (0.6) 8.4 3.9–49.1 7.8 (0.3) 4.3 3.6–130.6
10 C 11.2 (1209) 17323.5 2.9–∞ 12.7 (6.6) 93.5 2.1–475.3
20 A 10.4 (0.2) 2.5 5.0–26.4 7.8 (0.1) 2.6 4.4–21.2

Ne � 20, T � 5
5 C 23.8 (1683) 24491.4 1.9–∞ 19.3 (8.1) 119.9 3.6–478.2
5a A 25.1 (0.6) 10.4 8.3–86.3 17.3 (0.5) 6.3 7.8–57.0
5 B 20.8 (0.6) 8.7 7.1–79.4 19.4 (0.6) 9.3 8.9–124.9
5a B 19.6 (0.5) 6.7 6.7–66.8 18.3 (0.5) 6.8 8.4–62
5 A 26.3 (1.1) 17 7.6–124.4 18.1 (0.5) 7.7 6.3–105.6

10 A 26.9 (0.5) 10.6 11.3–74.7 18.4 (0.4) 5.4 9.7–53.9
20 A 25.9 (0.3) 7.8 14.0–52.0 17.7 (0.3) 3.9 10.6–35.3

5 F 24.5 (0.7) 12.3 7.4–103.2 18.8 (0.6) 8.1 6.9–117.3

Ne � 50, T � 5
10a A 55.7 (1.3) 20 22.2–181.2 47.4 (1.0) 17.3 23.3–136.7
10 A 56.9 (2.6) 39.4 19.6–475.1 49.9 (2.1) 30.0 20.4–435.5
20 A 57.6 (1.6) 26.0 26.6–193.7 49.5 (1.3) 18.4 26.4–183.0

The point estimates distributions obtained with 200 replicates are described for each parameter set in the
columns NeFk

and NeLB
(i.e., mode of the likelihood curve for NeLB

) by the median of the 200 point estimates and
the standard error (SE) in parentheses. The square root of the mean squared error is also given in the following
column (√MSE) as a measure of accuracy. NeLB

estimates were computed using NeMAX
� 500. The spreads of

the confidence and credible intervals (CIs) are summarized by the 5th percentile of the lower limits and the
95th percentile of the upper limits obtained from 200 simulation replicates. For example, x–y means 95% of
the 200 lower limits independently obtained were above x, and 95% of the 200 upper limits independently
obtained were below y. L, number of loci used; T, number of generations between samples; AF, allele frequencies
array used to simulate populations (see Table 2).

a 60 individuals sampled (all other simulations have 30).

were assessed by reporting two types of summary statistic. First, depend on the base frequencies used. For example, two of
to summarize the overall spread of the estimated intervals, we the cases where √MSE is higher in the LB method comereport the 5th percentile of the lower limits of the intervals

from the only two sets of simulations that use frequency(that is, 5% of the 200 confidence or credible intervals had
set B. There appear to be no other clear-cut effects onlower bounds that were lower than this) and the correspond-

ing 95th percentile of the upper limits. The interval defined √MSE in Table 4.
by these two percentiles is a summary of the overall spread of On the basis of the medians of the estimates from
confidence or credible intervals in the 200 simulations. Sec-

each set of 200 simulations, patterns in the bias of theond, to summarize the coverage properties of the estimated
estimates are discernible in Table 4. In general,intervals, we report the proportion of times the true Ne was

below the lower limit and the proportion of times the true Ne appears to systematically overestimate Ne, whereas
was above the upper limit. appears to slightly underestimate it. The overestimation

by is due mainly to the loss of alleles in early genera-
tions of the time period between the two samples (see

RESULTS AND DISCUSSION Richards and Leberg 1996; Luikart et al. 1999). These
earlier observations suggest that the bias is greater withAccuracy of estimates: The likelihood-based (LB)

method appeared generally more accurate than the increasing drift and is also greater when there are many
F-statistic-based method (Table 4). For example, in 13 rare alleles, which are likely to be lost through drift

(Waples 1989; Luikart et al. 1999). Table 4 supportsout of 16 sets of simulations √MSE was lower in the
the first observation: With Ne � 20 and T � 5,former than the latter (P � 0.02). The performance of

the estimators seems rather variable and may partially overestimates Ne by up to 25%, whereas it generally
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overestimates by �10% in the other two sets of simula- TABLE 5
tions. Interestingly, the degree of overestimation ap- Percentage of confidence intervals lower (L) and higher (H)
pears also to be affected by Ne or T, because the amount than the true Ne for 200 simulation estimates
of drift is otherwise the same in these two sets of simula-
tions. The Drosophila data in Table 3 support the sec- NeLB

CIsNeFk CIs
ond observation on the effect of rare alleles on .

L AF L H L HHere substantially overestimates Ne, whereas
does not ( was 191.7 and was 83.3 when true Ne Ne � 10, T � 1
was 100.8). 5 A 0.5 4.0 4.1 19.5

5a A 3.0 0.5 16.6 3.5The underestimation by is probably due to the
10 A 0.5 4.0 9.6 4.2violation of the assumptions of the coalescent in the
10 C 1.5 3.0 3.2 41.1simulated data sets and appears to be strongest when
20 A 1.0 2.5 16.6 0.0Ne is small. For example, looking at the simulations

Ne � 20, T � 5where √MSE is at reasonable levels (i.e., ignoring the
5 C 1.5 6.5 1.0 25.8three extreme cases), the underestimate is �25% for
5a A 0.0 7.0 5.9 3.8Ne � 10, 10% for Ne � 20, and �5% for Ne � 50. 5 B 0.0 1.0 1.5 12.0

Although the √MSE is too variable for any clear patterns 5a B 3.0 1.0 5.5 6.5
to be discerned, it is reasonable to assume that the 5 A 1.2 5.9 8.0 7.0

10 A 0.0 12.0 3.0 7.0reduction in bias will tend to increase the relative accu-
20 A 0.0 15.0 12.0 2.0racy of over .

5 F 0.6 3.8 6.5 7.0Precision of estimates: Because the accuracy is gener-
Ne � 50, T � 5ally good (see Table 4 and examples above), it is usually

10a A 3.5 6.5 5.0 4.4less problematic than the poor precision (see, for exam-
10 A 1.0 8.5 4.5 17.0ple, the Ne estimates for the otter data in Table 3). Thus,
20 A 0.5 7.0 4.0 8.0it is very informative to assess the relative performance

The data used here are the same as those in Table 4. L,of the methods used to compute confidence or credible
number of loci used. T, number of generations between sam-intervals (CIs): the �2 approximation (Waples 1989)
ples. AF, allele frequencies array used to simulate populationsfor the Fk-based estimator of Ne(NeFk) and the 5–95th per-
(see Table 2). CIs, confidence or credible intervals.

centiles for the likelihood-based estimator of Ne(NeLB). a 60 individuals sampled (all other simulations have 30).
The credible intervals for the likelihood-based estima-

tor of Ne( ) gave better precision than the F-statistic-
based estimator ( ) in the cases with high drift, whereas and 5 loci (first line in Table 4), it is noteworthy that
the difference in performance appeared variable (de- NeLB performed better when doubling the sample size
pending on Ne and on the number of loci) in the cases (second line) than when doubling the number of loci
with relatively low drift. In the high drift cases, for exam- used (third line). On the other hand, showed similar
ple, when true Ne � 20 (and T � 5, L � 10, AF � A), benefits from these two possible strategies for increasing
the summaries of CIs were 9.7–53.9 for NeLB and 11.3– the sampling effort. It is also important that the
74.7 for (Table 4). With real microsatellite data CIs performed slightly worse as Ne became smaller (from
from a Drosophila population of known Ne (N pedigree

e � 50 to 20 to 10). This probably results from violation of
18.8), the confidence interval for (7.9–17.6) was the assumption in coalescent methods that Ne is large.
also much smaller than that for (21.57–80.75; Table Because our simulations used a fixed heterozygosity
3). We note that the N pedigree

e was computed assuming no (H) level for all loci, we investigated if a variance of H
selection and no association among loci. However, selec- among loci changes precision of Ne estimates. We used
tion is possible (e.g., inbreeding depression, see Sac- a set of five loci having a mean H � 0.6, described in
cheri et al. 1998) and associations among loci are possi- Table 2, under the name F. The CIs obtained from
ble as Drosophila have only four chromosomes. Violations populations simulated using variable interlocus H were
of these assumptions in the Drosophila population only slightly different than those from populations hav-
could decrease the actual Ne below 18.8 (computed from ing all loci with the same H (0.6; Table 4). Thus the
pedigrees). results in Table 4 can be used as very rough guidelines

When drift is weak, it is known that the lack of drift for the number of loci and sample size needed to
signal in allele frequency data leads to bad performance achieve reasonable precision.
of the Ne estimators studied here (e.g., Luikart et al. Table 5 shows that the NeLB CIs are more often too
1999). In those weak drift cases, gave more reliable low than too high (they are biased low), whereas NeFk
confidence intervals than , but both estimators are CIs are more often too high than too low (they are
similar when at least �20 loci are used (see Table 4). biased high). The same pattern appears with real data

(see Table 3); for example, with Drosophila popula-When considering the scenario with Ne � 10, T � 1,



749Effective Population Size

tions, when the actual Ne was 18.8, the LB method credi-
ble interval was 7.9–17.6, whereas the F-statistic-based
method CI was 21.6–80.7. This is interesting for conser-
vation biology applications because overestimation is
likely to delay the detection of a small Ne.

Guidelines: To improve precision, one has four possi-
bilities: (i) Use more loci or loci with more alleles, as
this provides more independent observations of drift;
(ii) sample more individuals, as it gives better allele
frequency estimates; (iii) increase the time between
samples, as this increases the number of drift events
observed (T); and (iv) use prior knowledge on Ne in
the case of the likelihood-based method. The first three
should increase the signal-to-noise ratio in the data
(Waples 1991).

Typical users wishing to increase the precision of Ne

estimators would like to know whether increasing the
number of individuals sampled or the number of loci
is more likely to help. Indeed, new promising molecular
markers (e.g., SNPs) may allow use of dozens of loci in
the near future and could double or triple the number
of loci typically used today (5–20). However, the cost and
time needed for developing them might counterbalance
the cost of sampling more individuals while keeping
classical genetics markers. This is why performance anal-
yses like ours are needed to help make such decisions
about sampling investment. It is difficult to find dozens
of unlinked loci in most real populations, and a linkage
disequilibrium between loci is possible in small popula-
tions. Thus, more study is needed to quantify the poten-

Figure 2.—Confidence intervals for NeLB estimates from inde-tial problems caused by statistical association between pendently simulated populations with the same effective popula-
loci on the Ne estimators we studied. tion size (Ne � 20). All estimates used loci with five alleles,

For improving precision, the total number of inde- an initial heterozygosity of 0.6, and samples of 30 individuals
separated by five generations. a was generated using only 5 loci,pendent alleles (RiAi � 1, where Ai is the number of
whereas b uses 10 loci. Dashed lines show the true Ne. (a andalleles at the locus i) is more important than the number
b) The single vertical bars represent the confidence intervals

of loci. For example, using five diallelic loci (thus 5 (the 5–95th percentiles of the posterior distribution) for 40
independent alleles) leads to infinite CIs with both NeFk independent simulation estimates. The summary box chart at

the right is made from 200 independent simulations. Ninety-fiveand NeLB, whereas using five loci with 5 alleles each (20
percent of the 200 upper support limits obtained are below theindependent alleles) provided far smaller CIs (Table 4,
upper horizontal bar (see “95th percentile” arrow), and 95%lines 6 and 10, for example). In this study, adding more of the 200 lower support limits obtained are above the lower

loci or more individuals in the sample dramatically in- horizontal bar. Similarly, 80% of the upper support limits are
creased the precision on NeFk and NeLB estimates (Figure below the upper edge of the box, and 80% of the lower support

limits are above the lower box edge.2), but doubling the number of loci did not lead to
obviously better results than doubling the number of
individuals (for loci having 5 alleles), except for NeLB in
the cases of low drift. Our results provide rough ideas classical statistics about the estimated parameter Ne, as
about this issue when using realistic data sets. one gets a posterior distribution for Ne (Figure 3). One

It is interesting that increasing the number of alleles advantage of a posterior distribution is that it allows the
in the samples by having more loci with rare alleles visualization of the information brought by the data.
is now less problematic with than with . For Thus, a flat posterior means that the data contain no
example, is less biased and more precise than information in connection with the model used: See,
when using loci with some rare alleles (e.g., scheme A for example, Figure 3c. The symmetry of the curve allows
in Table 2). This is important because most alleles in us to roughly estimate the signal-to-noise ratio (large if
natural populations are at low frequency except in se- symmetrical, for example, Figure 3a; small if skewed or
verely bottlenecked populations (Luikart et al. 1998). flat, for example, Figures 3, b and c).

The Bayesian aspect of using NeMAX � 500 (i.e., settingBayesian methods give more direct information than
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10 loci), setting NeMAX to 5000 gave a summary of CIs of
3.6–3732.2 for percentiles, whereas it gave 3.6–130.6
with NeMAX � 500. This is a far better improvement than
in the case of high drift (Ne � 20, T � 5, with 10 loci),
for which case we obtained 6.3–107.8, when NeMAX was
5000 and 6.3–105.6 when NeMAX was 500. The better im-
provement observed under low drift situations was ex-
pected because likelihood curves obtained in these cases
are skewed toward high Ne, and using the NeMAX prior
information is likely to remove a greater amount of the
area under the curve (i.e., in the right tail of the curve)
than in the high drift cases. Further research is needed
to study the influence of using different prior distributions
for Ne, e.g., smaller NeMAX values.

In the context of management the Bayesian methodol-
ogy presented here may be further refined to incorporate
the methods of decision theory. For example, a loss func-
tion can be defined, which enables the posterior risk of
management decisions based on Ne to be quantified. Nev-
ertheless, for conservation biology purposes, the
method should already be useful as it gives narrower credi-
ble limits, with less chance to be biased high than low. In
conservation biology, it is critical to not overestimate Ne

because overestimation could lead managers to not detect
a small Ne (and an associated excessive loss of genetic
variation) and to consequently underestimate the popula-
tion extinction risk.
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