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ABSTRACT
With the availability of completely sequenced genomes, multilocus scans of natural variability have be-

come a feasible approach for the identification of genomic regions subjected to natural and artificial
selection. Here, I introduce a new multilocus test statistic, ln RV, which is based on the ratio of observed
variances in repeat number at a set of microsatellite loci in two groups of populations. The distribution of
ln RV values captures demographic history of the populations as well as variation in microsatellite muta-
tion among loci. Given that microsatellite loci associated with a recent selective sweep differ from the re-
mainder of the genome, they are expected to fall outside of the distribution of neutral ln RV values. The ln
RV test statistic is applied to a data set of 94 loci typed in eight non-African and two African human populations.

IT is well understood that genetic change provides phenotypic trait of potential adaptive relevance must
be known. Limited information is available, however,the basis for adaptation processes in natural and

domesticated populations. Hence, the identification of about the traits that are responsible for the adaptation
of natural populations to their environment. Thus, QTLthose genetic changes causing a phenotype with an in-

creased fitness has been of long-standing interest in mapping has only limited potential for the identification
of the genes that are involved in the adaptation processbiological sciences.

Three different approaches to identify targets of selec- of natural populations.
tion (and thus adaptation) have been pursued: (1) the The key for a multilocus screen is the idea that differ-
candidate gene approach, (2) QTL mapping, and (3) ent forces act in characteristic ways on the genome. While
the multilocus screen. genetic drift, migration, and inbreeding affect all loci

The candidate gene approach is based on an a priori to the same extent, selection is targeted to a few loci
knowledge about the function of a given gene. The ease only. Hence, a locus, which shows a significantly differ-
of PCR amplification and DNA sequencing, combined ent pattern from the remainder of the genome, is ex-
with the availability of several test statistics to evaluate pected to reside in a genomic region that has been the
the statistical significance of the observed and expected target of selection. This idea was first used by Cavalli-
patterns of DNA sequence variation (Otto 2000), has re- Sforza (1966), who calculated F values over several hu-
sulted in numerous studies using a candidate gene ap- man groups. Later, Lewontin and Krakauer (1973)
proach. Despite the unquestionable importance of these proposed a formal test statistic to identify loci that devi-
studies in understanding the partitioning of genetic vari- ate from a neutral pattern. This test statistic is based on
ation in natural populations, this approach is limited the variance of the inbreeding coefficient F, which is
to a small number of candidate genes. Hence, a screen proportional to the square of its mean value averaged
for genes involved in adaptation is difficult to pursue across loci. This test has been subsequently criticized for
as neither the traits nor their genetic basis are known. several reasons. In particular, correlations in allele fre-

QTL mapping (Lynch and Walsh 1998) is a more quencies, which could be caused by stepping-stone mi-
general approach. On the basis of the idea that many gration and phylogenetic history, will inflate the vari-
traits are of quantitative nature, QTL mapping aims to ance in F relative to the expectations. Furthermore,
partition the phenotypic variance into a genotypic and skewed allele frequencies will also affect the Lewontin-
environmental component. While this approach is be- Krakauer test (Nei and Maruyama 1975; Robertson
coming increasingly popular to identify genes contribut- 1975). Despite some recent improvements (Tsakas and
ing to a given trait, it suffers from the problem that the Krimbas 1976; Bowcock et al. 1991; Beaumont and

Nichols 1996; Vitalis et al. 2001) these test statistics
have never been widely used to infer selection from
multilocus data.

With the recent progress in genomics, various new
1 Address for correspondence: Institut für Tierzucht und Genetik, Veteri-
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and the Rondonian Surui from Brazil. More information aboutthe (almost) complete genomic sequence of various orga-
these populations is available at http://info.med.yale.edu/nisms, multilocus screens should be reconsidered.
genetics/kkidd/pops.html.

While the high density of available single nucleotide Genetic markers used: Data from a total of 94 microsatellite
polymorphisms (SNPs) makes them the marker of choice loci were used. The loci are part of the ABI linkage panels

8–11 and 13–16 covering the chromosomes 5–11. All data werefor various studies, such as linkage disequilibrium map-
taken from the Kidd lab webpage: http://info.med.yale.edu/ping, they are biallelic markers with a limited informa-
genetics/kkidd/abiinfo.html. GenBank searches were per-tion content of a single marker. Microsatellites, on the
formed before March 2001.

other hand, are less dense, but offer the advantage of Test of neutrality (ln RV test): Assuming the stepwise muta-
a multiallelic marker, which is highly informative. tion model (Ohta and Kimura 1973), neutrality, and muta-

tion drift equilibrium, the variance in repeat number (V) isIn this study I explore the potential of microsatellites
a good estimator of microsatellite variability (Moran 1975;to serve as a genetic marker for the identification of ge-
Goldstein et al. 1995; Slatkin 1995b):nomic regions that have been subject to selection. While

microsatellites are unlikely to be the target of natural se- E[V] � 4Ne�. (1)
lection, linkage to a genomic region that has been the

Ne is the effective number of diploid individuals and � thetarget of selection is expected to cause a deviation from
microsatellite mutation rate. Given that microsatellite muta-neutral expectations. The spread of a novel beneficial tion rates differ substantially among loci (Di Rienzo et al.

mutation through a population results in a reduction 1998; Harr et al. 1998), it is difficult to compare variances
of natural variability at the selected locus and flanking among loci directly. This problem can be circumvented by

calculating the ratio of the variance in repeat number in tworegions (Maynard Smith and Haigh 1974; Slatkin
populations, which is independent of the mutation rate. It1995a). The extent to which flanking sequences are
has to be noted that the expectation of RV is not identical toaffected by such a selective sweep depends largely on the the ratio of the expectations of VPop1 and VPop2. Computer

strength of selection and the recombination rate. Hence, simulations, however, indicate that over a reasonable range
a microsatellite locus linked to a beneficial mutation is of parameters the two expectations are very similar (Table 1):
expected to have a reduction in variability below neutral
expectations (Slatkin 1995a; Schlötterer et al. 1997; E[RV] � E �VPop1

VPop2
� �

4NePop1
�

4NePop2
�

. (2)
Pritchard and Feldman 1998; Wiehe 1998; Schlöt-
terer and Wiehe 1999). Thus, a multilocus screen for

A better approximation is provided by the delta methodgenomic regions subjected to selection could take advan-
(Lynch and Walsh 1998):tage of this reduction in variability.

This conceptionally simple approach is significantly
E[RV] �

4NePop1
�

4NePop2
��1 �

V(VPop2)
(4NePop2

�)2� �
4NePop1

�

4NePop2
� �1 �

1
12�. (3)hampered by the observed differences in variability among

microsatellite loci. In neutrally evolving populations dif-
Higher-order approximations given in Lynch and Walshferent coalescent times and variation in mutation rates
(1998) are not included because of the large term 1⁄12. Com-are responsible for those differences. Hence, the goal
puter simulations show that (3) provides a better fit than (2)

of a multilocus test for selected genomic regions is the (Table 1).
identification of those microsatellite loci that deviate Given the close fit of the approximation, it can be assumed

that RV is independent of the mutation rate and all loci havefrom the neutrally evolving genome. While the variation
approximately the same expectation for a comparison of twoin coalescent time can be estimated under certain as-
populations. Nevertheless, historic sampling causes variationsumptions of population history, the mutation rate of
in the coalescent times at the loci studied. Hence, a distribu-

a microsatellite locus remains an unknown parameter. tion of RV values is expected. To determine the shape of this
Here, I introduce a new test statistic, ln RV, which ac- distribution, I used computer simulations (see below) and

found that for neutrally evolving microsatellite loci the ln RVcounts for neutral variation in coalescent times and
values follow a Gaussian distribution.different microsatellite mutation rates. A microsatellite

Hence, it is possible to design a test statistic to identifydata set is used to evaluate the usefulness of the ln
individual microsatellite loci that deviate from neutral expec-

RV test statistic to identify genomic regions that differ tations. Assuming that most loci are evolving neutrally, the
between African and non-African human populations. mean and standard deviation of the observed ln RV values

could be used to describe the corresponding Gaussian distri-
bution. Using the density function of the Gaussian distribu-
tion, it is possible to assign a P value to the ln RV value of eachMATERIALS AND METHODS
locus. The P values give the probability that a given ln RV value
is consistent with the null hypothesis of a neutral evolution.Population samples: Microsatellite data from 10 different

populations were analyzed. African populations were repre- Test for normal distribution: Visual inspection of the distri-
bution of ln RV values from computer simulations suggestedsented by Biaka Pygmies from the Central African Republic

and the Mbuti Pygmies from northwestern Zaire. Non-African that they are normally distributed. For a formal test, two differ-
ent strategies were pursued. First, the nonparametric Kolmo-populations included a sample of unrelated Danish blood

donors, a moslem community from Northern Israel, Han Chi- gorov-Smirnov test was used to evaluate the distribution of
1000 simulated ln RV values. Because the tail of the distribu-nese living in the United States, native Japanese from the

Osaka area or visitors to Stanford or Yale, the Yakut from Si- tion is particularly important to define the significance level,
I also constructed a “tail test.” This test is based on two proper-beria, the Nasioi from Melanesia, the Mayan from Mexico,
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TABLE 1

Verification of approximations by computer simulation

� 1: 1 2 5 1 2 5
� 2: 10 10 10 1 2 5

ln(E[V1]/E[V2])a �2.303 �1.609 �0.693 0 0 0
ln((E[V1]/E[V2])(1 � 1/12))b �2.494 �1.744 �0.751 0 0 0
E[ln(V1/V2)]c �2.660 �1.703 �0.740 0.021 0.007 0.003
Standard deviation of 1.924 1.390 1.265 2.288 1.424 1.268

ln(E[V1]/E[V2])c

a Corresponds to Equation 2.
b Corresponds to Equation 3.
c Each simulation is based on 10,000 loci and 50 individuals.

ties of a normal distribution. First, the distribution is symmetri- linked to a genomic region subjected to directional selection.
I assumed an instantaneous selective sweep, which was simu-cal with the same number of data points in the upper and

lower tail. Second, 95% (99%) of the values of a standardized lated as a bottleneck occurring at the selected locus only.
Hence, one locus in one of the two populations was simulateddistribution are expected to fall within the interval between

�1.96 (�2.58) and 1.96 (2.58). Hence, Fisher’s exact test under the selection model, while all other loci were simulated
under the constant population size model.could be used to test whether or not the number of observa-

tions falling in the tail fits the expectations. I determined the
significance from 1000 simulated ln RV values using the 1
and 5% tail. A distribution was considered to be normally

RESULTSdistributed if the Kolmogorov-Smirnov test and the two-tail
tests were not significant (P � 0.05). Verification of the test statistic: To explore the behav-Computer simulations: The coalescent process, which de-

ior of the ln RV test statistic computer simulations werescribes the genealogical history of chromosomes, provides a
performed under the following assumptions: neutrality,very simple approach to simulate population samples (Hud-

son 1990). I made the standard assumptions associated with a constant population size, random mating, mutation
the coalescent process including neutrality, constant popula- drift equilibrium, no linkage of the microsatellite loci,
tion size, and panmixia. and independence of the two populations. Using stan-If not stated otherwise, between 100 and 10,000 loci were

dard coalescent simulations (Hudson 1990), I obtainedsimulated for two independent populations using the unbi-
the variance in repeat number for a set of microsatelliteased stepwise microsatellite mutation model (Ohta and

Kimura 1973; Goldstein et al. 1995). For each simulated loci. If not stated otherwise, computer simulations as-
locus, the ln RV test statistic was calculated. When variation sumed the unbiased stepwise mutation model (Ohta
in microsatellite mutation rates was incorporated in the com-

and Kimura 1973; Goldstein et al. 1995).puter simulations, mutation rates varied by a factor 10 drawn
Dependence on the mutation rate: Using a wide range offrom a uniform distribution. For these simulations the mean

�-values are reported. For a restricted set of parameters, com- �-values (2–100) consistently resulted in a distribution
puter simulations were run with a two-phase mutation model of ln RV values, which was very similar to a Gaussian
of microsatellites (Di Rienzo et al. 1994). In addition to single distribution (Figure 1, A and B). Based on 1000 loci and
repeat changes, a given fraction of microsatellite mutations

a sample of 100 chromosomes, no significant deviationwas allowed to mutate by more than one repeat unit. The
from normality could be detected (Kolmogorov-Smir-size change for such mutations was drawn from a uniform

distribution ranging from 1 to a specified maximum. nov and tail test, P � 0.1). This observation is consistent
The influence of demographic events, such as bottleneck with previous computer simulations (Goldstein et al.

and population expansion, was studied by a modification of 1996; Pritchard and Feldman 1998) and empirical
the constant population size model. All demographic events

reports (Harr et al. 1998), which demonstrated that lnaffect the entire genome; therefore all loci were simulated
V generally approximates a normal distribution.using the same algorithm. A bottleneck was modeled as sug-

gested by Hudson (1990). For the computer simulations of Microsatellite mutation rates vary by more than one
the population expansion, an instantaneous rise in population order of magnitude (Di Rienzo et al. 1998; Harr et al.
size was assumed. 1998). To account for this, microsatellite mutation rates

To study the effect of admixture, I modified a recently
were drawn from a uniform distribution, resulting inproposed method (Pritchard et al. 2000) and simulated 100
an up to 10-fold variation in mutation rate (Figure 1C).chromosomes from three independent populations each. A

set of randomly selected chromosomes was taken from popula- Simulations of 1000 loci for 100 chromosomes each
tion one and replaced the same number of chromosomes in did not result in statistically significant deviations from
population two. Rather than simulating two additional genera- normality (Kolmogorov-Smirnov and tail test, P � 0.1).
tions for the admixed populations, the ln RV test statistic was

Finally, I also tested the influence of differences in popu-directly calculated for populations two and three.
lation sizes among the groups compared (Figure 1D).The neutral coalescent simulations could be modified to

study the properties of a single microsatellite locus, which is The ratios of the effective population sizes were varied
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Figure 1.—Distribution of
ln RV values as obtained from
coalescent simulations of
10,000 independent microsa-
tellite loci and 100 sampled
chromosomes. The parameters
used for the simulations are
�-population1/�-population2/
variation in mutation rate
among loci (in percentages):
(A) 5/5/0; (B) 500/500/0; (C)
5/5/1000; (D) 5/500/0. The
variation in mutation rate was
simulated on the basis of a uni-
form distribution.

(from 1:1 to 1:100) and no deviation from a normal Given the large uncertainty for each of these parame-
ters, I used the reduction in variability (r) at the markerdistribution could be detected for 1000 simulated micro-

satellite loci (Kolmogorov-Smirnov and tail test, P � locus as a compound parameter in the computer simula-
tions. A strong reduction in variability could result from0.1, 100 chromosomes). Hence, using a wide range of

parameters, the ln RV test statistic can be approximated a large selection coefficient, tight linkage to the selected
site, or both. Consistent with expectation, a more pro-by a Gaussian distribution. This greatly facilitates the

design of a statistical test to detect deviation from neu- nounced reduction in variability resulted in larger num-
bers of simulation runs with significant (P � 0.05) lntrality, as no a priori knowledge about the mutation rate

or population size of the tested populations is required. RV values (Table 3). Also, the mean ln RV of the selected
locus was higher and had a lower variance when a largeDeviation from stepwise mutation model: Inference from

population data (Di Rienzo et al. 1994) and direct obser- r was used. Hence, for a recent and strong reduction
in variability, a large fraction of the selected loci will bevations (Wierdl et al. 1997; Brinkmann et al. 1998;

Harr and Schlötterer 2000) indicated that microsa- identified by the ln RV statistic. Some differences could
be detected between the simulations using differenttellite mutations are not confined to single repeat unit

changes, but could also encompass larger gains and �-values (Table 3). In comparison to the large effect
of r, the influence of � was found to be moderate.losses. To investigate whether such a modification of

the mutation process affects the ln RV test statistic, I Table 4 indicates that the power of the ln RV statistic
simulated 1000 microsatellite loci for two populations
and a sample size of 100 chromosomes. No deviation

TABLE 2from the normal distribution could be detected (Kolmo-
gorov-Smirnov and tail test, P � 0.3, Table 2). The only Variance of the ln RV test statistic based on computer simula-
notable difference was an increase in the variance of ln tions of 1000 loci in two neutrally evolving populations under
RV values with both a larger step size and a higher the two-phase microsatellite mutation model
proportion of loci not evolving by single repeat unit

K � 0 K � 0.2 K � 0.4changes (Table 2).
Power of the ln RV test statistic: To assess the power of S � 5 1.44* 1.98* 1.90*

the ln RV test statistic I simulated the variance in repeat S � 10 2.66* 1.99*
number for 100 microsatellite loci of which one microsa-

K is the probability of a mutation encompassing more thantellite locus was associated with a selective sweep. The
one repeat unit, and S is the upper boundary of size changerates of recombination between the selected site and by a single mutation event. � � 5 (in both populations). *No

the microsatellite as well as the strength of selection are deviation from normal distribution by Kolmogorov-Smirnov
and tail tests (P � 0.3).two important parameters required for model selection.
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TABLE 3

Power of the ln RV test statistic in dependence of r

� � 3 � � 6 � � 30

ln RV Variance FS ln RV Variance FS ln RV Variance FS

r � 0.1 �1.92 2.45 0.41 �2.03 1.86 0.46 �1.65 0.81 0.34
r � 0.05 �2.51 2.55 0.56 �2.48 1.95 0.63 �2.10 0.84 0.53
r � 0.01 �3.17 2.24 0.79 �3.24 1.83 0.86 �2.75 0.65 0.83

One locus was subjected to directional selection and 99 loci evolved neutrally. r, fraction to which variability
was reduced due to linkage to a selected site; FS, fraction of significant (P � 0.05) simulations; ln RV, mean
ln RV value of the selected locus over 1000 simulation runs; Variance, variance of ln RV at the selected locus
over 1000 simulation runs with t (time elapsed since the selective sweep in 2Ne) set to 0.02Ne.

significantly decreases with the time elapsed since the were used to investigate the influence of common demo-
graphic events (population expansion, bottlenecks, andselection (t) occurred. Only recent selective sweeps

could be detected reliably. This observation is fully con- admixture) on the distribution of ln RV values in neu-
trally evolving populations. In all simulations one popu-sistent with previous analytical results (Wiehe 1998).

Similar to the simulations for which r was varied, � had lation was kept at a constant size, while for the other
population either a change in size or admixture wasonly a moderate influence on the power of the lnRV

test. simulated.
Despite that computer simulations covered quite radi-Influence of the sample size: Despite the continuous im-

provement in screening technologies, the analysis of cal population size changes, for most simulations the
ln RV values were not found to deviate significantly fromlarge sample sizes is still an important hurdle in popula-

tion genetics. Therefore, it is interesting to determine a normal distribution. The most notable exceptions
were recent and strong bottlenecks in combination withthe influence of the number of sampled chromosomes

on the ln RV test statistic. The power of the ln RV test a low � (Table 6). Under such extreme scenarios, micro-
satellite loci did not recover variability, resulting in anstatistic is dependent on the shape of the distribution

of ln RV values. A larger variance in ln RV values requires excess of loci with low variability in the bottlenecked
population. Interestingly, a bottleneck occurring 0.1Nea more extreme reduction in variability to obtain sig-

nificance (Table 5). Therefore, I calculated the stan- generations ago resulted in a significant tail test (P �
0.038) for the population with a large � (Table 6). Fordard deviation of ln RV over 10,000 loci. Each ln RV

value was simulated for different sample sizes (10–1000 expanding populations only the combination of large
�-values with an older population expansion resultedchromosomes). Figure 2 clearly indicates that �30 chro-

mosomes result in a large standard deviation, which in a significant deviation from a normal distribution
(Table 7). This deviation is most likely the result of awill, in turn, result in a lower power of the ln RV test

statistic. On the other hand, samples of �50 chromo- large diversity generated in those samples, which was
not adequately sampled with 100 chromosomes. Whensomes will not significantly improve the test statistic.

Hence, only a moderate number of individuals need to the sample size was increased to 200 chromosomes, no
significant deviation from normality could be detectedbe typed to determine the significance level of the ln

RV test statistic. (data not shown). No significant deviation from a nor-
mal distribution was observed for various admixture pro-Influence of demographic events: Computer simulations

TABLE 4

Power of the ln RV test statistic in dependence of t

� � 3 � � 6 � � 30

ln RV Variance FS ln RV Variance FS ln RV Variance FS

t � 0.1 �1.46 1.31 0.26 �1.56 0.80 0.30 �1.51 0.49 0.26
t � 0.05 �1.93 1.41 0.41 �2.07 0.96 0.53 �1.89 0.53 0.42
t � 0.01 �3.17 2.24 0.79 �3.24 1.83 0.86 �2.75 0.65 0.83

One locus was subjected to directional selection and 99 loci evolved neutrally. t, time point at which selection
occurred (in 2Ne generations); FS, fraction of significant (P � 0.05) simulations; ln RV, mean ln RV value of the
selected locus over 1000 simulation runs; variance, variance of ln RV at the selected locus over 1000 simulation
runs, with r (reduction in variability due to the selective sweep) set to 0.01.
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TABLE 6TABLE 5

Power of the ln RV test statistic in relation Variance of ln RV when one population had passed
through a bottleneckto the variance of ln RV across loci

Variance in ln RV � � 3 � � 6 � � 30

No bottleneck 1.56 1.58 1.97r 2.7 1.7 1.5
t � 0.1 1.60 1.20 1.26**

0.01 0.76 0.84 0.90 t � 0.05 2.48*** 1.32 1.30
0.1 0.35 0.42 0.48 t � 0.01 5.98*** 2.02 1.48

The power is expressed as the fraction of simulations that A total of 10,000 microsatellite loci were simulated for two
identified a locus linked to a selective sweep as a significant populations and r was set to 0.1. t, time (in 2Ne) elapsed since
(P � 0.05) outlier. r, fraction to which variability was reduced the bottleneck. Significant deviations from normal distribu-
due to linkage to a selected site; the variance in ln RV was tion: **P � 0.05, tail test; ***P � 0.05, Kolmogorov-Smirnov
determined over 1000 replicate simulations of 99 microsatel- test and tail test.
lite loci. One locus was assumed to be linked to a selected
site. Different sample sizes in the computer simulations were
used to obtain the differences in ln RV.

duced a wider distribution of ln RV when one population
recently (t � 0.01) went through a bottleneck. For those
simulations, which are based on large �-values, a bottle-portions as well as different effective population sizes
neck resulted in a more narrow distribution of ln RV.of the source population (Table 8).

Population expansions were simulated using a wideThe power of the ln RV test statistic depends strongly
range of times since expansion (t) and factors (r) byon the behavior of the neutrally evolving loci. If the ln
which the population size changed. Irrespective of theRV values have a broad distribution (large variance of
parameters used, population expansions always resultedln RV), then the identification of a selected locus is
in a smaller variance of ln RV values (Table 7).more difficult. On the other hand, a very narrow distri-

Various proportions of admixture from a third popu-bution of ln RV values makes the identification of se-
lation were simulated. As expected, admixture increasedlected loci easier (Table 5). Given that the power of
the variability in the admixed population, resulting inthe ln RV test varies with the parameters used for the
a shift of mean ln RV values (Table 8). This was alsocomputer simulation (see above), a systematic power
observed if immigrants from a population with a smallerassessment is difficult. Therefore, I use the variance of
effective population size replaced a large fraction (0.25)the ln RV values as an indication for the power of the
of the population (Table 8). The variance in ln RVln RV test under various demographic scenarios.
values, however, was largely unaffected by admixture.Table 6 indicates that population bottlenecks could
Hence, the power of the ln RV test statistic is not signifi-have quite complex effects on the behavior of the ln
cantly influenced by admixture.RV test statistic. Simulations based on �-values of six pro-

Screening for adaptive mutations in the human ge-
nome: Data from mtDNA and microsatellites suggest
that human populations left Africa about 100,000 years
ago to colonize the rest of the world (Jorde et al. 1998).
This migration challenged human populations in the
form of a novel environment. Hence, a comparison of
African and non-African populations could potentially

TABLE 7

Variance of ln RV with one recently expanded population

� � 3 � � 6 � � 30

No expansion 1.56 1.58 1.97
t � 0.1, f � 10 0.97 0.95 1.36*
t � 0.1, f � 100 1.16 1.06 1.24*
t � 0.01, f � 10 1.33 1.29 1.95
t � 0.01, f � 100 0.91 0.91 1.34

Figure 2.—Influence of the sample size (in chromosomes)
on the standard deviation of the ln RV test statistic. Standard A total of 10,000 microsatellite loci were simulated for two

populations. t, time (in 2Ne) since the expansion; f, factor bydeviations were measured on 10,000 independently simulated
microsatellite loci using the parameters 5/5/0 (see Figure 1 which the population expanded. Significant deviations from

normal distribution: *P � 0.05, Kolmogorov-Smirnov test.for further explanations).
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TABLE 8

Mean ln RV values of computer simulations with one
population experiencing admixture from a third population

(variance of ln RV over 1000 loci)

Proportion of admixture

� 0 0.05 0.10 0.25

5 0.04* 0.22* 0.28* 0.45*
(1.57) (1.20) (1.37) (1.48)

20 0.47* 0.72* 1.08*
(1.48) (1.17) (1.46)

2 0.11* 0.14* 0.18*
(1.43) (1.39) (1.33)

� of the two test populations was set to 5, while � from the
source population from which admixture occurred was varied.
Simulations were based on 100 chromosomes per population.
*P � 0.3, no deviation from normal distribution by Kolmo-
gorov-Smirnov and tail tests.

identify genomic regions that were involved in adapta-
tion processes in the two groups. Using the ln RV test
statistic, it should be possible to identify some candidate
regions bearing an adaptive mutation. In this report I
used a data set consisting of 94 microsatellite loci, which
were typed in 10 human populations, 2 African and 8
non-African. To apply the ln RV test statistic, I averaged
the observed variances in repeat number in the non-
African and African groups for each locus. The distribu-
tion of the ln RV values of the 94 microsatellite loci
followed a Gaussian distribution (Kolmogorov-Smirnov
test, P � 0.94). Out of the 94 loci analyzed, 4 loci had a
ln RV value located outside the 95% confidence interval.
Two loci had more variation in the non-African popula-
tions than expected by the level of variation detected

Figure 3.—Allele frequency distribution at the two microsa-in African populations (D10S249, P � 0.002; D6S305, tellite loci with the most extreme ln RV values in African and
P � 0.023). Microsatellite loci D6S462 (P � 0.007) and non-African populations. ( ) Africa, (�) non-Africa.
D10S197 (P � 0.018) had a reduced variability in non-
African populations. Because the number of outliers is
fully consistent with the neutral expectations, I evalu- multiple pairs of independent populations are com-
ated the allele distribution of the two loci, which showed pared, neutral outliers are expected to be confined to
the strongest deviation from the remainder of the ge- one comparison, but selected loci should be significant
nome (D10S249 and D6S462). Figure 3 shows the allele in all comparisons. Despite that neither African nor
distribution of both loci in the pooled African and non- non-African populations are independent, I compared
African populations. Consistent with expectations un- all African populations against each non-African popu-
der the selective sweep hypothesis, each locus showed lation. In 16 pairwise comparisons of 94 microsatellite
a strongly peaked allele distribution in the population loci, 72 significant outliers were marked by the ln RV
with reduced variability, while the other population had test. The probability of observing x significant ln RV
a scattered allele distribution. tests for a given locus could be calculated by a binomial

Until now, populations were jointly analyzed as Afri- distribution. Loci D6S462 and D10S249 were significant
can or non-African groups. An alternative approach for in 9 and 16 comparisons, respectively, which would be
the identification of loci that differ between African and extremely unlikely in 16 independent comparisons (P �
non-African populations would be to make individual 0.0000001). While the P values should not be taken at
comparisons of all African against all non-African popu- face value, given that the comparisons were not indepen-
lations. Even under neutrality, 5% of the loci will be dent, Figure 4 clearly indicates that both loci are differ-

ent from the remainder of the genome.identified as significant outliers by the ln RV test. When
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at a genomic region may be detected by a deviation
from the remainder of the genome. Computer simula-
tions have been used to study population expansion,
bottlenecks, and admixture. Two different aspects of
the ln RV test were examined under those demographic
scenarios: first, whether ln RV remains normally distrib-
uted, and second, the power of the ln RV statistic.

Distribution of ln RV: For some extreme demographic
events, such as a recent and strong bottleneck, ln RV is
no longer normally distributed (Table 6). This deviation
is caused by a large number of microsatellite loci, which
have lost almost all variability. It is obvious, however,
that a data set containing a large number of loci with
no or very little variability cannot be informative to infer
a recent selective sweep at one or a few loci by the
reduction in variability. Therefore, I do not consider
this deviation as a major limitation for the application
of the ln RV test. More serious is the deviation from
normality that was observed for an old population

Figure 4.—Frequency distribution of the number of sig- expansion for highly variable loci (large �). While a
nificant (P � 0.05) pairwise comparisons for all possible com- larger sample size could solve this problem, these simu-
parisons of African and non-African populations. lations indicated that it may be advisable to test the

obtained ln RV values for normality before applying the
ln RV test.DISCUSSION

Overall, the distribution of ln RV values could be
The interpretation of natural variability has been of approximated by a normal distribution for most of the

long-standing interest in population genetics. Natural parameters of the demographic scenarios considered,
variability at a given locus is governed by various factors: suggesting that the ln RV test could also be applied for
mutation rate, effective population size, historic sam- a wider range of demographic events than just constant
pling, population demography, and selection. Any at- population sizes.
tempt to identify targets of selection in the genome In this article I did not consider the effect of popula-
is challenged by the need to account for the pattern tion substructure within each of the two populations
expected under neutrality. In principle, each site in the compared. While further computer simulations are re-
genome may have its own specific neutral mutation rate. quired to determine influence of population structure
On the other hand, effective population size, demo- on the distribution of ln RV values, it has to be noted
graphic history, and historic sampling variation are that the effective population sizes can be determined
shared across sites (at least for autosomes). Hence, it for any hierarchical level of population structure (Ches-
would be desirable to have a joint estimator of the pa- ser et al. 1993). As under neutrality all autosomal loci
rameters common to all loci and to adjust for differences have the same effective population size, the ln RV test
in mutation rate. statistic is most likely not affected by population sub-

The central variable of the new test statistic is ln RV. structure.
For every microsatellite locus analyzed, the ratio of the The independence of the ln RV test statistic for most
variance in repeat number is calculated for two popula- of the demographic scenarios analyzed is in sharp con-
tions. This ratio has the same expectation independent trast to many other statistical tests to identify selection,
of the mutation rate of a given locus. Hence, ln RV such as tests for linkage disequilibrium (Depaulis 1998;
values calculated for a number of microsatellite loci are Andolfatto et al. 1999; Kohn et al. 2000; Vieira and
independent of the mutation rate, but reflect popula- Charlesworth 2000). These tests could be highly sen-
tion-specific parameters including effective population sitive to admixture, which significantly complicates the
size and historic sampling. Computer simulations indi- identification of selected regions in the genome.
cate that the distribution of ln RV follows to a very good Power of the ln RV test: I estimated the power of the ln
approximation a Gaussian distribution. Thus, the mean RV test for the three demographic scenarios considered
and standard deviation summarize the neutral expecta- by the variance of ln RV values. Given that for constant
tions of ln RV for a set of two populations. population sizes, the power of the ln RV statistic in-

Influence of demographic events on the ln RV test creased with a smaller variance of ln RV (Table 5), I
statistic: In contrast to selection, demographic events assumed that this also applies to other demographic
affect the entire genome. Hence, similar to the demo- scenarios as long as ln RV follows a normal distribution.

Exact power estimates, however, would require com-graphic model of a constant population size, selection



761Multilocus Screen for Selection

puter simulations of the joint effects of selection and a thermore, a comparison of the allele distribution will
also be informative (see below).given demographic event. While this may lead to slightly

different power estimates, the overall picture is unlikely The ln RV test statistic uses the mean and standard
deviation of the observed ln RV values to identify thoseto be affected.

For all parameters evaluated population expansion loci that deviate from the remainder of the genome.
The probability for each locus to deviate from the expec-resulted in a more narrow distribution of ln RV values

(Table 7), suggesting a higher statistical power to detect tation can be directly inferred from the density function
of the normal distribution. A larger number of locilocal selective sweeps in growing populations. Admix-

ture from a distantly related population (not included results in a more accurate estimate of the mean and
standard deviation, but also a larger number of loci within the analysis) increases variability at all loci, resulting

in a broader distribution of ln RV values (Table 8). ln RV values located in the tail of the normal distribu-
tion. A generally accepted solution to this problem isHence, admixture reduces the power of the ln RV test

statistic. The effect of bottlenecks was less clear. For the use of a smaller �-value, which reduces the number
of false positives. Hence, the identification of loci sub-high �-values a bottleneck consistently resulted in a lower

variance of ln RV when compared to a constant popula- jected to selection becomes more difficult and the type
2 error increases. Computer simulations indicated thattion size. Simulations based on intermediate �-values

showed an increased variance of ln RV for very recent even an �-value of 0.05 results in a considerable type 2
error (Tables 3 and 4). A more practical approach isbottlenecks only (Table 6).

Limitations of the ln RV test statistic: Historic sam- to use the ln RV test statistic as a first pass analysis for
the identification of candidate regions. Whether or notpling is an important source of fluctuating variability in

the genome. The ln RV test statistic uses the ratio of the an identified region has been subject to a selective sweep
could then be further investigated by the analysis ofobserved variability at a given locus in two populations.

Given that both populations are subjected to historic flanking microsatellite loci, which are also expected to
show the signature of a selective sweep (Wiehe 1998).sampling, the ln RV test statistic has a considerable vari-

ability determined by historic sampling. The computer Also, sequence analysis at the candidate locus could
provide further evidence for a selective sweep whensimulations assumed two completely unrelated popula-

tions, which maximizes the variation in ln RV due to test statistics specific for sequence polymorphism are
applied (Otto 2000). Additional evidence for a selec-historic sampling. Hence, less pronounced selective

sweeps are very difficult to identify. This is reflected by tive sweep could be obtained from those loci that have
already recovered some variability after the sweep. Thethe requirement of a strong recent reduction in variabil-

ity to identify a selected locus with the ln RV test statistic. allele distribution of a locus that starts accumulating
variation after the fixation of a single allele is stronglyOne possible approach to improve the power of the ln

RV test statistic would be the comparison of two closely peaked. The more mutations occurred after the fixa-
tion, the broader the distribution becomes, until therelated populations. Closely related populations share

a large fraction of their genealogy at each locus; hence, random loss of alleles decays the single peaked distribu-
tion. Hence, after a sweep, the allele spectrum shouldthe variance of ln RV is expected to be significantly

smaller than for distantly related populations. Thus, loci be tighter than in nonsweep populations. Following the
same rationale, multilocus test statistics based on thethat have been exposed to a different selection regime

in the two closely related populations should be easier allele frequency distribution have been suggested to
infer population size changes (Beaumont 1999; Reichto detect than in a comparison of two distantly related

populations. Nevertheless, further simulation studies et al. 1999; Garza and Williamson 2001). The power
of an allele frequency distribution for a single locus,are required to verify the behavior of the ln RV test

statistic for closely related populations or populations however, is generally weak and could only be used as
confirmatory evidence.connected by gene flow.

The ln RV test statistic makes the important assump- Finally, the analysis of independent pairs of popula-
tions could serve as an additional tool for the verificationtion of constant mutation rates across populations. This

assumption could be easily violated given the strong of an identified deviation from neutral expectations.
While outliers are expected to occur in a single compari-correlation between microsatellite mutation rate and

repeat number (Schlötterer et al. 1998; Harr and son only, selected loci should be detected in most of the
pairwise comparisons. Assuming independence amongSchlötterer 2000). Furthermore, interruptions in the

microsatellite repeat also reduce microsatellite muta- the populations the probability of observing multiple
significant tests could be tested on the basis of the bino-tion rates (Weber 1990). If the two populations differ

in the average repeat number or an interruption in the mial distribution. In reality, however, populations are
rarely independent, as they share a common history.repeat structure is more frequent in one population

than in the other, this could result in a significant ln Nevertheless, our analysis indicated that most of the
significant ln RV tests between African and non-AfricanRV test statistic. Experimental evidence, such as se-

quencing of alleles, could provide further insight. Fur- populations occurred in a limited number of compari-
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sons only. Out of 19 loci for which a significant ln RV (GDB) search did not indicate known genes mapping
to D6S462. Further analysis has to await the progress oftest was recorded, 11 loci were found to be significant

in 1 or 2 comparisons only. While it is impossible to the analysis of the human genome.
In contrast to the expectations for a selection eventrule out that some form of local selection has acted on

those loci, the more likely explanation is that they are associated with the human habitat expansion out of
Africa, the locus that deviates most from the remainderfalse positives. In any case, out of 16 tests the two candi-

date loci D6S462 and D10S249 had a significant ln RV of the genome, D10S249, harbored a surplus of variabil-
ity in non-African populations. Based on the allele spec-value in 9 and 16 comparisons, respectively.

Much of the theory of the ln RV test is based on the trum at locus D10S249 (Figure 3), it is very likely that
this locus has been subjected to a recent selective sweep.variance in repeat number at mutation drift equilib-

rium. While the high mutation rate of microsatellites A BLAST search of the human subset of GenBank failed
to identify locus D10S249 in the published draft of therequires less time to reach mutation drift equilibrium,

most natural populations are not expected to meet this human genome sequence. Thus, no information about
flanking sequences is available. A GDB search indicatedcondition. Computer simulations indicated that the nor-

mal distribution of ln RV seems to be quite robust to that locus D10S249 is located in the amplimer AFM207-
wd12. The gene mapping closest to microsatellite D10-demographic events. Furthermore, no deviation from

normality could be detected for the ln RV values of S249 is called Severe Combined Immunodeficiency,
Athabaskan type (SCIDA), a genomic region associatedhuman populations. Further studies, in particular ex-

perimental ones with a large number of loci analyzed, with both T-cell and B-cell immunity (Murphy and
Stringer 1986). V(D)J recombination, which accountswill provide further insight into the behavior of the ln

RV test statistic in natural populations. for the diversity of T-cell receptor and immunoglobulin-
encoding genes, is initiated by a specific double-strandGenomic regions associated with selective sweeps in

human populations: The simple model of out-of-Africa- break. The general DNA repair machinery is responsible
for the resolution of this break. Previously, it was shownassociated adaptive mutations would have predicted

more loci with significantly reduced variability in non- that an essential DNA repair/V(D)J recombination
gene lies in the same region as SCIDA (Moshous et al.African populations than in African populations. In the

human data set of 94 microsatellite loci, however, the 2000). While it remains purely speculative until further
proof (which will become feasible with the availabilitysame numbers of outliers were observed on both sides

of the ln RV distribution. of the genomic sequence of this region), it is conceiv-
able that a gene involved in immune defense is a poten-Locus D6S462 showed the strongest reduction in vari-

ability in the non-African populations, suggesting that tial target for adaptive mutations. Populations are con-
stantly challenged by pathogen pressure and one waythis locus may have been linked to a genomic region that

has swept in non-African populations. The approach to counter this pressure is the acquisition of novel muta-
tions to control pathogens.to combining populations in African and non-African

groups requires a consistently low level of variation Perspective: The introduced test statistic provides a
means to search multilocus data to identify those lociacross populations to result in a significant ln RV value.

A separate analysis of the eight non-African populations that show a deviation from neutral expectations in one
population (group). Given the inherent problem of aagainst the pooled African populations indicated that
multilocus test statistic and the high type 2 error of theeach of the non-African populations had a reduced vari-
ln RV test statistic, it is obvious that loci identified asability at locus D6S462 (P � 0.065, one-sided test). Given
outliers by the ln RV test are no final proof of selection,that the eight non-African populations covered a wide
but could serve as a starting point for subsequentrange of human diversity outside of Africa, the strong
studies.reduction in variability in the non-African populations
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with the colonization. Further evidence for a recent the web. Many thanks go to the C.S. lab, C. Haley, and R. R. Hudson
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Muir provided comments on the manuscript. Special thanks to T.allele distribution. While the African population showed
Wiehe for pointing out the glitches of the expectation of the ratio

a scattered allele distribution, the non-African popula- of two random variables. R. Bürger is acknowledged for his help in
tions had a highly peaked allele distribution (Figure 3), approximating the expectation of the ratio of two random variables.

Three anonymous reviewers provided helpful comments, which im-a pattern that would be expected for an allele that has
proved the manuscript. W. Schlötterer helped with the C code. C.S.swept through the population and is starting to accumu-
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