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ABSTRACT
Linkage analysis and allelic association (also referred to as linkage disequilibrium) studies are two major

approaches for mapping genes that control simple or complex traits in plants, animals, and humans. But
these two approaches have limited utility when used alone, because they use only part of the information
that is available for a mapping population. More recently, a new mapping strategy has been designed to
integrate the advantages of linkage analysis and linkage disequilibrium analysis for genome mapping in
outcrossing populations. The new strategy makes use of a random sample from a panmictic population
and the open-pollinated progeny of the sample. In this article, we extend the new strategy to map
quantitative trait loci (QTL), using molecular markers within the EM-implemented maximum-likelihood
framework. The most significant advantage of this extension is that both linkage and linkage disequilibrium
between a marker and QTL can be estimated simultaneously, thus increasing the efficiency and effectiveness
of genome mapping for recalcitrant outcrossing species. Simulation studies are performed to test the
statistical properties of the MLEs of genetic and genomic parameters including QTL allele frequency,
QTL effects, QTL position, and the linkage disequilibrium of the QTL and a marker. The potential utility
of our mapping strategy is discussed.

GENETIC mapping of quantitative trait loci (QTL) mapping, the methodology of genetic mapping includes
two main areas: linkage analysis and association studieshas become a routine tool for the genetic study

of plants, animals, and humans. With such a tool, many (reviewed by Olson et al. 1999). Linkage analysis is based
on the recombination of nonalleles at a marker andfundamental genetic questions including the inheri-

tance mode of a quantitative trait, genotype � environ- QTL during meiosis and, thus, can directly estimate the
map distance (measured by recombination fraction) be-ment interaction, and the genetic basis of heterosis can

be addressed (reviewed by Tanksley 1993; Templeton tween the two syntenic loci. However, it is difficult to de-
tect recombination events between closely spaced (�1cM)1999; Wu et al. 2000; Mackay 2001). Genetic mapping

also has potential to reshape our understanding of com- loci when there are a limited number of meioses oc-
curring in a mapping population (e.g., Hästbacka etplex biological phenomena, such as human diseases and

adaptive plasticity (the capacity of a given individual to al. 1992, 1994; Darvasi et al. 1993; Long et al. 1995).
Association studies, on the other hand, use all recombi-change its phenotype across different environments).

Most of these phenomena are now viewed as having nations generated since nonrandom association of non-
alleles at a marker and QTL (commonly referred to assome genetic components and, therefore, can be modi-

fied or changed genetically for a feature beneficial to linkage disequilibrium) was introduced into a popula-
tion, thus increasing the precision of the estimate ofhumans. It can be anticipated that genetic mapping will

play an increasingly important role in unraveling the the QTL location (Risch and Merikangas 1996; Rabi-
nowitz 1997; Xiong and Guo 1997). Yet, the localiza-genetic basis of quantitative variation in the next decade

with the advent of novel DNA-based molecular marker tion of QTL using linkage disequilibrium mapping is
ineffective when the significant linkage disequilibriumtechnologies, such as single-nucleotide polymorphisms
detected between a marker and QTL results from the(SNPs; Wang et al. 1998).
recent occurrence of disequilibrium rather than fromBecause of differences in biological properties of study
a tight linkage between the loci. Such a spurious associa-materials, considerable effort is being made to develop
tion detected even when the marker is not physicallystatistical genetic mapping methods for specific species
linked to any causative loci may be due to populationor populations. In terms of the genetic principles behind
subdivision and admixture. Current population- (Gor-
don et al. 2000; Luo et al. 2000) or family-based analyses
[e.g., the transmission/disequilibrium test (TDT); Spiel-
man and Ewens 1996; Allison 1997] of linkage disequi-1Corresponding author : Department of Statistics, 533 McCarty Hall C,

University of Florida, Gainesville, FL 32611. E-mail: rwu@stat.ufl.edu librium cannot distinguish strong disequilibrium and
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loose linkage from weak disequilibrium and tight link- QTL. The frequencies of alleles Mr (r � 1, 2) and Q s

(s � 1, 2) in the population are denoted by pr and qs ,age (Whittaker et al. 2000).
The limits of linkage analysis and linkage disequilib- with � 2

rpr � 1 and � 2
s qs � 1. The population frequen-

of one-locus genotypes Mr1Mr2 (r1 � r2 � 1, 2) andrium mapping when they are used alone can be over-
come by a new strategy for taking advantage of each Q s1

Q s2 (s1 � s2 � 1, 2) are denoted by Pr1r2 and Q s1s2, with
approach in genetic mapping. Such a joint linkage and �2

r1�
2
r2 Pr1r2 � 1 and �2

s1�
2
s2

Q s1s2 � 1. The nonallelic fre-
linkage disequilibrium mapping strategy has been re- quencies from the marker and QTL are not independent
cently devised by Wu and Zeng (2001) in that a random of each other in the population, with the coefficient of
sample from a natural population and the open-polli- gametic linkage disequilibrium denoted by Drs.
nated progeny of the sample were analyzed jointly. This

If the marker and QTL are located on the same region
strategy was established on the principle of gene trans-

of a chromosome, they are likely linked with recombina-
mission from the parental to progeny generation during

tion fraction �. On the basis of population genetic theory
which the linkage between a marker and QTL is broken

(Nagylaki 1992), it is easy to derive the population fre-
down due to meiotic recombination. It can therefore

quencies of four two-locus gametes (haplotypes) MrQ sdivide the composite measure of linkage disequilibrium
(r, s � 1, 2), which are randomly combined to form the

from traditional population- or family-based association
current generation t, as

tests relying on recombinations in a single generation
into two components: the linkage between the marker p (t)

rs � p (t)
r q (t)

s � (�1)r�sD (t)
rs , r, s � 1, 2, (1)

and QTL and their linkage disequilibrium created at a
where D (t)

rs has a bound of max[�p (t)
1 q (t)

1 , �p (t)
2 q (t)

2 ] �historic time. With the measures of these two components,
D (t)

(rs) � min[p (t)
1 q (t)

2 , p (t)
2 q (t)

1 ] (Weir 1996). Through freeone can clearly determine the mechanistic basis of a sig-
combinations, these gametes from the maternal and pa-nificant disequilibrium detected between a marker and
ternal sides produce nine different progeny genotypesQTL, which increases the feasibility for fine mapping
Mr1

Mr2
Q s1

Q s2
(r1 � r2, s1 � s2 � 1, 2 denote the twoQTL affecting a quantitative trait.

alternative alleles of the marker and QTL), whose popu-In this article, we extend the joint linkage and linkage
lation frequencies P (t)

r1r2s1s2
in the current generation t aredisequilibrium mapping strategy to map QTL segregat-

calculated as products of the population frequencies ofing in a natural population. The extension allows for si-
the maternal and paternal gametes (Table 1). Table 1multaneous estimates for a number of genetic and geno-
also gives the (conditional) frequencies of the four ga-mic parameters including the allele frequency of QTL,
metes produced by each of the nine genotypes for theits effects, its location, and its population association with
next (progeny) generation t � 1. As shown by popula-a known marker locus. Our analysis is performed within
tion genetic theory, the amount of linkage disequilib-the maximum-likelihood framework, implemented with
rium between any two loci is reduced at the rate ofthe expectation-maximization (EM) algorithm. The sta-
recombination frequency after the population mates attistical properties of the estimates for different genetic
random for one generation (Nagylaki 1992). There-parameters are studied through extensive simulations.
fore, the coefficient of gametic linkage disequilibriumA comparison of the power for detecting linkage dis-
in the progeny generation t � 1 is changed to be D (t�1) �equilibrium is made on the basis of traditional disequi-
(1 � �)D (t). Thus, the population frequencies of two-librium analyses and the joint linkage and linkage dis-
locus gametes MrQ s (r, s � 1, 2), which are randomlyequilibrium analysis proposed here.
combined to form the progeny generation t � 1, are
expressed as

STATISTICAL METHOD
p (t�1)

rs � p (t)
r q (t)

s � (�1)r�s(1 � �)D (t)
rs , r, s � 1, 2. (2)

Population structure theory: Outcrossing species likely
have heterogeneous genomes, on which both dominant For plants, all genetic information about the progeny

generation is contained in seeds. If there is no overlap-and codominant loci are distributed. For codominant
loci, there are often a high but variable number of ping in reproduction between parental and progeny

generations, the frequencies of the genotypes at thealleles from locus to locus (Weber and Wong 1993;
Pfeiffer et al. 1997). To simplify the descriptions of our marker and QTL are the products of the frequencies

of the corresponding gametes.mapping model, we consider only biallelic codominant
loci in this article. Although straightforward in princi- Sampling theory: Assume that we randomly select M

unrelated individuals from the population and collectple, extensions to other marker types, such as dominant
or missing markers and multiallelic markers, require the seeds from the selected individuals. The seeds are

germinated and grown into seedlings for a progeny test,particular mathematical manipulations.
Consider one marker (M) and one QTL (Q), both which is a regular procedure for traditional quantitative

genetic experiments (McKeand and Bridgwater 1998).segregating in a random mating population at Hardy-
Weinburg equilibrium. The two alleles are denoted by Both the selected individuals and their progeny are

genotyped for molecular markers. Assuming the speciesM1 and M2 at the marker locus and by Q 1 and Q 2 at the
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TABLE 1

Probabilities of the gamete genotypes produced by mother plants with different genotypes for
the marker and QTL

Mother Gameteb

Genotype Frequency a M1Q 1 M1Q 2 M2Q 1 M2Q 2

M1M1Q 1Q 1 P (t)
1111 � p 2(t)

11 1 0 0 0

M1M1Q 1Q 2 P (t)
1112 � 2p (t)

11p
(t)
12

1
2

1
2

0 0

M1M1Q 2Q 2 P (t)
1122 � p 2(t)

12 0 1 0 0

M1M2Q 1Q 1 P (t)
1211 � 2p (t)

11p
(t)
21

1
2

0 1
2

0

M1M2Q 1Q 2 P (t)
1212 � 2(p (t)

11p
(t)
22 � p (t)

12p
(t)
21)

1
2
(1 � �) 1

2
�

1
2
�

1
2
(1 � �)

M1M2Q 2Q 2 P (t)
1222 � 2p (t)

12p
(t)
22 0 1

2
0 1

2

M2M2Q 1Q 1 P (t)
2211 � p 2(t)

21 0 0 1 0

M2M2Q 1Q 2 P (t)
2212 � 2p(t)

21p
(t)
22 0 0 1

2
1
2

M2M2Q 1Q 2 P (t)
2222 � p 2(t)

22 0 0 0 1

a p (t)
rs ’s are the population frequencies of marker-QTL gametes, MrQ s , which are randomly combined to

produce diploid plants in the mother generation t.
b � is the recombination fraction between the marker and QTL.

studied is dioecious, the genotypes of the seeds from a noted by N �1�2
r1r2i , where the subscripts stand for the marker

selected individual are derived from its own (maternal) genotype of the mother and the superscripts for the
gametes each with a frequency given in Table 1 and marker genotypes of its progeny (r1, r2, �1, �2 � 1 or 2
the paternal gametes from the pollen pool each with a constrained by Expression 3). The conditional probabil-
frequency described by Equation 2. Thus, every selected ities of the QTL genotypes given each two-level marker
individual represents an open-pollinated (i.e., half-sib) genotype are given in Table 2 (see appendix a for the
family with the common mother and different (un- derivations). These conditional probabilities are used
known) fathers. On the basis of the sampling theory, the to calculate the likelihood of the phenotype for the trait
M selected individuals include three different marker in an open-pollinated progeny design.
genotypes, with the number denoted by Mr1r2

for geno- Estimation theory: Suppose there is a segregating QTL
type Mr1

Mr2
, and the genotypic frequencies in the sam- responsible for a quantitative trait in the half-sib fami-

pled population are P (t)
11 � p2(t)

1 for M1M1, P (t)
12 � 2p (t)

1 p (t)
2 lies. The phenotypic value of offspring j in an open-

for M1M2 , and P (t)
22 � p 2(t)

2 for M2M2. The progeny from pollinated progeny test at the putative QTL is described
the selected individuals (called mothers) with different by a simple statistical model
marker genotypes are different in genotype composi-

yj � 	 � 
x j � �z j � εj, (4)tion and genotype frequency (Table 2). In other words,
the marker genotype of an offspring (go) is dependent

where 	 is the overall mean, xj and z j are the indicatoron the marker genotype of its mother (gm):
variables describing the genotypes of the QTL,

go � �M1M1 or M1M2 if gm � M1M1

M1M1, M1M2 or M2M2 if gm � M1M2

M1M2 or M2M2 if gm � M2M2 . x j � �2 for QTL genotype Q 1Q 1

1 for QTL genotype Q 1Q 2

0 for QTL genotype Q 2Q 2
(3)

Thus, different mother marker genotypes and different
and

progeny marker genotypes form seven unique two-level
marker genotypes, i.e., {M1M1 � M1M1}, {M1M1 � M1M2},
{M1M2 � M1M1}, {M1M2 � M1M2}, {M1M2 � M2M2}, z j � �0 for QTL genotype Q 1Q 1

1 for QTL genotype Q 1Q 2,
0 for QTL genotype Q 2Q 2{M2M2 � M1M2}, and {M2M2 � M2M2}. The number of

the progeny of marker genotype M�1
M�2

produced by
and εj is the random error, εj � N (0, � 2). The genotypicthe ith mother plant of marker genotype Mr1

Mr2
is de-
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values of Q 1Q 1, Q 1Q 2, and Q 2Q 2 are denoted by 	 � The existence of the QTL under consideration can
be tested by formulating the two hypotheses2
, 	 � 
 � �, and 	, respectively, where 	 is the

population mean and 
 and � are the additive and
H0: 
 � � � 0dominant effects of the QTL. The unknown genetic

parameters specifying the genetic architecture of the H1: at least one of them is not equal to zero. (7)
trait in the progeny population are included in the

A log-likelihood ratio (LR) test statistic for the testvector  � [p (t)
r q (t)

s D (t)
rs � 	 
 � � 2]T. The maximum-

of these two hypotheses is calculated usinglikelihood estimates (MLEs) of these parameters can be
obtained by maximizing the likelihood of the phenotype

LRQ � �2 log ��(y, M|̃)
���0

�(y, M|̂) �,(y) and marker (M) data. The likelihood of the pheno-
typic trait and the marker genotype data observed in
the open-pollinated progeny can be written as a mixture where ̂ and ̃ denote the MLEs of the unknown vector
model, under the full model (H1) and reduced model (H0),

respectively, and LRQ asymptotically follows the �2 distri-
�(y, M|) � �

N

j�1
� �

2

��0

h �
j f�(yj)� bution with 2 d.f. The hypotheses for testing the linkage

disequilibrium detected in the progeny generation t �
1 can be formulated as

� �
M11

i�1
� �

N 11
11(i)

j�1
�
2

��0

h 11�
11j f�(yj)� � �

N 12
11(i)

j�1
�
2

��0

h 12�
11j f�(yj)� if gm � M1M1

H0: (1 � �)D (t) � 0

H1: (1 � �)D (t) � 0, (8)
� �

M12

i�1
� �

N 11
12(i)

j�1
�
2

��0

h 11�
12j f�(yj)� � �

N 12
12(i)

j�1
�
2

��0

h 12�
12j f�(yj)� � �

N 22
12(i)

j�1
�
2

��0

h 22�
12j f�(yj)�

with the corresponding LRD approximately �2 distrib-
uted with 1 d.f. (Weir 1996). The acceptance of the

if gm � M1M2 null hypothesis of (8) may be due to either no linkage
disequilibrium or a combination of loose linkage and
weak linkage disequilibrium. The rejection of the null

� �
M22

i�1
� �

N 12
22(i)

j�1
�
2

��0

h 12�
22j f� (yj)� � �

N 22
22(i)

j�1
�
2

��0

h22�
22j f�(yj)� if gm � M2M2 , hypothesis of (8), on the other hand, exclusively reveals

strong linkage disequilibrium with or without tight link-(5)
age. Further hypotheses for testing whether there is a

where N is the total number of offspring (seeds) in the significant linkage can be formulated as
open-pollinated progeny design, h�

j is the conditional
H0: � � 0.5probability of the �th QTL given a two-level marker

genotype for the jth offspring (� � 0, 1, 2), h�1�2�
r1r2j is spe- H1: � � 0.5, (9)

cified for the offspring marker genotype M �1M �2 and
with the LRR also approximately �2 distributed with 1

mother genotype Mr1
Mr2

(Table 2), and f�(yj) is the nor- d.f. (Terwilliger 1995). If the null hypothesis of (8)
mal distribution density function having the form is rejected and the null hypothesis of (9) is accepted,

then a significant linkage disequilibrium detected be-
tween a marker and QTL in the progeny generation isf�(yj) �

1

√2��
exp �� (yj � 	�)2

2� 2 �,
not due to their strong linkage. In this case, results from
pure linkage disequilibrium mapping (Luo et al. 2000;	� � 	 �
 � (2 � �)��, � � 0, 1, 2.
Meuwissen and Goddard 2000) are ineffective for ge-

Calculating the MLEs of  is equivalent to differenti- nome mapping because the linkage disequilibrium de-
ating the log-likelihood of Equation 5 with respect to each tected is spurious. If a tight linkage is detected, one can
of the unknown genetic parameters, setting the deriva- further test whether such a linkage is tight enough to
tives to equal zero, and solving the log-likelihood equa- the fine mapping of QTL. This test can be carried out
tions. On the basis of these procedures, we can obtain by letting � equal a particular small value, e.g., 0.01. In
the explicit ML estimator of marker allele frequency p1: summary, by testing simultaneously for the significance

of linkage and linkage disequilibrium, our analytical
approach increases the predictability of gene mappingp̂1 �

1
2N ��

M11

i�1

(2N 11
11i � N 12

11i) � �
M12

i�1

(2N 11
12i � N 12

12i) � �
M 22

i�1

N 12
22i�.

in a natural population.
(6)

For the other parameters  � [q (t)
s D (t)

rs � 	 
 � � 2]T, it
SIMULATIONis not possible to derive explicit ML estimators. To ob-

tain MLEs for these parameters, the EM algorithm (Demp- The statistical properties of the mapping method pro-
ster et al. 1977) is used, which initializes from an arbitrary posed in this article are examined by using simulated

examples. Suppose the mother plants from which seedsvalue of each of the parameters (appendix b).



784 R. Wu, C.-X. Ma and G. Casella

are collected and grown into seedlings are randomly sam- in Table 1. The MLE of the marker allele frequency is
pled from a panmictic population. A biallelic marker estimated directly, using Equation 6. The estimation for
locus and a biallelic QTL, each of which is segregating the other parameters is viewed as a missing data prob-
in the population, are genetically associated. A number lem. In general, the EM algorithm derived in this article
of factors may affect the precision and power of the can provide the unknown parameters with consistent
method to detect the putative QTL, which include sam- MLEs compared to their actual values. Yet, the precisions
pling schemes, the degree of marker and QTL segrega- of parameter estimations in terms of the standard errors
tion, the degree of linkage and linkage disequilibrium, estimated from multiple simulation runs are greater when
and the mode of QTL gene action. using a sampling scheme of few large families (10 �

The effects of sampling schemes and population het- 100) than of many small families (100 � 10). Such
erozygosity: How the size of samples and their allocation precision improvement due to the use of a better sam-
between and within open-pollinated families affect the pling scheme is much more remarkable when the popu-
behavior of a statistical method in a mapping experi- lation sampled is closer to fixture. For example, when
ment is an important issue for a practitioner to examine. the difference in allele frequency for both marker and
In this simulation, we investigate the effects of three QTL is 0.80, the standard error for the allele frequency
different sampling schemes on parameter estimation. of the QTL is 0.0151 for many small families and 0.0087
The three schemes include (1) few large families (10 � for few large families. But the corresponding values are
100), (2) moderately sized families of a moderate num- 0.0105 and 0.0081 for a population having an equal
ber (32 � 32), and (3) many small families (100 � 10). frequency for the alternative alleles at the same locus.
Also, the effects of sampling schemes are affected by The power of detecting a significant linkage disequi-
other factors, such as gene segregation, the degree of librium using our method is also investigated. For a less
nonrandom association between the marker and QTL, segregating population, the power is strongly depen-
and the QTL effect. The effect due to the interaction dent on the sampling scheme used, with 0.79 for many
between sampling schemes and gene segregation is ex- small families and 0.95 for few large families (Table 1).
amined. Gene segregation for a gene in a population The effects of linkage and linkage disequilibrium: Be-
is described by the difference in the frequencies of alter- cause missing information about the QTL is inferred from
native alleles at the gene. A larger difference (say 0.10 the marker genotype, the relationship between the marker
vs. 0.90) implies that a population is closer to fixture and QTL affects the estimates for genetic parameters.
and has a smaller degree of segregation. Otherwise, a Here, four different relationship patterns are compared
population of a smaller difference in allele frequency on the basis of a sampling scheme 32 � 32: (1) tight
(say 0.50 vs. 0.50) has a larger degree of segregation.

linkage and weak disequilibrium, (2) tight linkage and
Table 3 gives the parameter values used to simulate

strong disequilibrium, (3) loose linkage and weak dis-the effects of sampling schemes and gene segregation.
equilibrium, and (4) loose linkage and strong disequi-Assuming each of the M selected open-pollinated fami-
librium (Table 4). In these four patterns, all parameterslies has an equal size, the phenotype and marker data
except recombination fraction and linkage disequilib-are generated using the following steps:
rium are set equal. As expected, the marker allele fre-

Step 1. Randomly assign three marker genotypes to quency can be very well estimated. Given the same link-
the M hypothesized mother plants according age between the marker and QTL, a more associated
to probabilities p 2(t)

1 (M1M1), 2p (t)
1 p (t)

2 (M1M2), and marker tends to provide more precise estimates for both
p 2(t)

2 (M2M2). the population genetic (allele frequency) and quantita-
Step 2. Randomly assign three marker genotypes to the tive genetic parameters of the QTL (the overall mean,

progeny within a mother plant of a particular additive and dominant effect, and residual variance) than
marker genotype according to probabilities of a less associated marker. Also, as shown in our simula-
the marker genotypes of the progeny (Table 2). tion example, there is significantly greater power to

Step 3. Randomly sample joint genotypes at both the detect a QTL using a more associated marker [D (t)
rs �

marker and QTL for an offspring derived from 0.20] than a less associated marker [D (t)
rs � 0.02]. Simi-

each mother plant from a multinomial distri- larly, given the same disequilibrium, a more linked
bution with the probabilities calculated from marker displays greater precision and greater power for
Table 2. estimating a QTL than a less linked marker. When the

Step 4. Determine the phenotypic value for an individ- marker has a loose linkage and weak disequilibrium
ual with a given marker-QTL joint genotype by with the QTL, the marker information provides little
its genotypic value of the QTL plus a random information about the genotype at the QTL. Under this
number sampled from a normal distribution of circumstance, the MLEs for the QTL parameters are
mean zero and variance � 2 � 1. biased with lower precision compared to the other pat-

terns. The power to detect an existing QTL based onThe mean and standard error of the MLE for each of
the unknowns over 100 replicates of simulation are given the information of a marker with loose linkage (� �
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TABLE 4

Means and standard errors (in parentheses) of the MLEs of genetic parameters

Disequilibrium (D(t)
rs )

Parameter Weak (0.02) Strong (0.20)

Linkage (�) Tight (0.02) p (t)
1 � 0.5 0.5008 (0.0017) 0.5011 (0.0016)

q (t)
1 � 0.5 0.5053 (0.0128) 0.5077 (0.0134)

� 0.0195 (0.0026) 0.0208 (0.0031)
D (t)

rs 0.0094 (0.0028) 0.1920 (0.0051)
	 � 0 0.0081 (0.0074) 0.0059 (0.0046)

 � 1 1.0086 (0.0298) 1.0021 (0.0137)
� � 1 0.9656 (0.0345) 1.0083 (0.0287)

� 2 � 1 0.9394 (0.0347) 1.0294 (0.0210)
Power 0.59 0.99

Loose (0.02) p (t)
1 � 0.5 0.5009 (0.0018) 0.5089 (0.0041)

q (t)
1 � 0.5 0.5095 (0.0210) 0.5120 (0.0239)

� 0.2023 (0.0211) 0.2035 (0.0127)
D (t)

rs 0.0090 (0.0014) 0.1934 (0.0157)
	 � 0 0.0090 (0.0085) 0.0099 (0.0082)

 � 1 1.0354 (0.0438) 1.0125 (0.0313)
� � 1 1.0387 (0.0498) 1.0347 (0.0432)

� 2 � 1 0.9135 (0.0459) 0.9782 (0.0291)
Power 0.41 0.84

The power is expressed as the probability for detecting a QTL with significant additive or dominant effects
among 100 simulation replicates (the sampling strategy used is 32 � 32).

0.20) and weak disequilibrium [D (t)
rs � 0.02] is typically tect a significant linkage disequilibrium between the

marker and QTL is greater for an additive QTL thanlow (Table 5).
The effects of linkage and linkage disequilibrium on for a dominant QTL as well as for a partially dominant

than for an overdominant QTL (Table 5).parameter estimation vary among different parameters.
Generally, these effects are larger on the estimates of Comparison between traditional disequilibrium map-

ping an our joint mapping: We conduct an additionalthe dominant effect of the QTL and residual variance
than the additive effect and overall mean (Table 4). simulation study to compare the power for detecting

linkage disequilibrium on the basis of the traditionalThe effects of QTL gene action: It has been well dem-
onstrated that the magnitude of QTL effect affects para- disequilibrium mapping approach (Allison 1997; Luo

et al. 2000) and our joint linkage and linkage disequilib-meter estimation, with a QTL of large effect being esti-
mated more precisely than a QTL of small effect. Similar rium mapping approach. For comparison, the same sets

of genetic parameters are hypothesized between the tworesults have also been observed in the linkage disequi-
librium-based mapping of QTL (Luo and Suhai 1999; approaches, each allowing for different combinations

between linkage and disequilibrium (Table 6). For bothLuo et al. 2000). However, it is unclear how different
modes of gene action affect the precision and power of approaches a sample size of 1000 is assumed. For the

pure disequilibrium mapping approach, this sample isparameter estimation in linkage disequilibrium mapping.
A simulation here is designed to investigate the effect randomly derived from a natural population, represent-

ing the same generation. But for our joint linkage andof gene action of the estimates of QTL parameters.
Our simulation on gene action includes four different linkage disequilibrium mapping approach, this sample

is allocated between the parental generation and thepatterns: (1) purely additive (� � 0), (2) partially domi-
nant (0 � �/
 � 1), (3) dominant (�/
 � 1), and (4) open-pollinated progeny generation. Here, the sam-

pling scheme of 32 � 32 is simulated.overdominant (�/
 � 1). Except for the marker allele
frequency, all other parameters have a consistent trend Table 6 shows the observed power for detecting link-

age disequilibrium using the two mapping approaches.in the precision and power of parameter estimation over
gene action (Table 5). As shown by the estimates of Generally, greater power is observed for the joint link-

age and linkage disequilibrium analysis than for thestandard error, a dominant QTL can be estimated more
precisely than an additive QTL. Also, an overdominant pure disequilibrium analysis. However, the increase of

the power by using the joint analysis depends on theQTL can be estimated more precisely than a dominant
or partially dominant QTL. However, the power to de- degrees of linkage and linkage disequilibrium between
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TABLE 6

Difference in power to detect the linkage disequilibrium
between a marker and QTL using the existing (top)

and our (bottom) approaches

Disequilibrium (D (t)
rs )

Linkage (�) Weak (0.02) Strong (0.20)

Tight (0.02) 0.20 0.95
0.64 0.99

Loose (0.20) 0.12 0.78
0.53 0.84

The values of the other genetic parameters are hypothesized
as p (t)

1 � 0.5, q (t)
1 � 0.5, � � 0.10, 	 � 0, 
 � 1, � � 1, and

� 2 � 1.

a marker and QTL. In the situations where the linkage
is loose or the disequilibrium is weak, the joint mapping
approach has significantly increased power compared
to the traditional disequilibrium mapping approach.

DISCUSSION

We have provided a unifying framework for the fine-
scale mapping of QTL affecting a quantitative trait in
a natural population on the basis of a joint linkage and
linkage disequilibrium mapping strategy proposed by
Wu and Zeng (2001). We model marker-QTL associa-
tion on the basis of a random sample (mothers) drawn
from a natural population and marker-QTL linkage on
the basis of the open-pollinated progeny of the sample
in which recombination events happen between differ-
ent loci. Such a two-stage (mother and progeny) hierar-
chical modeling provides a simultaneous estimate of the
linkage and linkage disequilibrium between the marker
and QTL, which is thus beyond many existing composite
linkage disequilibrium mapping methods that cannot
distinguish strong association and loose linkage from
weak association and tight linkage (Terwilliger 1995;
Xiong and Guo 1997; Collins and Morton 1998; Ter-
williger and Weiss 1998; Luo et al. 2000). Moreover,
by unifying the information about linkage and linkage
disequilibrium, the joint mapping method displays in-
creased power to detect linkage disequilibrium, com-
pared to the traditional linkage disequilibrium analyses.

As an example, we used a simpler one-biallelic codom-
inant marker/one-biallelic QTL model to demonstrate
the statistical properties of the joint linkage and linkage
disequilibrium analysis in the precise mapping of indi-
vidual QTL for complex trait. Linkage analysis requiring
informative meioses in a pedigree can rarely detect a
target gene that is within 1 cM of markers, but it should
be useful for a genome-wide scan for QTL because a
high-density map covering the entire genome can be con-
structed in a single pedigree. Thus, through a genome-
wide scan for QTL using linkage analysis, genomic regions
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containing QTL can first be identified. These identified
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regions are then saturated by more markers and are current literature. Like linkage analysis, multipoint dis-
further narrowed around QTL, using the joint linkage equilibrium can be more efficient than single-marker
and linkage disequilibrium mapping strategy. We em- analysis. For example, Hill and Weir (1994) showed that
ploy the maximum-likelihood method implemented the variance of the linkage disequilibrium between a
with the EM algorithm to obtain the MLEs for model closely linked marker and a QTL is large, such that the
parameters including the allele frequency of QTL, its disequilibrium cannot be used for the precise mapping
effects, its location, and its linkage disequilibrium with of the QTL. When the disequilibria between all markers
a marker. Extensive simulation studies show that the and the QTL are analyzed simultaneously, the problem
method can provide reasonable estimates for these ge- of a high variability of a single linkage disequilibrium
netic and genomic parameters for a wide range of pa- is avoided (Meuwissen and Goddard 2000). A likeli-
rameter values. hood-based multipoint approach to linkage disequilib-

In the current modeling, we have not considered the rium mapping loci can be found in Terwilliger (1995),
phenotypes of the genotyped mothers sampled from a McPeek and Strahs (1999), Meuwissen and Goddard
natural population and used to supply the next progeny (2000), and Morris et al. (2000). When a narrow region
(contained in seeds). Yet, this would not affect the effi- is being considered for linkage disequilibrium fine-scale
ciency and utility of the model because we have integrated mapping, conditioning on the distances between mark-
mothers’ marker genotypes and progeny’s marker geno- ers allows the use of a composite likelihood to extract
types into a two-level marker genotype framework. Thus, information from multiple markers. Xiong and Guo
the phenotypes of the progeny population can be di- (1997) give a general likelihood framework for linkage
rectly associated with the two-level marker genotypes. disequilibrium mapping that incorporates multiallelic
The strategy with no need of mothers’ phenotypes is markers, multiple loci, and mutational processes at the
practically advantageous in at least two aspects. First, for disease and marker alleles.
species like forest trees, sample mothers from a natural For a multi-QTL model, a number of genetic para-
population are easily genotyped, but their phenotypes meters are treated as unknown. These include the num-
are difficult to measure. Second, the mothers sampled ber of QTL, the additive and dominant effect of each
cannot be compared to their progeny in phenotypes QTL, different kinds of epistatic effect between each
because of different ages and growth environments. pair of QTL, the chromosomal location of each QTL (de-
However, for some species that can be vegetatively prop- termined by the recombination fraction between each
agated, a field trial can be established with clonal repli- QTL and its flanking markers), the linkage disequilib-
cates of both mothers and their progeny. In this case, rium between each pair of QTL, and the linkage disequi-
mothers and their progeny with the same age can be librium between each QTL and each marker. The maxi-
simultaneously measured and compared. A further sim- mum-likelihood method that works in a one-marker/
ulation study is needed to examine the advantage of one-QTL case may be insufficient for handling such a
the model implemented with mothers’ phenotypes. high dimension of unknowns. Markov chain Monte Carlo

Although the codominant marker assumption used (MCMC) methods within a Bayesian framework may be
can be valid by genotyping markers like SNPs, there are a better solution for our multi-QTL linkage and linkage
many dominant markers derived from rapid amplified disequilibrium mapping. Unlike the traditional maxi-
polymorphic DNAs and amplified fragment length poly- mum-likelihood method, MCMC methods provide esti-
morphisms in real data analyses for natural outcrossing mates for unobservables by analyzing their posterior dis-
populations. Also, with no doubt, our one marker-one tributions (Robert and Casella 1999). In the MCMC
QTL model is too simplistic for a quantitative trait that paradigm, we are able to incorporate prior information
may be controlled by multiple genes each with a different for model parameters including the number of QTL,
effect. For these two practical reasons, the joint linkage where appropriate, which is thus advantageous over the
and linkage disequilibrium mapping approach needs maximum-likelihood method. Given the impressive ap-
extension to allow for multiple markers including domi- plications of the Bayesian approach in QTL linkage
nant and multiallelic markers. Linkage analysis in a pedi- mapping (see Satagopan et al. 1996; Sillanpaa and
gree using dominant markers is often biased and has low Arjas 1996, 1999; Uimari et al. 1996; Heath 1997; Ste-
precision especially when a sample size is small (Malie- phens and Fisch 1998), we are confident of developing
paard et al. 1997). But these problems can be overcome a powerful Bayesian approach for joint linkage and link-
if they are combined with codominant markers through age disequilibrium mapping of multiple QTL through
a Markov chain (Jiang and Zeng 1997). For the linkage the entire genome.
disequilibrium analysis of dominant markers, a similar
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APPENDIX Bnation of the same gamete genotype M1Q 1 from mother
genotype M1M1Q 1Q 1 and the pollen pool and the second The MLEs of the unknown parameters  � (q (t)

1part from the combination of the same gamete geno- D (t)
rs � 	 
 � � 2)T can be computed by implementing an

type M1Q 1 from mother genotype M1M1Q 1Q 2 and the EM algorithm (Dempster et al. 1977; Meng and Rubin
pollen pool. Thus, according to Bayes’ theorem, the 1993). The log-likelihood is given by
conditional probability of the QTL genotype Q1Q1, given
the mother’s marker genotype M1M1 and progeny’s log L( ) � �

N

j�1

log� �
2

��0

h�
j f�(yj)�

marker genotype M1M1, is
with derivatives
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The probability of progeny joint genotype M1M1Q 1Q 2

where we definederived from mother genotype M1M1 includes two com-
ponents: (1) p 2(t)

11 · p (t�1)
12 � p (t)

11p
(t)
12 · p (t�1)

12 � p (t)
1 p (t)

11p
(t�1)
12

H �
j �

h�
j f�(yj)

�2
��0h�

j f�(yj)
, (B1)from the mating of mother gamete genotype M1Q 1 and

father gamete genotype M1Q 2 from the pollen pool and
which could be thought of as a posterior probability that(2) p2(t)

12 · p(t�1)
11 � p(t)

11p
(t)
12 · p(t�1)

11 � p(t)
1 p(t)

12p
(t�1)
11 from the mat-

progeny j have QTL genotype �. We then implement theing of mother gamete genotype M1Q 2 and father gamete
EM algorithm with the expanded parameter set { ,genotype M1Q 1 from the pollen pool. The conditional
H}, where H � {H�

j , � � 0, 1, 2; j � 1, . . . , N }. Conditionalprobability of the QTL genotype Q1Q 2 given the mother’s
on H, we solve for the zeros of �/� log L( ) to getmarker genotype M1M1 and progeny’s marker genotype
our estimates of  (the M step). In the M step, theM1M1 is thus calculated as [p (t)

11p
(t�1)
12 � p (t)

12p
(t�1)
11 ]/p 2(t)

1 .
quantitative genetic parameters, 	, 
, �, and � 2, of theThe rest of the conditional probabilities of the QTL
QTL detected are solved usinggenotypes given the mother’s marker genotype M1M1

can also be calculated (see Table 2).
	 �
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j � , (B2)When the marker genotype of a sampled mother is

M1M2, three possible joint marker-QTL genotypes are
M1M2Q 1Q 1, M1M2Q 1Q 2, and M1M2Q 2Q 2, with popula- 
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j � , (B3)tively. The probabilities of four joint marker-QTL ga-
mete genotypes generated by each of these three joint
genotypes are given in Table 1. Thus, the probability of � �
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progeny joint genotype M1M1Q 1Q 1 derived from mother
marker genotype M1M2 is the sum of p (t)

11 p (t)
21 · p (t�1)

11 and
� 2 �

1
N �
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j�1
�(yj � 	 � 2
)2H 2
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j(1 � �) [p (t)

11 p (t)
22 � p (t)

12 p (t)
21] · p (t�1)

11 . The conditional proba-
bility of the QTL genotype given the mother’s marker
genotype M1M2 and progeny’s marker genotype M1M1 � (yj � 	)2H 0

j � . (B5)
can be calculated accordingly. The probabilities of all
QTL genotypes conditional upon different progeny The population genetic parameters q (t)

s and D (t)
rs and

marker genotypes derived from the mother’s marker genomic parameter � are estimated by using a numerical
genotype M1M2 are derived in Table 2. subroutine approach (Press et al. 1992) because closed

A similar procedure can be described to derive the forms for the solutions of these parameters cannot be
conditional probabilities of different QTL genotypes derived. The estimates of these parameters are obtained

by solving Equations B6–B8 in Scheme 1.when the mother’s marker genotype is M2M2 (Table 2).
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Scheme 1.—Equations B6–B8.
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Scheme 1.—Continued.

The estimates obtained from Equations B2–B8 in iteration between the E and M steps is repeated until
Scheme 1 are then used to update H (the E step). In convergence. The values at convergence are the MLEs
the E step, the posterior probability of progeny j to have of the parameters.
QTL genotype � is calculated using Equation B1. The


