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ABSTRACT
Determining the amount of recombination in the genealogical history of a sample of genes is important

to both evolutionary biology and medical population genetics. However, recurrent mutation can produce
patterns of genetic diversity similar to those generated by recombination and can bias estimates of the
population recombination rate. Hudson (2001) has suggested an approximate-likelihood method based
on coalescent theory to estimate the population recombination rate, 4Ner, under an infinite-sites model
of sequence evolution. Here we extend the method to the estimation of the recombination rate in genomes,
such as those of many viruses and bacteria, where the rate of recurrent mutation is high. In addition, we
develop a powerful permutation-based method for detecting recombination that is both more powerful
than other permutation-based methods and robust to misspecification of the model of sequence evolution.
We apply the method to sequence data from viruses, bacteria, and human mitochondrial DNA. The
extremely high level of recombination detected in both HIV1 and HIV2 sequences demonstrates that
recombination cannot be ignored in the analysis of viral population genetic data.

RECOMBINATION breaks down the correlation in of a gene have different histories (Grassly and Holmes
1997; McGuire et al. 2000), which are targeted at identi-genealogical history between different regions of
fying rare recombinant genotypes. Other methods area genome and shuffles genetic diversity among chromo-
aimed at inferring the presence of recurrent recombina-somes. In evolutionary biology, the importance of re-
tion, such as occurs among the genes of most eukaryotecombination is the generation of novel gene combina-
species. Among these methods, some consider summarytions, which allows the spread of multiple beneficial
statistics that are sensitive to recombination, such as themutations (Fisher 1932; Muller 1932) and prevents
relationship between physical distance and measures, orthe accumulation of deleterious ones (Muller 1964).
indicators of linkage disequilibrium (Lewontin 1964;In medical genetics, associations between disease phe-
Maynard Smith 1999). Other methods consider prop-notypes and genetic markers that build up through ge-
erties of phylogenetic trees inferred under the assump-netic drift and are broken down by recombination are
tion of no recombination (Maynard Smith and Smithcentral to the mapping of disease-associated mutations
1998; Worobey 2001). The methods vary in their ability(Pritchard and Przeworski 2001).
to statistically detect recombination under different condi-The occurrence of recombination also has practical
tions and their sensitivity to an accurate characterizationimplications for evolutionary inference. For population
of the underlying model of sequence evolution (May-geneticists, recombination reduces the effects of evolu-
nard Smith 1999; Meunier and Eyre-Walker 2001).tionary stochasticity, averaging out genealogical histo-

The inability of such methods to estimate the rateries over a genome. In contrast, traditional methods of
at which recombination occurs is a serious limitation.phylogenetic inference typically assume the absence of
Characterizing the rate of recombination is importantrecombination. If the assumption is incorrect, infer-
for analyzing the power of association studies, assessingences about the evolutionary history of gene sequences
the reliability of phylogenetic methods, and predictingmay be misleading (Schierup and Hein 2000). Recom-
the rate at which advantageous mutations, such as thosebination is therefore a critical issue for analyses of within-
conferring drug resistance, can spread between geneticspecies variation.
backgrounds. Some nonparametric methods for detect-A variety of nonparametric methods have been devel-
ing recombination, such as the homoplasy test (May-oped to detect recombination from gene sequences,
nard Smith and Smith 1998) and derivatives (Woro-without estimating the rate at which it occurs. Some use
bey 2001), provide a characterization of how far thephylogenetic methods to ask whether different regions
data are from the extremes of free recombination and
complete clonality. But there is no straightforward rela-
tionship between such a property and the parameters1Corresponding author: Department of Statistics, 1 S. Parks Rd., Ox-

ford OX1 3TG, United Kingdom. E-mail: mcvean@stats.ox.ac.uk of any underlying evolutionary model. As a result, com-
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parison between genes or species is problematic, and
there is little or no way of statistically testing whether
data sets have different levels of recombination. Model-
based estimation of the rate of recombination does rely
on an underlying model that is almost certainly a simpli-
fication of reality. However, the benefits gained are the
ease of comparison between different data sets, the abil-
ity to make predictions about the question of interest,
and the potential to test whether the model of evolution
is an adequate characterization of the underlying pro-
cesses. In addition, parametric models can be used to
test for the presence of recombination by comparing the
likelihood of the data under models with and without
recombination (Brown et al. 2001). Figure 1.—Recurrent mutation (A) and recombination (B)

can generate similar patterns of genetic variability. The topWhat evolutionary model is appropriate for describing
shows the genealogies and occurrence of mutations, while thethe effects of recombination on gene sequences? Coales-
bottom depicts the resulting sampled gene sequences.cent theory provides a statistical description of the gene-

alogical history of sequences sampled from large, Fisher-
Wright populations with nonoverlapping generations,

Kuhner et al. (2000) developed a Metropolis-Hastingsconstant population size, and no selection or migration
rejection Monte Carlo Markov chain (MCMC) method.(Kingman 1982; Hudson 1991). Within this framework,
Recently, Fearnhead and Donnelly (2001) improvedthe effects of recombination on sample history are a
the importance sampling method considerably. Evenfunction not of the absolute recombination rate, but of
so, full-likelihood methods are computationally inten-the product of the per gene per generation rate of
sive and practically impossible for many data sets.crossing over (genetic map length), r, and the effective

Recently, Hudson (2001) suggested an ad hoc methodpopulation size, Ne (Griffiths and Marjoram 1996b).
for estimating the population recombination rate onWithout prior information about one of these parame-
the basis of combining the coalescent likelihoods of allters, it is possible only to estimate the product of these
pairwise comparisons of segregating sites. Estimation ofparameters, often written as � � 4Ner (equivalently, one
4Ner is rapid, and the method performs well in termscan estimate the ratio of the recombination rate and
of bias and variance in comparison to Hudson’s earlierthe mutation rate, r/�, and the population mutation
moment estimator (Hudson 1987) and other ad hocrate � � 4Ne�). The coalescent can readily be extended
approaches (Hudson 2001). The method does not useto include time-varying population size, migration, and
all available information in the sequence data and intro-some forms of selection (Hudson and Kaplan 1994;
duces nonindependence in the combination of multipleBraverman et al. 1995). Under these more complex
comparisons, but is flexible and can potentially be ex-situations, the effects of recombination on gene samples
panded to incorporate deviations from the standardalso depend on other parameters. In general, however,
coalescent. Hudson’s (2001) estimator of 4Ner has beenthe product of the current effective population size of
termed the composite-likelihood estimate (CLE).the population and the absolute recombination rate is the

In this article we consider a problem of critical impor-key determinant of the impact of recombination on
tance to the analysis of recombination: the detectionpatterns of genetic diversity.
and estimation of recombination in genomes, such asWithin the framework of the coalescent, several meth-
those of many viruses and bacteria, where the rate ofods have been proposed as estimators of the population
substitution is sufficiently high that some sites have expe-recombination rate. Hudson (1987) derived a moment
rienced multiple mutations in the history of the sample.estimator on the basis of the variance in pairwise differ-
The issue is important because recurrent mutation canences. Hey and Wakeley (1997) developed a method
generate patterns of genetic variability that resembleon the basis of combining analytically derived likeli-
the effects of recombination (Figure 1); in particular,hoods for all pairs of sites and sets of four sequences.
the presence of all four haplotypes for a pair of segre-Wall (2000) proposed to find the value of 4Ner that
gating sites. Under the infinite-sites model, any suchmaximizes the likelihood of observing the number of
incompatibilities would be interpreted as evidence forhaplotypes and inferred minimum number of recombi-
recombination and hence will bias estimates of the re-nation events (Hudson and Kaplan 1985). Full-likeli-
combination rate upward. Similarly, the likelihood-ratiohood estimators of the population recombination rate,
test for the presence of recombination will be sensitiveon the basis of the coalescent, have also been developed.
to misspecification of the mutation model, particularlyThese use computationally intensive Monte Carlo meth-
the underestimation of the mutation rate at segregatingods; Griffiths and Marjoram (1996a) described a

method on the basis of importance sampling, while sites, which can be caused by rate heterogeneity.
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To address these problems we have extended Hud- where S is the number of segregating sites, L is the total
length of sequence analyzed, and n is the number ofson’s composite-likelihood method (Hudson 2001) to

allow for finite-sites mutation models. In addition, we sampled gene sequences. The second stage is to con-
sider every pair of segregating sites in the data (exclud-propose a permutation-based test (the likelihood per-

mutation test) to test the hypothesis of no recombina- ing sites with more than two alleles) and classify them
into equivalent sets. For example, under the assumedtion (4Ner � 0). We use a permutation-based approach,

rather than estimate confidence intervals from the com- mutation model, if one pair had the ordered data {AA,
AT, TA, TA, AA} and another {GG, CC, CG, GG, CG},posite likelihood, as the nonindependence makes inter-

pretation of the composite-likelihood surface problem- these are equivalent to the unordered sequence {00, 00,
10, 10, 01}, where 0 represents the rare allele at eachatic, but also because we wish the test to be robust to

model misspecification. We find that the composite- site. The number of types (hence the execution time
of the program) depends on the number of sequences,likelihood estimator performs well, even when most sites

analyzed have experienced multiple mutations, and that the level of diversity, and the complexity of the assumed
mutation model.the likelihood permutation test is more powerful than

previous permutation-based methods for detecting re- The third stage is to estimate the likelihood of each
combination. We also consider the effect of misspecifi- equivalent set under the estimated value of �, the sym-
cation of the model of sequence evolution on both the metric, reversible mutation model, and a range of re-
test for recombination and estimation of 4Ner. We show combination rates (typically 0 � 4Ner � 100), using
that the likelihood permutation test is robust to misspec- the importance sampling method of Fearnhead and
ification, unlike the homoplasy test (Maynard Smith Donnelly (2001). We also used a simple Monte Carlo
and Smith 1998) or the informative sites test (Worobey scheme for estimating the likelihood, similar to that
2001), and that estimation of 4Ner is also robust to minor implemented in Hudson (2001), to check the accuracy
misspecification of the model of sequence evolution. of likelihoods estimated by the importance sampling
We apply the likelihood permutation test and estimation method (results not shown).
procedure to several empirical data sets from viruses, In the final stage, an estimate of the population re-
bacteria, and human mitochondria. combination rate for the entire sequence (4Ner) is ob-

tained by combining the likelihoods from all pairwise
comparisons. The composite likelihood is given by

METHODS
�C(4Ner) � �

i,j
�(Xij |4Nerij), (2)Composite-likelihood estimation of 4Ner : First, we

outline our implementation of the approach of Hudson
where �(Xij|4Nerij) is the log likelihood of the data for(2001) for estimating the population recombination
segregating sites i and j givenrate under the standard Fisher-Wright population

model. The central difference between the method of
rij �

rdij

L � 1
, (3)Hudson (2001) and that presented here is that we allow

for models of sequence evolution in which multiple
mutations may occur at a site during the history of the where dij is the physical distance (in nucleotides) sepa-
sample. Although it is possible to use an arbitrary model rating sites i and j and L is the total length of the
of sequence evolution, we make the simplifying assump- sequence (i.e., we assume a constant rate of recombina-
tion that all sites in a sequence conform to a two-allele tion over the gene). The estimate of 4Ner is taken as
model with reversible, symmetric mutation, such that the value that has the highest composite log likelihood.
the rate of mutation per site per generation is � and is For genomes, such as viruses and bacteria, in which
constant across sites. Consequently, we restrict analysis a gene-conversion model for recombination is more
to sites at which there are no more than two alleles appropriate than a crossing-over model, the relation-
segregating. The extension of the method to more com- ship between physical distance and recombination rate
plex models of sequence evolution is left to future re- is modeled as
search; however, it is worth noting that the method

rij � 2ct(1 � e�dij /t), (4)appears to perform well, even when the true model of
sequence evolution is considerably more complex than

where c is the per base rate of initiation of gene conver-that assumed (see below).
sion and t is the average gene conversion tract lengthThe estimation procedure has four stages. The initial
(assuming an exponential distribution; Frisse et al.step is to estimate the population mutation rate per site,
2001). This type of model can also be applied to circular� � 4Ne�, from an approximate finite-sites version of
genomes, such as that of the mitochondria, where dij isthe Watterson estimate
the minimum distance between two points on the circle
(Wiuf 2001). While it is possible to coestimate both the�̂*W � ��

n�1

k�1

1
k�

�1

ln� L
L � S�, (1)

rate of gene conversion and the average tract length,
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pendence introduced by multiple comparisons. Statis-
tics for the two estimators of 4Ner (full-likelihood/
composite-likelihood) are median, 2.4/3.8; variance,
9.1/15.6; proportion within a factor of two from the
true value, 0.50/0.52. The correlation between the com-
posite- and maximum-likelihood estimates is 0.78 (Fig-
ure 2B).

Hudson (2001) characterized the composite-likeli-
hood estimator for the case where data conform to the
infinite-sites model. In terms of bias and variance, the
CLE is one of the better ad hoc methods for estimating
the population recombination rate, although the esti-
mator has considerable variance. However, this is also
true of the MLE (Figure 2) and, to a large extent, is a
reflection of inherent stochasticity in the genealogical
process. However, while full likelihood provides an esti-
mate of the relative likelihood of different values, there
is no easily interpretable meaning of the composite-
likelihood curve. Confidence intervals for the estimate
of 4Ner can be obtained only by extensive simulation
(Hudson 2001).

The likelihood permutation test: We propose a simple
test for the presence of recombination. Under a model
of no recombination, and assuming a uniform mutation
rate, sites are exchangeable (this is also true if there is
free recombination). That is, the likelihood of observing
the data is independent of the order in which sites
occur. If there is some recombination, sites are no
longer exchangeable, because closely linked sites have
correlated genealogies. Consequently, the likelihood of
observing the data is dependent on the order of sites.
The likelihood permutation test for recombination is
based on this property; we find the maximum compositeFigure 2.—(A) The composite (CLR) and full (LR) relative

likelihood surface for a single simulated data set. (B) The likelihood for a data set (estimating 4Ner in the process),
joint distribution of the maximum-likelihood estimate (MLE) then permute segregating sites by location, and for each
of 4Ner and the composite-likelihood estimate (CLE). Likeli- permutation find the maximum composite likelihoodhoods were calculated with � � 0.01 per site.

(and the corresponding value of 4Ner). The proportion
of permuted data sets with a composite likelihood equal
to or greater than that of the original data is calculated.in practice we fix the average tract length and estimate
If this proportion is lower than a chosen significancethe compound parameter
level, we conclude that there is evidence for recombina-

� � 8Nect, (5) tion.
There are several methods for detecting recombina-which can be thought of as the population rate of recom-

tion on the basis of the permutation of segregating sites.bination between two distantly linked loci caused by
Permutation tests for recombination aimed at detectinggene conversion.
a decay of a summary statistic of linkage disequilibriumFor simple data sets and low values of 4Ner, it is possi-
(r 2 or |D�|) with distance have been used to suggestble to compare the composite-likelihood surface with
the presence of recombination in human mitochondriathe full-likelihood surface estimated by the method of
(Awadalla et al. 2000) and Plasmodium falciparum (Con-Fearnhead and Donnelly (2001). Figure 2 shows a
way et al. 1999) and regions of low recombination incomparison of the two surfaces for a single case and the
the Drosophila melanogaster genome (Miyashita andjoint distribution of the maximum-likelihood estimator
Langley 1988). Another permutation test (referred to(MLE) and CLE point estimates of 4Ner for 100 simu-
as G4) has been suggested by Meunier and Eyre-lated data sets with n � 50 and � � 4Ner � 3. For the
Walker (2001), which compares the sum of distancessingle example (Figure 2A), the composite-likelihood
between all pairs of sites that have all four possiblecurve has a very similar point estimate to the ML esti-

mate, but is more highly curved because of the noninde- haplotypes to the distribution in permuted data sets.
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We compared the power of the likelihood permutation lihoods for each data set is practically unfeasible. In-
stead, we have estimated likelihoods under three differenttest with these other permutation-based tests.

Models of sequence evolution: We characterize both values of �, 0.01, 0.1, and 0.5, and present the results
for each, along with mean and standard deviation ofthe composite-likelihood estimator and likelihood per-

mutation test under a range of models of sequence the values of � estimated from the simulated data. One
advantage of this approach is that it allows us to charac-evolution that reflect genomes experiencing high muta-

tion rates at some or all sites. We have chosen four terize the severity of model misspecification on the de-
tection and estimation of recombination.caricature models to represent the diversity of possible

situations: Empirical data: We applied both the likelihood per-
mutation test and estimation of the population recombi-

Infinite sites: All sites have the same low mutation rate nation rate to a series of empirical data sets from viruses,
(� � 0.01) and conform to the two-allele symmetric, bacteria, and human mtDNA. Previous analyses (Suer-
reversible mutation model used in the likelihood esti- baum et al. 1998; Awadalla et al. 1999; Worobey et al.
mation stage. This represents the best-case scenario 1999; Ingman et al. 2000; Worobey 2001) of these data
(effectively infinite sites), as might be assumed for sets revealed a range of levels of recombination, from
nuclear loci in humans (excluding hypermutable effectively clonal in hepatitis C virus (HCV) and mtDNA
CpG dinucleotides). (Ingman et al. 2000; Worobey 2001) to freely recombin-

Hypermutable: Most sites (99.5%) effectively conform ing in Helicobacter pylori (Suerbaum et al. 1998). While
to the infinite-sites model (� � 0.005), but a fraction none of these data sets represent random samples from
(0.5%) have a 100-fold higher mutation rate. All sites Fisher-Wright populations, as is supposed by the coales-
conform to the symmetric, reversible mutation model. cent methods of analysis, the results are likely to be
This is chosen to reflect extreme rate variation, as indicative of the situation in more appropriate samples.
occurs when hypermutable CpG dinucleotides are Viral genomes: Data sets were the following: HCV, 6
included in an analysis or in the mitochondrial ge- complete genome sequences (Worobey 2001; world-
nome of mammals. wide sample); measles, 50 sequences of the Hemaggluti-

Complex: This is characterized by strong base composi- nin gene (Woelk et al. 2001; worldwide sample); dengue
tion variation and mutation rate variation. Specifically, DEN-1 virus, 7 sets of concatenated capsid C, premem-
this is an HKY (Hasegawa, Kishino, Yano) mutation brane/membrane prM/M, and E genes (Worobey et al.
model (Hasegawa et al. 1985), with base frequencies 1999; worldwide); HIV2 subtype A, 21 sequences of env
	T � 0.4, 	C � 0.1, 	A � 0.4, 	G � 0.1, a transition- gene (Kuiken et al. 2000; worldwide); and HIV1 subtype
transversion ratio of 2, and an exponential distribu- B, 93 sequences of the env gene (Kuiken et al. 2000;
tion of mutation rates with a base-averaged mutation worldwide).
rate of � � 0.1, where Bacterial genomes: H. pylori data sets were 33 sequences

of the flaA gene (worldwide; Suerbaum et al. 1998).� � 4Ne�
i

	i�
j�i

�ij (6)
Mitochondrial genomes: Data sets were 45 partial ge-

nome sequences from the analysis of Awadalla et al.and �ij is the average per generation mutation rate
(1999; worldwide) and 53 complete genome sequencesfrom base i to base j (from the exponential distribu-
from the analysis of Ingman et al. (2000).tion). This model is chosen to reflect the complexity

of sequence evolution in prokaryote genomes with
strong base composition bias. RESULTS

Finite sites: All sites have the same, high mutation rate
Estimating 4Ner with recurrent mutation: To date,(� � 0.5) and conform to the two-allele symmetric,

estimators of the population recombination rate havereversible mutation model. In this case, each segregat-
typically been characterized under the infinite-sites as-ing site experiences, on average, 2.6 mutations in
sumption that each segregating site is the result of athe history of the sample. This model represents the
single mutation. In many biologically realistic situationsextreme levels of polymorphism as occur at synony-
this assumption cannot be justified, even though themous sites in retroviruses such as human immunode-
infinite-sites model is superficially plausible. For exam-ficiency virus (HIV).
ple, if 20 mutations occur in a genealogy of 500 linked
sites (the expected number for n � 50 and � � 0.009),Data are simulated under the null 4Ner � 0 and 4Ner �

10, for n � 50 and the length of sequence chosen such the probability that at least one site experiences recur-
rent mutation is 
30% and will be higher if there isthat the average number of segregating sites is in the

range 40–50. Ideally, for each simulated data set the recombination or any variation between sites in the mu-
tation rate. In organisms with high mutation rates, suchlikelihoods should be calculated for the value of � esti-

mated from the data. However, for the large number as many viruses and bacteria, a large proportion of sites
may have experienced multiple mutations.of replicates required to provide an accurate character-

ization of the estimator’s properties, calculating the like- Because recurrent mutation can create patterns of
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Figure 3.—The distribution of CLEs of the population recombination rate simulated and analyzed under different models
of sequence evolution. Each chart represents the results from 1000 data sets simulated with 4Ner � 10. The model of sequence
evolution used to simulate data is on the left and the value of � used to calculate likelihoods under the two-allele symmetric
reversible model is at the top of the columns.

genetic variability that resemble the effects of recombi- Table 1 we also present the median and proportion of
estimates that are within a factor of two from the truenation (Figure 1), it is important to develop methods

for estimating the recombination rate that can account value, along with the mean and standard deviation of
estimates of � obtained from Equation 1.for finite-sites models of sequence evolution. We have

extended Hudson’s (2001) composite-likelihood method As expected, when there is a considerable discrepancy
between the true value of � and that used to estimatefor estimating the population recombination rate, 4Ner,

within a coalescent framework, to incorporate models likelihoods, estimates of 4Ner are strongly biased. When
the true value of � is lower than the value used to esti-in which sites may experience multiple mutations in the

history of the sample. Our approach is to use the sim- mate likelihoods, estimates of 4Ner are downwardly bi-
ased. In contrast, when the true value of � is greaterplest possible model of finite-sites evolution (two-allele

system with symmetric reversible mutation and a con- than the value used to estimate likelihoods, estimates
of 4Ner are biased upward. However, it is encouragingstant mutation rate across sites) and to investigate how

the method performs under a variety of caricature mod- to find that when likelihoods are estimated under the
correct value of �, the estimator performs almost as wellels of sequence evolution chosen to reflect biological

diversity. when the mutation rate is very high as it does when the
mutation rate is low (Figure 3, bottom right vs. top left).Figure 3 shows the distribution of point estimates for

4Ner for data simulated under the four caricature mod- The middle two rows of Figure 3 and Table 1 show
the effects of applying the simplistic mutation model toels (n � 50 and 4Ner � 10) and likelihoods estimated

under three different values of �: 0.01, 0.1, and 0.5. In data simulated under models representing some degree
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TABLE 1

Statistical properties of the composite-likelihood estimator

Mutation model � � 0.01 � � 0.1 � � 0.5 � W (�SD)

Infinite sites: � � 0.01 9.4 (0.77) 6.6 (0.68) 0.0 (0.08) 0.010 (0.002)
Hypermutable: � � 0.008 12.2 (0.83) 8.6 (0.82) 1.2 (0.13) 0.006 (0.001)
Complex: � � 0.1 11.8 (0.80) 8.4 (0.79) 1.2 (0.15) 0.073 (0.015)
Finite sites: � � 0.5 32.6 (0.13) 24.0 (0.34) 9.8 (0.71) 0.337 (0.078)

Medians of estimates of 4Ne r (proportion of estimates within a factor of two of 4Ne r � 10) for the data
presented graphically in Figure 3 are shown. The last column is the mean and standard deviation of estimates
of � obtained from applying Equation 1 to the simulated data.

of biological complexity. For both the hypermutable compared to 82% of cases when � � 0.01 is used to
estimate likelihoods. In contrast, those methods thatand complex models there is strong rate variation across

sites, yet the estimator properties are hardly worse than rely heavily on the distribution of pairs at which all four
gametes are present (|D�| and G4) have greatly reducedunder the best-case scenario, and the estimates of � are

well within the range that leads to sensible estimates of power under such high levels of mutation (51 and 39%,
respectively). The one situation where the likelihood4Ner. In short, the composite-likelihood estimator of

the population recombination rate is robust to minor permutation test has reduced power is when the true
value of � is much lower than that used to estimatemisspecification of the underlying mutation model. This

conclusion is of great importance as it provides a justifi- likelihoods; however, such a situation is unlikely to occur
for empirical data. It is also worth noting that the powercation of the use of the CLE on real data sets.

Detecting recombination: The results presented above to detect recombination using the correlation between
r2 and physical distance is consistently greater than withmay give us some confidence that the value of 4Ner

estimated by the composite-likelihood method is mean- either |D�| or G4 for the biologically plausible models
of sequence evolution.ingful, even in genomes where the rate of recurrent

mutation is high. However, one important question that
is difficult to address within the CLE framework is

DISCUSSION AND APPLICATION
whether one can reject the hypothesis that 4Ner � 0.
Direct experimental evidence for recombination may The composite-likelihood method and likelihood per-

mutation test together present a powerful approach forbe difficult to obtain for many genomes (particularly if
genetic exchange is very rare); thus it is important to assessing the influence of recombination on patterns

of genetic variability. Even when the mutational andhave indirect, population genetic-based methods for de-
tecting recombination. And it is equally important that substitutional processes affecting gene sequence evolu-

tion are complex and unlikely to be fully characterizedsuch methods should not create false positives through
misspecification of the model of sequence evolution. by any simple model, the use of simple models provides

a remarkably robust way of detecting recombinationWe have proposed the likelihood permutation test as
a means of testing for the presence of recombination. and estimating the population recombination rate. To

investigate how the new approach performs on real data,Table 2 shows the results of the power analysis carried
out on the same four caricatures of sequence evolution, we have applied the methods to samples of gene se-

quences from the viruses HIV1, HIV2, hepatitis C, den-and again estimating likelihoods under the three values
of �. We also compare the power of the likelihood per- gue-1, and measles, the bacterium H. pylori, and human

mitochondrial DNA. We also discuss possible limitationsmutation test to other permutation-based tests for re-
combination that consider summaries of the data sensi- of the approach, in particular misspecification of the

population model used to estimate the likelihoods.tive to the presence of recombination.
The key result is that the likelihood permutation test Empirical data: The empirical data sets were chosen

to reflect a diversity of levels of recombination, as hadis consistently the most powerful permutation-based
method for detecting recombination from population been estimated from previous studies (Maynard Smith

et al. 1993; Suerbaum et al. 1998; Awadalla et al. 1999;genetic data. In the case of infinite-sites data, recombi-
nation is detected in almost 96% of cases, compared to Worobey et al. 1999; Ingman et al. 2000; Worobey

2001). For the HIV data sets, we analyzed third position�80% for the other tests. Even when the model used
to estimate likelihoods is very different from the true sites in the coding region separately from the first two

positions, to investigate whether different results weremodel, the power of the test is considerable. For exam-
ple, with data generated by the finite-sites model with obtained from using data with different levels of diver-

sity. In addition, we analyzed two human mtDNA data� � 0.5, recombination is detected in 83% of cases when
the correct value of � is used to calculate likelihoods, sets that have been used to provide evidence for (Awa-
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TABLE 2

Power analysis of permutation tests for detecting recombination

Mutation model 4N e r LPT��0.01 LPT��0.1 LPT��0.5 r 2 |D�| G4

Infinite sites 0 0.053 0.057 0.058 0.046 0.018 0.019
Hypermutable 0 0.025 0.045 0.055 0.019 0.030 0.015
Complex 0 0.048 0.060 0.061 0.038 0.027 0.031
Finite sites 0 0.041 0.052 0.053 0.049 0.051 0.046

Infinite sites 10 0.958 0.931 0.447 0.783 0.797 0.796
Hypermutable 10 0.969 0.957 0.560 0.856 0.740 0.717
Complex 10 0.969 0.958 0.890 0.838 0.790 0.767
Finite sites 10 0.824 0.849 0.834 0.712 0.514 0.393

A total of 1000 data sets were simulated for each set of mutation models and combination of parameter
values. LPT, likelihood permutation test; r 2, correlation of r 2 with distance; |D�|, correlation of |D�| with distance;
G4, sum of distances between incompatible pairs.

dalla et al. 1999) and against (Ingman et al. 2000) periencing a recombination event relative to mutation.
Within the data sets for which there is strong supportrecombination. In all cases, a gene-conversion model

for recombination is more appropriate than a crossing- for recombination, the ratio varies from �35 in measles
to �1000 in dengue and H. pylori and is potentiallyover model, and we have fixed the average tract length

of gene conversion to 100 bp for the viral and bacterial much higher in HIV1.
The effect of filtering out rare variants is worth noting.data sets and 500 bp for the mtDNA data sets. These

numbers are arbitrary, although in the microbial and Rare variants are largely uninformative about recombi-
nation (though not entirely; McVean 2001), and henceviral data sets, the composite likelihood increases for

small tract lengths (data not shown). In one of the few their inclusion may obscure the signal of recombina-
tion, particularly if there is an excess of rare mutationscases in eukaryotes where gene conversion tract lengths

have been estimated, the best fit to the data was a geo- in the data. Removal of rare variants from the data has
little effect on estimates of the population recombina-metric distribution with mean tract length of 352 bp

(Hilliker et al. 1994). tion rate in both the empirical (compare estimates of
� from Tables 3 and 4) and simulated data. For example,Table 3 presents the results of these analyses and the

estimate of the population recombination rate, �, under under the finite-sites model, the median of estimates of
� was 9.8 when all sites were used (and analyzed undera gene conversion type model; see Equation 5. In addi-

tion, we carried out the same analyses, but filtering out the correct mutation model) and 10.2 when the analysis
was restricted to sites for which the minor allele fre-single nucleotide polymorphisms (SNPs) for which the

minor allele was at a frequency �0.1; the results are quency was at least 0.1. In the simulated data, no in-
crease in the power of the likelihood permutation testpresented in Table 4. For the HCV and dengue virus

data sets the results from the filtered analysis are identi- was found when the analysis was restricted to intermedi-
ate frequency variants. However, the simulated data setscal to those in Table 2 as the sample sizes are �10. We

also omitted the results for the test of Meunier and have no excess of rare variants, unlike the empirical
data.Eyre-Walker (2001) as it behaves in an almost identical

fashion to |D�|. Very high levels of recombination in HIV: The results
concerning recombination in HIV1 subtype B and HIV2From Table 3 and, more noticeably, from Table 4,

we find evidence for recombination in almost all data subtype A sequences are particularly notable. Although
recombination between different subtypes is occasion-sets and levels of recombination that range from �̂ �

0.84 in HCV to �̂ 
 100 in HIV1 (� � 100 was chosen ally observed (Kuiken et al. 2000), recombination within
subtypes has largely been ignored in phylogenetic analy-as a cutoff as it is the limit for which likelihoods were

estimated). In HCV, only the correlation of r 2 with dis- sis of genetic diversity (Nielsen and Yang 1998; Ram-
baut et al. 2001). The results presented here supporttance shows a significant negative relationship, but with

six sequences, there is little power in the likelihood such a conclusion. Using the likelihood permutation
test, we find evidence for recombination in both HIV2permutation test. For the measles data set, only r 2 is

significant when all data are used, but all tests are either and HIV1, though only when SNPs are filtered for the
case of HIV1. For HIV1 the estimate of � is beyond thesignificant, or marginally significant, for the filtered

data. The other data sets show evidence for much higher range for which likelihoods were estimated.
Levels of genetic diversity are extremely high in HIV1levels of recombination. The estimate of � is 
40 for

H. pylori and 60 for dengue. The ratio �̂/�̂W gives an and HIV2 (estimates of � per site at first/second codon
positions of 0.144 and 0.102, respectively). Because re-indication of the relative likelihood of a nucleotide ex-
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current mutation can cause patterns of genetic diversity
similar to that caused by recombination, one might be
cautious of concluding that recombination is present.
However, the estimation of a low level of recombination
in HCV, which has an even higher level of diversity
(�̂W � 0.325), and in measles, which has a comparable
level of sequence diversity (�̂W � 0.089), indicates that
high levels of sequence diversity do not necessarily lead
to high estimates of the population recombination rate.

The implications of such a high level of recombina-
tion in HIV1 are considerable. Not only does it question
the validity of conclusions about the age and timings of
events in the history of the virus that have been made
assuming an absence of recombination (Nielsen and
Yang 1998; Rambaut et al. 2001), but it has practical
implications for predicting how fast mutations (such as
drug resistance) may spread across different genetic
backgrounds. Analysis of genetic data from appropriate
samples taken at different population scales will be es-
sential for inferring the extent and consequences of
recombination.

Recombination in human mtDNA? Another issue of
considerable importance is whether there is evidence
for recombination in human mtDNA. The data set of
Awadalla et al. (1999) clearly shows evidence for re-
combination when all data are used, irrespective of the
test employed (for r 2 and the likelihood permutation
test this is also true for 
90% of random subsets of 35
of the 45 sequences). In direct contrast, the data of
Ingman et al. (2000) show no evidence for recombina-
tion, irrespective of the test used. When the frequency
filter is applied, only one statistic, r 2, still shows evidence
for recombination in the first data set (and this is sensi-
tive to the removal of a single segregating site). These
results are in direct contrast to those from the viral and
bacterial sequences, where the frequency filter increases
the power of almost all tests. Taken together, the results
suggest a lack of evidence for recombination in human
mtDNA.

Why should low frequency variants create the impres-
sion of recombination? Hey (2000) suggested that se-
quencing protocols might lead to the propagation of
correlated errors. Such an effect may be enhanced by
the combination of sequences from multiple labora-
tories (because recurrent errors will be strongly corre-
lated), and for this reason, the data collected and se-
quenced by Ingman et al. (2000) is preferable. Given
that sequencing errors tend to be at low frequency, this
may explain why three of the four tests are significant
only if all the data are analyzed, but it does not explain
(beyond chance) why r 2 still shows a significant relation-
ship with distance when only high frequency variants
are used. McVean (2001) suggested that bouts of local
adaptive evolution might lead to correlated mutations
and a relationship between physical distance and link-
age disequilibrium as measured by r 2. How adaptive
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TABLE 4

Detecting recombination with mutations at intermediate frequencies

Genome Gene S PLPT Pr 2 P|D�| �̂ Reference

Measles H 59 0.067 0.048* 0.002* 3.0 Woelk et al. (2001)
H. pylori f laA 30 0.000* 0.000* 0.000* 44 Suerbaum et al. (1998)
HIV2 env12 97 0.000* 0.059 0.242 
100 Kuiken et al. (2000)
HIV2 env3 183 0.018* 0.016* 0.037* 36 Kuiken et al. (2000)
HIV1B env12 36 0.020* 0.083 0.435 
100 Kuiken et al. (2000)
HIV1B env3 36 0.018* 0.713 0.773 
100 Kuiken et al. (2000)

H. sapiens mtDNA CG 12 0.197 0.006* 0.442 15 Awadalla et al. (1999)
H. sapiens mtDNA CG 49 0.720 0.802 0.769 1.0 Ingman et al. (2000)

Tests for recombination in empirical data sets using only SNPs with a minor allele frequency of at least 0.1
are shown. Sample details are as for Table 3. *P � 0.05.

evolution influences patterns of linkage disequilibrium sites and the average pairwise differences. A negative
value of the statistic indicates an excess of rare variantsand the measurement and detection of recombination
and the possibility of population growth, and a positiveis an important problem.
value suggests population structure may be important.Misspecification of the population model: While the

Table 3 includes the value of Tajima’s D statistic forproperties of the composite-likelihood estimator of the
the data sets analyzed, and indicates the significancepopulation recombination rate have been examined
level estimated assuming no recombination. While theacross a variety of models of sequence evolution, no
statistic is negative for all data sets, it is only significantlymention has been made so far as to how robust the
so for measles, HIV1, and the two mtDNA data sets.methods described here may be to deviations from the
However, the variance of the statistic is reduced by re-population model. Coalescent estimation of likelihoods
combination (so reducing the confidence limits underassumes that a random sample has been taken from a
the null model). Other data sets (particularly the HIV2population of constant size, with random mating, no
data) may therefore also reflect significant deviationsmigration to or from different populations, and no natu-
from the standard neutral model. However, those dataral selection. In reality, none of these assumptions are
sets that show evidence for a departure from the stan-tenable, although several deviations from the standard
dard neutral model also reflect the full diversity of esti-neutral model (such as fluctuating population size) can
mated recombination rates. In short, while departurebe approximated as having an effect on the effective
from the assumed demographic model may have somepopulation size, Ne.
influence on the estimate of the population recombina-Population growth, strong geographical structuring,
tion rate, it is unlikely to be confused with the signal ofand nonrandom representation of gene sequences in
recombination.the databases are potentially important concerns for

the use of coalescent methods. Sampling of sequences We thank Michael Worobey for the generous supply of empirical
data sets and important insights. In addition, we thank Dick Hudson,specifically for population genetic analysis will overcome
Molly Przeworksi, and two reviewers for discussion and comments onthe problems of nonrandom database representation;
the manuscript. G.M. is funded by the Royal Society and P.A. is fundedhowever, inadequacies in the demographic model are by the Wellcome trust. The programs pairwise and permute used to

more problematic. Population growth tends to decrease estimate the population recombination rate and test for recombina-
linkage disequilibrium while population structure tends tion are available within the LDhat package, which can be downloaded

from http://www.stats.ox.ac.uk/�mcvean.to increase linkage disequilibrium (e.g., Pritchard and
Przeworski 2001). Consequently, one might expect
estimates of the population recombination rate (and

LITERATURE CITEDthe ability to detect recombination) to be sensitive to
Awadalla, P., A. Eyre-Walker and J. Maynard Smith, 1999 Link-the demographic history of the population.

age disequilibrium and recombination in hominid mitochondrialWhile no exhaustive attempt is made here to charac- DNA. Science 286: 2524–2525.
terize the behavior of the CLE under misspecified popu- Awadalla, P., A. Eyre-Walker and J. Maynard Smith, 2000 Ques-

tioning evidence for recombination in human mitochondriallation models, it is possible to ask whether the data sets
DNA—reply. Science 288: 1931a.analyzed show evidence for deviation from the neutral Braverman, J. M., R. R. Hudson, N. L. Kaplan, C. H. Langley and

model in terms of the allele frequency spectrum. This W. Stephan, 1995 The hitchhiking effect on the site-frequency
spectrum of DNA polymorphisms. Genetics 140: 783–796.can most simply be assessed through the use of Tajima’s

Brown, C. J., E. C. Garner, A. K. Dunker and P. Joyce, 2001 TheD statistic, which compares estimates of the population power to detect recombination using the coalescent. Mol. Biol.
Evol. 18: 1421–1424.mutation rate derived from the number of segregating



1241Detecting Recombination

Conway, D. J., C. Roper, A. M. J. Oduola, D. E. Arnot, P. G. Kuiken, C., B. Foley, B. Hahn, P. Marx, F. McCutchan et al. (Edi-
tors), 2000 HIV Sequence Compendium 2000. Theoretical BiologyKremsner et al., 1999 High recombination rate in natural popu-

lations of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 96: and Biophysics Group, Los Alamos National Laboratory, Los
Alamos, NM.4506–4511.

Fearnhead, P., and P. J. Donnelly, 2001 Estimating recombination Lewontin, R. C., 1964 The interaction of selection and linkage. I.
general considerations; heterotic models. Genetics 49: 49–67.rates from population genetic data. Genetics 159: 1299–1318.

Fisher, R. A., 1932 The Genetical Theory of Natural Selection. Oxford Maynard Smith, J., 1999 The detection and measurement of re-
combination from sequence data. Genetics 153: 1021–1027.University Press, London.

Frisse, L., R. R. Hudson, A. Bartoszewica, J. D. Wall, J. Donfack Maynard Smith, J., and N. H. Smith, 1998 Detecting recombina-
tion from gene trees. Mol. Biol. Evol. 15: 590–599.et al., 2001 Gene conversion and different population histories

may explain the contrast between polymorphism and linkage Maynard Smith, J., N. H. Smith, M. O’Rourke and B. G. Spratt,
1993 How clonal are bacteria? Proc. Natl. Acad. Sci. USA 90:disequilibrium levels. Am. J. Hum. Genet. 69: 831–843.

Grassly, N. C., and E. C. Holmes, 1997 A likelihood method for 4383–4388.
McGuire, G., F. Wright and M. J. Prentice, 2000 A Bayesian modelthe detection of selection and recombination using nucleotide

sequences. Mol. Biol. Evol. 14: 239–247. for detecting past recombination in DNA multiple alignments.
J. Comput. Biol. 7: 159–170.Griffiths, R. C., and P. Marjoram, 1996a Ancestral inferences

from samples of DNA sequences with recombination. J. Comput. McVean, G. A. T., 2001 What do patterns of genetic variability reveal
about mitochondrial recombination? Heredity 87: 613–620.Biol. 3: 479–502.

Griffiths, R. C., and P. Marjoram, 1996b An ancestral recombina- Meunier, J., and A. Eyre-Walker, 2001 The correlation between
linkage disequilibrium and distance. Implications for recombina-tion graph, pp. 257–270 in IMA Volume on Mathematical Population
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