Skip to main content
Genetics logoLink to Genetics
. 2002 May;161(1):315–324. doi: 10.1093/genetics/161.1.315

Physical and genetic mapping in the grasses Lolium perenne and Festuca pratensis.

J King 1, I P Armstead 1, I S Donnison 1, H M Thomas 1, R N Jones 1, M J Kearsey 1, L A Roberts 1, A Thomas 1, W G Morgan 1, I P King 1
PMCID: PMC1462087  PMID: 12019245

Abstract

A single chromosome of the grass species Festuca pratensis has been introgressed into Lolium perenne to produce a diploid monosomic substitution line 2n = 2x = 14. In this line recombination occurs throughout the length of the F. pratensis/L. perenne bivalent. The F. pratensis chromosome and recombinants between it and its L. perenne homeologue can be visualized using genomic in situ hybridization (GISH). GISH junctions represent the physical locations of sites of recombination, enabling a range of recombinant chromosomes to be used for physical mapping of the introgressed F. pratensis chromosome. The physical map, in conjunction with a genetic map composed of 104 F. pratensis-specific amplified fragment length polymorphisms (AFLPs), demonstrated: (1) the first large-scale analysis of the physical distribution of AFLPs; (2) variation in the relationship between genetic and physical distance from one part of the F. pratensis chromosome to another (e.g., variation was observed between and within chromosome arms); (3) that nucleolar organizer regions (NORs) and centromeres greatly reduce recombination; (4) that coding sequences are present close to the centromere and NORs in areas of low recombination in plant species with large genomes; and (5) apparent complete synteny between the F. pratensis chromosome and rice chromosome 1.

Full Text

The Full Text of this article is available as a PDF (331.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ananiev E. V., Riera-Lizarazu O., Rines H. W., Phillips R. L. Oat-maize chromosome addition lines: a new system for mapping the maize genome. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3524–3529. doi: 10.1073/pnas.94.8.3524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cho Y. G., Blair M. W., Panaud O., McCouch S. R. Cloning and mapping of variety-specific rice genomic DNA sequences: amplified fragment length polymorphisms (AFLP) from silver-stained polyacrylamide gels. Genome. 1996 Apr;39(2):373–378. doi: 10.1139/g96-048. [DOI] [PubMed] [Google Scholar]
  3. Copenhaver G. P., Nickel K., Kuromori T., Benito M. I., Kaul S., Lin X., Bevan M., Murphy G., Harris B., Parnell L. D. Genetic definition and sequence analysis of Arabidopsis centromeres. Science. 1999 Dec 24;286(5449):2468–2474. doi: 10.1126/science.286.5449.2468. [DOI] [PubMed] [Google Scholar]
  4. Dvorák J., Chen K. C. Distribution of Nonstructural Variation between Wheat Cultivars along Chromosome Arm 6Bp: Evidence from the Linkage Map and Physical Map of the Arm. Genetics. 1984 Feb;106(2):325–333. doi: 10.1093/genetics/106.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gill K. S., Gill B. S., Endo T. R., Boyko E. V. Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics. 1996 Jun;143(2):1001–1012. doi: 10.1093/genetics/143.2.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gill K. S., Gill B. S., Endo T. R., Taylor T. Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics. 1996 Dec;144(4):1883–1891. doi: 10.1093/genetics/144.4.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gustafson J. P., Dillé J. E. Chromosome location of Oryza sativa recombination linkage groups. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8646–8650. doi: 10.1073/pnas.89.18.8646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hohmann U., Endo T. R., Gill K. S., Gill B. S. Comparison of genetic and physical maps of group 7 chromosomes from Triticum aestivum L. Mol Gen Genet. 1994 Dec 1;245(5):644–653. doi: 10.1007/BF00282228. [DOI] [PubMed] [Google Scholar]
  9. Huang X., Zeller F. J., Hsam S. L., Wenzel G., Mohler V. Chromosomal location of AFLP markers in common wheat utilizing nulli-tetrasomic stocks. Genome. 2000 Apr;43(2):298–305. [PubMed] [Google Scholar]
  10. Kota R. S., Gill K. S., Gill B. S., Endo T. R. A cytogenetically based physical map of chromosome 1B in common wheat. Genome. 1993 Jun;36(3):548–554. doi: 10.1139/g93-075. [DOI] [PubMed] [Google Scholar]
  11. Kurata N., Nagamura Y., Yamamoto K., Harushima Y., Sue N., Wu J., Antonio B. A., Shomura A., Shimizu T., Lin S. Y. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet. 1994 Dec;8(4):365–372. doi: 10.1038/ng1294-365. [DOI] [PubMed] [Google Scholar]
  12. Künzel G., Korzun L., Meister A. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics. 2000 Jan;154(1):397–412. doi: 10.1093/genetics/154.1.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leitch I. J., Heslop-Harrison J. S. Physical mapping of four sites of 5S rDNA sequences and one site of the α-amylase-2 gene in barley (Hordeum vulgare). Genome. 1993 Jun;36(3):517–523. doi: 10.1139/g93-071. [DOI] [PubMed] [Google Scholar]
  14. McClelland M., Nelson M., Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res. 1994 Sep;22(17):3640–3659. doi: 10.1093/nar/22.17.3640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Meksem K., Leister D., Peleman J., Zabeau M., Salamini F., Gebhardt C. A high-resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Mol Gen Genet. 1995 Nov 1;249(1):74–81. doi: 10.1007/BF00290238. [DOI] [PubMed] [Google Scholar]
  16. Moore G. Cereal genome evolution: pastoral pursuits with 'Lego' genomes. Curr Opin Genet Dev. 1995 Dec;5(6):717–724. doi: 10.1016/0959-437x(95)80003-n. [DOI] [PubMed] [Google Scholar]
  17. Moore G., Devos K. M., Wang Z., Gale M. D. Cereal genome evolution. Grasses, line up and form a circle. Curr Biol. 1995 Jul 1;5(7):737–739. doi: 10.1016/s0960-9822(95)00148-5. [DOI] [PubMed] [Google Scholar]
  18. Moore G., Foote T., Helentjaris T., Devos K., Kurata N., Gale M. Was there a single ancestral cereal chromosome? Trends Genet. 1995 Mar;11(3):81–82. doi: 10.1016/S0168-9525(00)89005-8. [DOI] [PubMed] [Google Scholar]
  19. Mouchiroud D., D'Onofrio G., Aïssani B., Macaya G., Gautier C., Bernardi G. The distribution of genes in the human genome. Gene. 1991 Apr;100:181–187. doi: 10.1016/0378-1119(91)90364-h. [DOI] [PubMed] [Google Scholar]
  20. Okagaki R. J., Kynast R. G., Livingston S. M., Russell C. D., Rines H. W., Phillips R. L. Mapping maize sequences to chromosomes using oat-maize chromosome addition materials. Plant Physiol. 2001 Mar;125(3):1228–1235. doi: 10.1104/pp.125.3.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reamon-Büttner S. M., Schmidt T., Jung C. AFLPs represent highly repetitive sequences in Asparagus officinalis L. Chromosome Res. 1999;7(4):297–304. doi: 10.1023/a:1009231031667. [DOI] [PubMed] [Google Scholar]
  22. Riera-Lizarazu O., Vales M. I., Ananiev E. V., Rines H. W., Phillips R. L. Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics. 2000 Sep;156(1):327–339. doi: 10.1093/genetics/156.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sandhu D., Champoux J. A., Bondareva S. N., Gill K. S. Identification and physical localization of useful genes and markers to a major gene-rich region on wheat group 1S chromosomes. Genetics. 2001 Apr;157(4):1735–1747. doi: 10.1093/genetics/157.4.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schmidt R., West J., Love K., Lenehan Z., Lister C., Thompson H., Bouchez D., Dean C. Physical map and organization of Arabidopsis thaliana chromosome 4. Science. 1995 Oct 20;270(5235):480–483. doi: 10.1126/science.270.5235.480. [DOI] [PubMed] [Google Scholar]
  25. Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonierbale M. W., Broun P., Fulton T. M., Giovannoni J. J., Grandillo S., Martin G. B. High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992 Dec;132(4):1141–1160. doi: 10.1093/genetics/132.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thomas H. M., Harper J. A., Meredith M. R., Morgan W. G., Thomas I. D., Timms E., King I. P. Comparison of ribosomal DNA sites in Lolium species by fluorescence in situ hybridization. Chromosome Res. 1996 Nov;4(7):486–490. doi: 10.1007/BF02261775. [DOI] [PubMed] [Google Scholar]
  27. Werner J. E., Endo T. R., Gill B. S. Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11307–11311. doi: 10.1073/pnas.89.23.11307. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES