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ABSTRACT
While nonrandom associations between zygotes at different loci (zygotic associations) frequently occur

in Hardy-Weinberg disequilibrium populations, statistical analysis of such associations has received little
attention. In this article, we describe the joint distributions of zygotes at multiple loci, which are completely
characterized by heterozygosities at individual loci and various multilocus zygotic associations. These
zygotic associations are defined in the same fashion as the usual multilocus linkage (gametic) disequilibria
on the basis of gametic and allelic frequencies. The estimation and test procedures are described with
details being given for three loci. The sampling properties of the estimates are examined through Monte
Carlo simulation. The estimates of three-locus associations are not free of bias due to the presence of
two-locus associations and vice versa. The power of detecting the zygotic associations is small unless different
loci are strongly associated and/or sample sizes are large (�100). The analysis of zygotic associations
not only offers an effective means of packaging numerous genic disequilibria required for a complete
characterization of multilocus structure, but also provides opportunities for making inference about
evolutionary and demographic processes through a comparative assessment of zygotic association vs.
gametic disequilibrium for the same set of loci in nonequilibrium populations.

MULTILOCUS associations are most commonly to have a single measure that is similar to gametic dis-
equilibrium, but at zygote level.studied at the gametic level. In this case, linkage

disequilibrium or more appropriately gametic disequi- Recently, Yang (2000) described characterization and
estimation of such a measure for a pair of loci, whichlibrium can be used to sufficiently describe the nonran-

dom associations of alleles at different loci ordered is called zygotic association. According to Yang (2000),
the zygotic association is simply the deviation of two-within gametes (Bennett 1954; Weir 1996). The evi-

dence of gametic disequilibrium is important in infer- locus zygotic frequencies from products of single-locus
zygotic frequencies, but is composed of all nonallelicring about the history of a population, the evolutionary

forces governing these loci, and the location of the genic disequilibria at the two loci. Thus, in experimental
population genetic studies, the zygotic association canloci on the chromosomes. This approach to studying

multilocus associations is appropriate for a haploid pop- be estimated directly by comparing the two- and single-
locus zygotic frequencies observed in a sample of diploidulation where different gametes can be counted directly

or for a Hardy-Weinberg equilibrium population where individuals. Haldane (1949) was probably the first to
recognize that the zygotic association can be generatedgametic frequencies can be inferred from genotypic

(zygotic) frequencies. However, natural populations are as a result of partial inbreeding even in a linkage (ga-
metic) equilibrium population. Subsequent studiesrarely at equilibrium because of many disturbing forces

such as inbreeding, population structure, and selection. have shown that such zygotic associations may arise from
mixed selfing random mating (Bennett and BinetIn a nonequilibrium population, a complete character-

ization of multilocus associations requires gametic and 1956; Allard et al. 1968; Weir and Cockerham 1973),
associative overdominance (Ohta and Cockerhammany other genic disequilibria (Cockerham and Weir

1973; Weir 1979). Even with a moderate number of 1974; Charlesworth 1991), admixture of two or more
distinct gene pools (Barton and Gale 1993), or heter-loci each with a few alleles, the number of genic disequi-

libria to be characterized and estimated can quickly otic selection (Mitton 1997). Thus, knowledge of ex-
tent and patterns of zygotic associations at two or moreincrease beyond comprehension. Thus, with a large

number of loci each with many alleles, it is necessary loci is essential for inferring about evolutionary and
demographic processes. However, while there is sub-
stantial literature on gametic disequilibria at three or
more loci (e.g., Bennett 1954; Brown 1975; Hill 1975;

1Address for correspondence: Alberta Agriculture, Food and Rural De- Thomson and Baur 1984; Barton 2000), equivalentvelopment, No. 301, J. G. O’Donoghue Bldg., 7000 - 113 St., Edmon-
ton, Alberta T6H 5T6, Canada. E-mail: rongcai.yang@gov.ab.ca development for multilocus zygotic associations is not
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yet available. In this article, we first describe the joint Clearly, the zygotic association (�jl) is bounded by the
marginal zygotic frequencies at the two individual loci,distributions of zygotes at multiple loci and their rela-

tionships with heterozygosities and zygotic associations.
We then describe statistical procedures of estimating

max[�HjHl , �(1 � Hj)(1 � Hl)] � �jl � 0, if �jl � 0

0 � �jl � min[(1 � Hj)Hl , Hj(1 � Hl)], if �jl � 0.and testing multilocus zygotic associations from a sam-
(3)ple of diploid individuals, with the details being given

for the case of three loci. The sampling properties of Given that the variance of Xj , Var(Xj) � Hj(1 � Hj),
the estimates are examined by computer simulation. and the covariance between Xj and Xl , Cov(Xj , Xl) �

�jl , the correlation between heterozygosities at loci j and
l is given byTHEORY AND ANALYSIS

Consider a diploid population in which individual rjl �
�jl

√Hj(1 � Hj)Hl(1 � Hl)
.

genotypes are known at m loci (e.g., codominant pheno-
typic markers such as the MN blood groups, allozymes,

To see how the zygotic association (�jl) is related to
and microsatellites). Then, a genotype at a particular

different genic disequilibria including gametic disequi-
locus can be unambiguously recognized as a homozy-

librium, it is necessary to first identify the relationships
gote or heterozygote, depending on whether or not the

between joint frequencies of homozygotes and heterozy-
two alleles at the locus are the same. Just as frequencies

gotes in (2) and genotypic frequencies,
of genes or gametes at one or more loci are needed
for defining and characterizing gametic disequilibria, f(00) � �

r

u�1
�

s

y�1

jlP uy
uy , f(01) � �

r

u�1

��
y�z

jlP uy
uzfrequencies of zygotes at one or more loci are required

for defining and characterizing multilocus zygotic asso-
f(10) � ��

u�v
�

s

y�1

jlP uy
vy, f(11) � ��

u�v
��
y�z

jlP uy
vz , (4a)ciations. These zygotic frequencies and their relation-

ships with heterozygosities and multilocus zygotic associ-
where, for example, jlP uy

vz is the frequency of genotypesations are described below.
at loci j and l from the union of gametes ju l y and jv l zOne locus: At a given locus, say locus j, the probability
(u, v � 1, 2, . . . , r ; y, z � 1, 2, . . . , s). Then, usingof an individual genotype being heterozygous or homo-
Cockerham and Weir’s (1973) disequilibrium func-zygous is defined as
tions for the two-locus frequencies (e.g., jlP uy

uy), the zygotic
f(Xj) � HXjj (1 � Hj)1�Xj, (1) association at loci j and l can be expressed in terms of

individual genic disequilibria,where indicator Xj takes either 1 or 0 to signal whether
the genotype at the jth locus is a heterozygote or homo- �jl � f(00) f(11) � f(10) f(01)
zygote, and Hj is the population heterozygosity at locus
j. Thus, f(1) � Hj and f(0) � 1 � Hj. If the population is � �

r

u�1
�

s

y�1
�2jp jl

uDuy
·y � 2lpy

jlDuy
u· � 2jpl

up jl
yDuy

··

in Hardy-Weinberg equilibrium, then the heterozygosity
(Hj) is reduced to the gene diversity or expected hetero-

� 2jpl
upy

jlD ·y
u· � (jlDuy

·· )2 � (jlD ·y
u·)2 � jlDuy

uy�,zygosity under Hardy-Weinberg equilibrium (hj). The
relationship between Hj and hj is given in Yang (2000, (4b)
Equation 5). Such a relationship has been the basis for

where jpu , for example, is the frequency of allele u atdetecting Hardy-Weinberg disequilibrium (Weir 1996).
locus j. Clearly, each genic disequilibrium (D) in (4b) isTwo loci: When two loci, say loci j and l, are consid-
the deviation of a frequency from that based on randomered, the joint distribution of indicators, Xj and Xl, is
association of genes and accounting for any lower order

f(XjX l) � f(Xj)f(Xl) � (�1)Xj�Xl �jl , (2) disequilibria. For example, the gametic disequilibrium
(jlDuy

·· ) is the deviation of frequency of gamete jul y fromwhere f(Xj), for example, is given in (1) and �jl is the
the product of frequencies of alleles u and y at loci jzygotic association between loci j and l (Yang 2000).
and l, jlDuy

·· � jlP uy
·· � jpl

upy. It is also evident from (4b) thatThus, f(11) � HjHl � �jl , f(10) � Hj(1 � Hl) � �jl , even in a gametic equilibrium population (jlDuy
·· � 0),f(01) � (1 � Hj)Hl � �jl , and f(00) � (1 � Hj)(1 �

nonzero zygotic associations can arise from other forcesHl) � �jl . The marginal frequencies for the individual
such as partial inbreeding as a result of “identity disequi-loci are: f(0·) � f(00) � f(01) � 1 � Hj , f(1·) � f(10) �
librium” (jlDuy

vz � 0). On the other hand, in a Hardy-f(11) � Hj , f(·0) � f(00) � f(10) � 1 � Hl , and f(·1) �
Weinberg equilibrium population, the zygotic associa-f(01) � f(11) � Hl. These relationships enable �jl to be
tion is a function of gametic disequilibrium only. Yangexpressed in one of the following five ways:
(2000) has described in detail the interrelationships
among gene frequencies, genic disequilibria, and two-�jl � f(00) � f(0·)f(·0) � �[ f(10) � f(1·)f(·0)]
locus zygotic associations.

� �[ f(01) � f(0·) f(·1)]
Three loci: When three or more loci are considered

jointly, two alternative approaches can be used to de-� f(11) � f(1·) f(·1) � f(00) f(11) � f(10) f(01).
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scribe zygotic associations at these loci. The first is Bart- ��
jlo(max) � ��1

lett’s (1935) multiplicative approach based on the
��

jlo(min) � max[0, ��2]. (7b)
multiway contingency table. In the case of three loci,
the absence of three-locus zygotic association but the Since any of the eight f0(XjX lXo) values can be negative,
presence of all three pairwise associations implies that neither ��

jlo(min) nor ��
jlo(min) is necessarily zero.

Clearly, the �1 and �2 values can be used to determinef(111) f(100) f(010) f(001) � f(110) f(101) f(011) f(000),
the sign and range of �jlo ,

where f(111), for example, is the joint frequency of
heterozygotes at the three loci. However, no explicit
formulas for these joint zygotic frequencies can be given,

��
jlo(min) � �jlo � ��

jlo(max), if �1 � 0, �2 � 0 and |�1|�|�2|

��
jlo(max) � �jlo � ��

jlo(min), if �1 � 0, �2 � 0 and |�1|	|�2|

��
jlo(max) � �jlo � ��

jlo(max), if �1 	 0 and �2 	 0,
and the numerical solutions are often sought. The sec-
ond approach is the additive formulation of Bennett
(1954) in which the joint frequencies of heterozygosities

(8)

but some pairs of the �1 and �2 values (e.g., �1 � 0 andat three loci, for example, are linear functions of hetero-
�2 � 0) would not lead to the definable �jlo . Given 0 �zygosities and two- and three-locus zygotic associations.
Hj , Hl , Ho � 1, all profiles of heterozygosities {Hj Hl Ho},Because of its relative simplicity relating to estimation
but with no two-locus associations (i.e., �jl � �jo � �lo �and hypothesis testing, the additive approach is used
0), would produce the condition of �1 	 0 and �2 	 0for the subsequent development of multilocus zygotic
[i.e., f0(XjX lXo) � f(Xj)f(Xl)f(Xo) 	 0] and thus definableassociations. Thus, the joint distribution of indicators
�jlo values. However, given a heterozygosity profile, notXj , Xl , and Xo for loci j, l, and o is given by
all configurations of two-locus zygotic associations {�jl

f(X jX lX o) � f(X j) f(X l) f(X o) � f(X j)(�1)Xl�XO�lo �jo �lo} would lead to the conditions given in (8) under
which �jlo can be defined.

� f(X l)(�1)Xj�XO�jo Table 1 shows some numerical examples to illustrate
effects of heterozygosities, which are pairwise zygotic� f(X o)(�1)Xj�X l �jl � (�1)X j�X l�X o�1�jlo , (5)
associations on the ranges of the three-locus association

where f(Xj) and �jl , for example, are given in (1) and (�jlo). For example, with Hj � Hl � 0.05 and Ho � 0.1,
(2), and �jlo is the three-locus zygotic association. Three- the ranges for �jl , �jo , and �lo are �0.0025 � �jl �
locus independence is implied by zero three-locus asso- 0.0475, �0.005 � �jo � 0.045, and �0.005 � �lo � 0.045,
ciation, but with the presence of all pairwise associa- respectively. Each of these three ranges is divided by 19
tions, i.e., to obtain 20 equally divided values from the minimum

to the maximum. Thus, there are 8000 (20 �jl’s 
f0(X jX lX o) � f(X j) f(X l) f(X o) � f(X j)(�1)Xl�XO�lo

20 �jo’s 
 20 �lo’s) configurations of the two-locus zygotic
� f(X l)(�1)Xj�XO�jo associations that can be used to define the ranges for

�jlo. Of these 8000 configurations, 240 have the ranges
� f(X o)(�1)Xj�Xl �jl . (6) with �jlo � 0, 1496 have the ranges with �jlo � 0, and

2158 have the ranges of ��
jlo(max) � �jlo � ��

jlo(max),Unlike the two-locus associations (e.g., �jl) where the
but the remaining 4106 configurations do not lead tominimum is always zero for both �jl � 0 and �jl � 0 (cf.
any definable �jlo. In each of these three cases, we iden-Equation 3), the three-locus zygotic associations may
tify a configuration that leads to the maximum rangesometimes be bounded away from zero. In other words,
of �jlo (it is noted that many other configurations mayboth positive and negative �jlo values may be constrained
also lead to the same maximum range in each case).by their own minimum and maximum values. Let us
As in the two-locus case, we wish to learn how the three-first define two quantities,
locus zygotic association (�jlo) is related to genic disequi-

�1 � min[ f0(111), f0(100), f0(010), f0(001)] libria. To focus our interest in the relationships between
zygotic associations and gametic disequilibria, we as-�2 � min[ f0(110), f0(101), f0(011), f0(000)],
sume that a zygote is formed from random union of

where f0(111) � Hj Hl Ho � Hj �lo � Hl �jo � Ho �jl , two gametes (i.e., the population is in Hardy-Weinberg
for example, is obtained using (6). Thus, following the equilibrium). Because, under this assumption, the zy-
development by Thomson and Baur (1984) for the gotic frequencies are just products of the gametic fre-
three-locus gametic disequilibrium, the maximum and quencies, the three-locus zygotic and gametic frequen-
minimum values for �jlo � 0 [denoted as ��

jlo(max) and cies are directly related. For convenience, we consider
��

jlo(min)] are only the case of two alleles at each of the three loci
and the notation in this case is varied to reduce the��

jlo(max) � �2

superscripts and subscripts. The frequencies of the two
��

jlo(min) � max[0, ��1] (7a) alleles J and j at locus j are pJ and pj (�1 � pJ), those
of the two alleles L and l at locus l are pL and pl (�1 �and those for �jlo � 0 [denoted as ��

jlo(max) and ��
jlo

(min)] are pL), and those of the two alleles O and o at locus o are
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TABLE 1

Ranges for three-locus zygotic associations

Example

Range for �jloHj Hl Ho Bounds on �jlo va �jl �jo �lo

0.1 0.05 0.1 �jlo � 0 240 0.0396 �0.0024 0.0003 �0.0041 �0.0015
�jlo � 0 1496 0.0238 0.0239 0.0239 0.0002 0.0213

��
jlo(max) � �jlo � ��

jlo(max) 2158 0.0212 0.0213 0.0213 �0.0045 0.0192
0 0 0 �0.0003 0.0023

0.1 0.1 0.1 �jlo � 0 294 �0.0047 0.0742 0.0058 �0.0085 �0.0033
�jlo � 0 933 0.0479 0.0479 0.0479 0.0004 0.0425

��
jlo(max) � �jlo � ��

jlo(max) 1698 0.0426 0.0426 0.0426 �0.0085 0.0388
0 0 0 �0.0010 0.0090

0.1 0.1 0.5 �jlo � 0 805 0.0584 �0.0237 �0.0237 �0.0295 �0.0032
�jlo � 0 805 0.0584 0.0237 0.0237 0.0032 0.0295

��
jlo(max) � �jlo � ��

jlo(max) 2288 0.0426 0.0026 0.0026 �0.0216 0.0258
0 0 0 �0.0050 0.0050

0.1 0.3 0.5 �jlo � 0 1246 0.0384 �0.0132 0.0868 �0.0337 �0.0021
�jlo � 0 1284 0.0384 0.0184 �0.0395 0.0011 0.0326

��
jlo(max) � �jlo � ��

jlo(max) 2761 0.0226 0.0263 0.1026 �0.0321 0.0153
0 0 0 �0.0150 0.0150

0.5 0.5 0.5 �jlo � 0 0
�jlo � 0 0

��
jlo(max) � �jlo � ��

jlo(max) 2440 0.0132 0.0132 0.0132 �0.1184 0.1184
0 0 0 �0.1250 0.1250

Shown are configurations of two-locus zygotic associations (�jl) that lead to definable three-locus associations and examples
for resultant maximum ranges for three-locus zygotic association (�jlo) for each heterozygosity profile (Hj , Hl , and Ho).

a The number of �jl configurations that satisfy the bound set for �123 as specified in column 4. The total number of �jl

configurations is 8000 (20 �jl 
 20 �jo 
 20 �lo).

pO and po (�1 � pO). The gametic disequilibrium be- those in g whereas rows (columns) 2 to 8 are just differ-
ent rearrangements of the eight gametic frequenciestween the j-l loci is denoted as Djl , between the j-o loci

as Djo, between the l-o loci as Dlo , and the three-locus required to obtain the desired zygotic frequencies in f.
In the absence of two-locus gametic disequilibria (i.e.,gametic disequilibrium as Djlo . These seven parameters

are used to obtain the vector of eight three-locus ga- Djl � Djo � Dlo � 0), the expressions of zygotic frequencies
in f are greatly simplified. For example, the frequency ofmetic frequencies, g � [g JLO g JLo g JlO g Jlo g jLO g jLo g jlO g jlo]�,

where g JLO , for example, is homozygotes at all three loci, j, l, and o, is given by

g JLO � pJpLpO � pJDlo � pLDjo � pODjl � Djlo f(000) � (pJpLpO � Djlo)2 � (pJ pL pO � Djlo)2

(Brown 1975; Thomson and Baur 1984). Under ran- � (pJ pl pO � Djlo)2 � (pJ pl po � Djlo)2

dom mating, the zygotic frequencies are just appro-
� (pj pL pO � Djlo)2 � (pj pL po � Djlo)2

priate sums of elements of the matrix gg�, but the level
of heterozygosity is not in any particular sorted order. � (pj pl pO � Djlo)2 � (pj pl po � Djlo)2

Fortunately, an (8 
 8) matrix G is found to enable
� (1 � Hj)(1 � Hl)(1 � Ho)the relationships between heterozygosities and gametic

frequencies to be expressed directly, i.e., f � Gg, where � 2(1 � 2pJ)(1 � 2pl)(1 � 2pO)Djlo � 8D 2
jlo .

f � [f(000) f(001) f(010) f(011) f(100) f(101) f(110) (10)
f(111)]� and

Here Hj, for example, is the same as the expected het-
erozygosity under Hardy-Weinberg equilibrium (hj �
2pJ pj). Given that �jl � 2(1 � 2pJ)(1 � 2pL)Djl � 4D2

jl

(Yang 2000), for example, �jl � �jl � �jl � 0 in the
absence of the pairwise gametic disequilibria. Thus, the

G �











g JLO g JLo g JlO g Jlo g jLO g jLo g jlO g jlo
g JLo g JLO g Jlo g JlO g jLo g jLO g jlo g jlO
g JlO g Jlo g JLO g JLo g jlO g jlo g jlO g jLo
g Jlo g JlO g JLo g JLO g jlo g jlO g jLo g jLO
g jLO g jLo g jlO g jlo g JLO g JLo g JlO g Jlo
g jLo g jLO g jlo g jlO g JLo g JLO g Jlo g JlO
g jlO g jlo g jLO g jLo g JlO g Jlo g JLO g JLo
g jlo g jlO g jLo g jLO g Jlo g JlO g JLo g JLO











. three-locus zygotic association can be expressed in terms
of gene frequencies and three-locus gametic disequilib-
rium

(9)
�jlo � �[ f(000) � (1 � Hj)(1 � Hl)(1 � Ho)]

Note that G is a symmetric matrix and the eight gametic
frequencies in its first row or column are identical to � 2(1 � 2pJ)(1 � 2pL)(1 � 2pO)Djlo � 8D 2

jlo (11)
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TABLE 2

Three-locus gametic and zygotic associations

Range of Djlo

Value of �jlo

Size of negative Djlo Size of positive Djlo

pJ pL pO �pJ pL pO pJ pL(1 � pO) 100% 50% 50% 100%

0.1 0.1 0.1 �0.001 0.009 �0.0010 �0.0005 0.0044 0.0086
0.1 0.1 0.2 �0.002 0.008 �0.0016 �0.0008 0.0029 0.0056
0.1 0.1 0.3 �0.003 0.007 �0.0016 �0.0008 0.0017 0.0032
0.1 0.1 0.4 �0.004 0.006 �0.0012 �0.0005 0.0007 0.0012
0.1 0.1 0.5 �0.005 0.005 �0.0002 �0.0001 �0.0001 �0.0002
0.1 0.2 0.2 �0.004 0.016 �0.0024 �0.0012 0.0041 0.0072
0.1 0.2 0.3 �0.006 0.014 �0.0026 �0.0012 0.0023 0.0038
0.1 0.2 0.4 �0.008 0.012 �0.0020 �0.0009 0.0009 0.0012
0.1 0.2 0.5 �0.010 0.010 �0.0008 �0.0002 �0.0002 �0.0008
0.1 0.3 0.3 �0.009 0.021 �0.0030 �0.0013 0.0018 0.0018
0.1 0.3 0.4 �0.012 0.018 �0.0027 �0.0011 0.0005 �0.0003
0.1 0.3 0.5 �0.015 0.015 �0.0018 �0.0005 �0.0005 �0.0018
0.1 0.4 0.4 �0.016 0.024 �0.0031 �0.0010 �0.0004 �0.0031
0.1 0.4 0.5 �0.020 0.020 �0.0032 �0.0008 �0.0008 �0.0032
0.1 0.5 0.5 �0.025 0.025 �0.0050 �0.0013 �0.0013 �0.0050
0.2 0.2 0.2 �0.008 0.032 �0.0040 �0.0019 0.0049 0.0056
0.2 0.2 0.3 �0.012 0.028 �0.0046 �0.0020 0.0025 0.0018
0.2 0.2 0.4 �0.016 0.024 �0.0044 �0.0017 0.0006 �0.0012
0.2 0.2 0.5 �0.020 0.020 �0.0032 �0.0008 �0.0008 �0.0032
0.2 0.3 0.3 �0.018 0.042 �0.0060 �0.0024 0.0005 �0.0060
0.2 0.3 0.4 �0.024 0.036 �0.0069 �0.0023 �0.0009 �0.0069
0.2 0.3 0.5 �0.030 0.030 �0.0072 �0.0018 �0.0018 �0.0072
0.2 0.4 0.4 �0.032 0.048 �0.0097 �0.0028 �0.0035 �0.0161
0.2 0.4 0.5 �0.040 0.040 �0.0128 �0.0032 �0.0032 �0.0128
0.2 0.5 0.5 �0.050 0.050 �0.0200 �0.0050 �0.0050 �0.0200
0.3 0.3 0.3 �0.027 0.063 �0.0093 �0.0032 �0.0039 �0.0237
0.3 0.3 0.4 �0.036 0.054 �0.0127 �0.0037 �0.0041 �0.0199
0.3 0.3 0.5 �0.045 0.045 �0.0162 �0.0041 �0.0041 �0.0162
0.3 0.4 0.4 �0.048 0.072 �0.0200 �0.0054 �0.0092 �0.0392
0.3 0.4 0.5 �0.060 0.060 �0.0288 �0.0072 �0.0072 �0.0288
0.3 0.5 0.5 �0.075 0.075 �0.0450 �0.0113 �0.0113 �0.0450
0.4 0.4 0.4 �0.064 0.096 �0.0338 �0.0087 �0.0177 �0.0722
0.4 0.4 0.5 �0.080 0.080 �0.0512 �0.0128 �0.0128 �0.0512
0.4 0.5 0.5 �0.100 0.100 �0.0800 �0.0200 �0.0200 �0.0800
0.5 0.5 0.5 �0.125 0.125 �0.1250 �0.0313 �0.0313 �0.1250

Shown are three-locus zygotic associations (�jlo) in the presence of three-locus gametic disequilibrium (Djlo)
but absence of the pairwise disequilibria (Djl � Djo � Dlo � 0). The Hardy-Weinberg equilibrium population
is assumed so that the values of �jlo are directly related to Djlo and gene frequencies (pJ , pL , and pO).

(cf. Equation 5). Table 2 lists the values of three-locus the absolute values of �jlo are increased. In the cases of
pJ � 0.5 or pL � 0.5 or pO � 0.5, �jlo is always negativezygotic association (�jlo) in the presence of three-locus

gametic disequilibrium (Djlo) but absence of the pairwise because �jlo � �8D2
jlo .

The combined effect of two- and three-locus gameticdisequilibria (Djl � Djo � Dlo � 0) for various gene fre-
quencies (pJ � pL � pO). In this case, the range of Djlo is disequilibria on the values of �jlo is also examined (nu-

merical results are not presented). The joint contribu-defined by the gene frequencies �pJ pL pO � Djlo � pJ

pL(1 � pO). The values of �jlo are calculated for two sizes tion of two- and three-locus gametic disequilibria to
�jlo greatly cloaks their relationships with �jlo . However,of negative Djlo (�pJ pL pO and �0.5pJ pL pO) and two sizes

of positive Djlo [pJ pL(1 � pO) and 0.5pJ pL(1 � pO)]. The there are clearly cases where the �jlo values exceed the
limits of �jlo under the cases of no pairwise disequilibria.higher the absolute values that Djlo can take, the larger

the absolute values of �jlo . It is evident from (11) that For example, for pJ � pL � pO � 0.5, the ranges for Djl ,
Djo , and Dlo are all from �0.25 to 0.25, but permissible�jlo is always negative if Djlo � 0, but can be either positive

or negative if Djlo � 0 with �jlo being positive only if 0 � values of Djlo are determined by different combinations
of these pairwise disequilibria with the given gene fre-Djlo � (1 � 2pJ)(1 � 2pL)(1 � 2pO)/4. As pJ , pL , and pO

are approaching 0.5, the range of Djlo is expanded and quencies (Thomson and Baur 1984). It is found that
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when Djl � Djo � Dlo � Djlo � �0.25, �jlo is �0.5, which Let nabc be the numbers of the abc th class of zygotes
with a, b, and c representing indicators X 1, X 2, and X 3,exceeds the limit of �0.125 in the case of no two-locus

disequilibria (Djl � Djo � Dlo � 0). respectively. Thus the ML estimates of f ’s are given by
f̂(abc) � nabc/n to satisfy the maximized multinomialMore than three loci: The extension to four or more

loci following Bennett (1954) is straightforward. For likelihood,
example, the joint distribution of indicators Xj , Xl , Xo ,
and Xq for loci j, l, o, and q, respectively, is given by max L �

n!

�1
a�0 �1

b�0 �1
c�0nabc!

�
1

a�0
�
1

b�0
�
1

c�0

[f̂(abc)]nabc.

f(Xj Xl Xo Xq) � f(X j) f(X l) f(X o) f(X q) � f(X j)(�1)Xl�Xo�Xq�1�loq

Various one- and two-locus marginal frequencies are
� f(X l)(�1)Xj�Xo�q�1�joq � f(X o)(�1)Xj Xl Xq�1�jlq given by sums of the three-locus frequencies as indicated

by dots for the indices summed. For example, f̂(ab·) �� f(X q)(�1)XjXlXo�1�jlo � f(X j) f(X l)(�1)Xo�Xq � oq

R1
c�0f̂(abc) and f̂(a··) � R1

b�0 R1
c�0f̂(abc). Note that the one-

� f(X j) f(X o)(�1)Xl�Xq �lq � f(X j) f(Xq)(�1)Xl�Xo �lo locus marginal frequencies, f̂(1··) � Ĥ1, f̂(·1·) � Ĥ2,
and f̂(··1) � Ĥ3, are the estimates of heterozygosities at� f(X l) f(Xo)(�1)Xj�Xq �jq � f(X l) f(X q)(�1)Xj�Xo �jo

loci 1, 2, and 3, respectively. The zygotic associations
� f(X o) f(X q)(�1)Xj�Xl �jl for two loci (e.g., �12) and for all three loci (�123) are

estimated as� (�1)Xj�Xl�Xo�Xq [�jl �oq � �jo �lq � �jq �lo � �jloq],

(12) �̂12 � f̂(11·) � f̂(1··) f(·1·) (13a)

where f(Xj), �jl , and �jlo , for example, are given in (1), and
(2), and (5), and �jloq is the four-locus zygotic association.

�̂123 � f̂(111) � f̂(1··)�̂23 � f̂(·1·)�̂13In other words, the frequencies of 16 zygote classes for
loci j, l, o, and q can be uniquely defined in terms of the � f̂(··1)�̂12 � f̂(1··) f̂(·1·) f̂(··1), (13b)
four heterozygosities for individual loci, the six pairwise

respectively. These ML estimates are biased as indicatedzygotic associations, four three-locus zygotic associa-
from their expected values,tions, and one four-locus association. The three prod-

ucts of pairwise zygotic associations in the last term of
E(�̂12) �

(n � 1)
n

�12 and E(�̂123) �
(n � 3)

n
�123.(12) arise from the “two-locus” recombination, a distinct

feature inherent in the associations for more than three
linked loci (Bennett 1954; Lewontin 1964; Cock- Sampling variances of linear combinations of multi-

nomial variables are known exactly. For example,erham and Tachida 1986). A set of functions,
f0(XjX lXoXq), can be defined in a similar manner as (6) var(Ĥ1) � H1(1 � H1)/n. The sampling variances of

zygotic association estimates involve quadratic functionsfor f0(XjX lXo) to provide the basis for defining the range
of �jloq. The higher order zygotic associations are re- of observed heterozygosities and can be calculated using

Fisher’s (1954) expression for the approximate vari-quired for deriving higher moments of the number of
heterozygous loci (Yang 2000) or covariances of two- ance of a function of multinomial observations nabc , for

example, with expectations E(nabc) � nf(abc). The sam-locus sample zygotic associations (Weir 1996, Chap. 4).
pling variances of �̂12 and �̂123 are

STATISTICAL INFERENCE
Var(�̂12) �

1
n

[A1A2 � B1B2�12 � �2
12] (14a)

Maximum-likelihood estimation: For m loci, there are
2m possible classes of zygotes with two extreme classes and
being m-locus homozygotes (00 · · · 0) and m-locus

Var(�̂123) �
1
n

[A1A2A3 � 6�12�13�23 � A1(B2B3�23 � �2
23)heterozygotes (11 · · · 1). A total of 2m � 1 parameters

can be estimated. Here we focus on the estimation for
� A2(B1B3�13 � �2

13) � A3(B1B2�12 � �2
12)the case of three loci (m � 3), letting j � 1, l � 2, and

o � 3 for convenience. Table 3 lists the eight classes of
� �123(B1B2B3 � 2B1�23 � 2B2�13 � 2B3�12) � �2

123],
zygotes with the expected frequencies of f(000), f(001), (14b)
f(010), f(011), f(100), f(101), f(110), and f(111) as ob-
tained from (5). Seven parameters are estimable: three where At � Ht(1 � Ht) and Bt � (1 � 2Ht) with t � 1,

2, 3. Equations 14a and 14b are essentially the same asheterozygosities (H1, H2, and H3), three two-locus zygotic
associations (�12, �13, and �23), and one three-locus zy- Equations 3 and 13 of Brown (1975) for the sampling

variances of two- and three-locus gametic disequilibria.gotic association (�123). If a sample of n individuals is
taken from a diploid population and if the numbers of Hypothesis testing: Since the ML estimate �̂i is approxi-

mately normally distributed, i.e., �̂i � N[E(�̂i), Var(�̂i)],each class in the sample are assumed to be multinomially
distributed, frequencies of these classes can be esti- a test statistic (�2

i ) that is constructed, after setting �i to
zero in both E(�̂i) and Var(�̂i), is distributed as chimated using the maximum-likelihood (ML) method.
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TABLE 3

Joint frequencies of zygotes at three loci

X1 X 2 X 3 Frequency

1 1 1 f(111) � H1H2H3 � H1�23 � H2�13 � H3�12 � �123

1 1 0 f(110) � H1H2(1 � H3) � H1�23 � H2�13 � (1 � H3)�12 � �123

1 0 1 f(101) � H1(1 � H2)H3 � H1�23 � (1 � H2)�13 � H3�12 � �123

1 0 0 f(100) � H1(1 � H2)(1 � H3) � H1�23 � (1 � H2)�13 � (1 � H3)�12 � �123

0 1 1 f(011) � (1 � H1)H2H3 � (1 � H1)�23 � H2�13 � H3�12 � �123

0 1 0 f(010) � (1 � H1)H2(1 � H3) � (1 � H1)�23 � H2�13 � (1 � H3)�12 � �123

0 0 1 f(001) � (1 � H1)(1 � H2)H3 � (1 � H1)�23 � (1 � H2)�13 � H3�12 � �123

0 0 0 f(000) � (1 � H1)(1 � H2)(1 � H3) � (1 � H1)�23 � (1 � H2)�13 � (1 � H3)�12 � �123

Shown are the joint frequency distributions of indicator variables, X1, X 2, and X 3 in terms of their heterozygosi-
ties (H1, H2, and H3) and zygotic associations (�12, �13, �23, and �123) at loci 1, 2, and 3.

square with 1 d.f., where subscript i indexes for 12, 13, locus zygotic associations are unbiased; conversely �̂123

23, and 123 for the three loci. For example, the test is also an unbiased estimate of �123 when there are no
statistic for estimated zygotic association at loci 1 and 2 two-locus associations.
(�̂12), While means of estimated zygotic associations for the

two sample sizes in Table 4 are similar, the larger sample
leads to a much smaller SD. It is thus no surprise to see�2

12 �
�̂2

12

Var(�̂12|�12 � 0)
�

n�̂2
12

Ĥ1(1 � Ĥ1)Ĥ2(1 � Ĥ2)
,

that the larger sample leads to a much greater power
of detecting nonzero zygotic associations. The estimatedis used to test for �12 � 0.
powers for the cases of no zygotic associations in TableSimulation: Monte Carlo simulation is carried out to
4 are close to 0.05 as expected because a 5% significanceexamine the performance of the estimators and test
level is used to reject these null hypotheses. To furtherstatistics for the four zygotic associations, �12, �13, �23,
explore the effect of sample sizes on the power, weand �123. The eight frequencies of zygote classes,
calculate the powers of detecting three-locus associa-f(X1X2X3), can be constructed from given values of the
tions in the presence of two-locus associations (i) �12 �four zygotic associations and three heterozygosities, H1,
�13 � �23 � 0.0213 and (ii) �12 � 0.0226, �13 � 0.0263,H2, and H3 (cf. Table 3). For each of the 18 configura-
and �23 � 0.0263 (cf. Table 1) for sample sizes of 30,tions given in Table 1, we consider three values (maxi-
100, 300, 500, and 1000 (the three loci are indexed asmum, minimum, and zero) of three-locus zygotic associ-
j � 1, l � 2, and o � 3). The critical value with a 5%ation (�123). Thus, there are a total of 54 populations
significance level, c 0.05 , which determines the rejectionconstructed. From each population, 10,000 replicate
region for the hypothesis H0, �123 � 0, issamples of sizes n � 30, 100, and 300 are drawn. Estima-

tion and test are made for each simulated sample and
c 0.05 � 1.96√Var(�̂123|�123 � 0).descriptive statistics are calculated across all the samples.

Table 4 presents means and standard deviations (SD) Thus, the power (the probability of rejecting the false
of estimates from the simulated samples for 8 of the 54 H0) is given by
constructed populations described above. The simula-
tion results are given only for n � 30 and n � 300. It

P(|�̂123 | � c 0.05) � ��(�123 � c 0.05)

√Var(�̂123)
� � �(�123 � c 0.05)

√Var(�̂123)
�,is evident that the averages of estimated zygotic associa-

tions are very close to their theoretical values when there
where (x) is the cumulative density function of normalis no or little association. In this case, bias is expected
variate x. The results of power calculations are displayedto be negligible as it arises only from the factor of (n �
in Figure 1. The power is very small when zygotic associa-1)/n. However, when such a case is not true, there can
tions are close to zero and when sample sizes are smallbe a substantial amount of bias in the estimates. For
(�100). These results corroborate those by Brownexample, for the case of H1 � 0.1, H2 � 0.3, and H3 �
(1975) and Thompson et al. (1988) on detecting ga-0.5 with �12 � 0.023, �13 � 0.026, �23 � 0.103, and �123 �
metic disequilibria at two or three loci. On the other�0.032, the respective averaged estimates of �12, �13,
hand, Brown et al. (1980) and Yang (2000) have con-�23, and �123 are 0.023, 0.012, 0.099, and �0.025 for n �
cluded that the multilocus association in the variance30 and 0.024, 0.012, 0.103, and �0.027 for n � 300.
of the number of heterozygous loci (�2

K) is detectableWhile �̂12 and �̂23 are almost identical to their theoretical
in a sample of moderate size (	30). However, the mag-values, �̂13 is only less than one-half of its true value and
nitude of such association in �2

K may be appreciably�̂23 is also a downwardly biased estimate of �123 . However,
when �123 is set to zero, the estimates of all three two- larger than an individual association examined here



442 R.-C. Yang

T
A

B
L

E
4

P
ow

er
s

of
de

te
ct

in
g

th
re

e-
lo

cu
s

zy
go

ti
c

as
so

ci
at

io
ns

�̂
12

�̂
13

�̂
23

�̂
12

3
Po

w
er

�
12

�
13

�
23

�
12

3
n

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

P(
�

2 12
)

P(
�

2 13
)

P(
�

2 23
)

P(
�

2 12
3)

H
1

�
0.

05
;

H
2

�
0.

05
;

H
3

�
0.

1
0.

00
0

0.
00

0
0.

00
0

0.
00

2
30

0.
00

0
0.

00
9

0.
00

0
0.

01
2

0.
00

0
0.

01
2

0.
00

2
0.

00
7

0.
06

9
0.

06
9

0.
06

9
0.

28
4

30
0

0.
00

0
0.

00
3

0.
00

0
0.

00
4

0.
00

0
0.

00
4

0.
00

2
0.

00
2

0.
04

9
0.

03
6

0.
04

0
0.

84
7

0.
02

1
0.

02
1

0.
02

1
�

0.
00

5
30

0.
02

1
0.

02
5

0.
02

1
0.

02
5

0.
02

1
0.

02
4

�
0.

00
4

0.
00

5
0.

68
0

0.
52

2
0.

52
3

0.
00

1
30

0
0.

02
1

0.
00

8
0.

02
1

0.
00

8
0.

02
1

0.
00

8
�

0.
00

5
0.

00
2

0.
99

5
0.

98
3

0.
98

2
0.

02
5

0.
02

1
0.

02
1

0.
02

1
0.

00
0

30
0.

02
1

0.
02

5
0.

02
1

0.
02

5
0.

02
1

0.
02

5
0.

00
0

0.
01

0
0.

68
2

0.
53

9
0.

53
2

0.
05

6
30

0
0.

02
1

0.
00

8
0.

02
1

0.
00

8
0.

02
1

0.
00

8
0.

00
0

0.
00

3
0.

99
5

0.
98

1
0.

98
1

0.
03

6
0.

02
1

0.
02

1
0.

02
1

0.
01

9
30

0.
02

1
0.

02
5

0.
02

1
0.

02
5

0.
02

1
0.

02
5

0.
01

8
0.

01
9

0.
69

3
0.

52
9

0.
54

5
0.

76
7

30
0

0.
02

1
0.

00
8

0.
02

1
0.

00
8

0.
02

1
0.

00
8

0.
01

9
0.

00
7

0.
99

5
0.

98
2

0.
98

2
0.

99
9

H
1

�
0.

1;
H

2
�

0.
3;

H
3

�
0.

5
0.

00
0

0.
00

0
0.

00
0

0.
01

5
30

0.
00

0
0.

02
5

0.
00

0
0.

02
7

�
0.

00
1

0.
04

2
0.

01
4

0.
01

2
0.

03
8

0.
03

0
0.

05
7

0.
16

1
30

0
0.

00
0

0.
00

8
0.

00
0

0.
00

9
0.

00
0

0.
01

3
0.

01
5

0.
00

4
0.

04
9

0.
05

1
0.

05
2

0.
99

2
0.

02
3

0.
02

6
0.

10
3

�
0.

03
2

30
0.

02
3

0.
02

9
0.

01
2

0.
02

7
0.

09
9

0.
03

8
�

0.
02

5
0.

01
7

0.
18

8
0.

05
2

0.
73

8
0.

55
2

30
0

0.
02

4
0.

00
9

0.
01

2
0.

00
9

0.
10

3
0.

01
2

�
0.

02
7

0.
00

6
0.

83
9

0.
28

9
1.

00
0

0.
99

9
0.

02
3

0.
02

6
0.

10
3

0.
00

0
30

0.
02

2
0.

02
9

0.
02

5
0.

02
7

0.
09

9
0.

03
8

0.
00

0
0.

01
3

0.
17

5
0.

11
0

0.
72

3
0.

08
1

30
0

0.
02

3
0.

00
9

0.
02

6
0.

00
9

0.
10

2
0.

01
2

0.
00

0
0.

00
4

0.
79

0
0.

88
2

1.
00

0
0.

05
3

0.
02

3
0.

02
6

0.
10

3
0.

01
5

30
0.

02
4

0.
02

8
0.

01
6

0.
02

6
0.

09
6

0.
03

7
0.

01
2

0.
01

1
0.

19
7

0.
06

1
0.

69
5

0.
02

2
30

0
0.

02
5

0.
00

9
0.

01
7

0.
00

8
0.

09
9

0.
01

2
0.

01
3

0.
00

3
0.

87
2

0.
52

5
1.

00
0

0.
93

5

Sh
ow

n
ar

e
th

e
m

ea
n

s
an

d
st

an
da

rd
de

vi
at

io
n

s
(S

D
)

of
es

ti
m

at
es

of
zy

go
ti

c
as

so
ci

at
io

n
s

(�
12

,
�

13
,

�
23

,
an

d
�

12
3)

fr
om

10
,0

00
sa

m
pl

es
of

si
ze

s
n

�
30

an
d

n
�

30
0.

T
h

e
po

w
er

is
es

ti
m

at
ed

as
pr

op
or

ti
on

of
ti

m
es

th
at

th
e

ch
i-s

qu
ar

e
st

at
is

ti
c

ex
ce

ed
s

3.
84

,
th

e
5%

cr
it

ic
al

va
lu

e
of

�
2 d.

f
�

1.



443Multilocus Zygotic Associations

Figure 1.—Power to detect three-locus zy-
gotic associations with samples of sizes n � 30
(�), n � 100 (�), n � 300 (�), n � 500 (�),
and n � 1000 (�) for two cases: (A) when
heterozygosities at three loci are H1 � H2 �
0.05 and H3 � 0.1, and three pairwise zygotic
associations are �12 � �13 � �23 � 0.0213; (B)
when heterozygosities at three loci are H1 �
0.1, H2 � 0.3, and H3 � 0.5, and three pairwise
zygotic associations are �12 � 0.0226, �13 �
0.0263, and �23 � 0.00.1026.

because it is the sum of gametic disequilibria or zygotic not normalized, association that determines the power
and sample size requirement regardless of whether theassociations between all pairs of loci.

It is also evident from Figure 1 that low heterozygosi- association is positive or negative. Thus, the use of nor-
malized measures for such purposes should be treatedties at individual loci cause a very strong asymmetry

between positive and negative associations. The unbal- with caution.
anced intensities of associations from both positive and
negative sides result in unequal powers unless the sam-

DISCUSSION
ple size is very large. Because of the asymmetry, Lewon-
tin’s (1964) normalized associations as often used in This article describes measures of zygotic associations

at more than two loci and their estimation with samplesthe literature (e.g., Hedrick 1987; Zapata 2000) may
give a false impression about intensities of multilocus from diploid populations. These measures are defined

as departures of joint zygotic frequencies from the ex-associations. For example, Brown (1975) showed in his
Table VII that, with the same amount of normalized pected values of zero zygotic associations (cf. Equations

2 and 5). This is very similar to the definition for gameticthree-locus gametic disequilibrium at both sides (T � �
�0.99), there is a substantial difference in sample size disequilibria for two or more loci, which is based on

gametic and allelic frequencies (e.g., Bennett 1954).requirements. In the case of gene frequencies equal to
0.2 and two two-locus gametic disequilibria being �0.4 Thus, it is of little surprise to see that the measures of

multilocus zygotic associations share most of the statisti-with the third one being zero, Brown (1975) found
that a sample size of n � 8402 is required to detect cal properties by the usual gametic disequilibria. How-

ever, the meanings of the two sets of measures are quiteT � � �0.99 with the power of 0.9, but only n � 82 is
needed to detect T � � �0.99 with the same amount of different. In fact, a comparative assessment of zygotic

associations vs. gametic disequilibria may provide somepower. Had he not given the range of T (�0.0016 to
0.0224), one would be led to believe that the negative important insights into adaptive significance of geno-

types at different loci. For example, if strong zygoticdisequilibrium is much more difficult to detect than its
positive counterpart. The reverse conclusion would be association but little gametic disequilibrium between a

pair of loci is observed, then the study population maydrawn in the cases where the asymmetry is skewed to-
ward the negative side. The truth is that it is the actual, undergo natural selection favoring highly heterozygous



444 R.-C. Yang

individuals without distinguishing among different ho- inflation may be gained through the comparative assess-
ment of gametic vs. zygotic associations mentioned above.mozygotes in large and predominantly outcrossing pop-

ulations (Mitton 1997). The assessment would be most In estimating and testing for multilocus zygotic associ-
ations, we adopt Bennett’s (1954) additive approach,sensitive with quantitative trait loci (QTL) that directly

affect components of fitness. However, a lack of zygotic with frequencies of different zygote classes being ex-
pressed as a linear function of the zygotic associationsassociations may also mean that selection discriminates

among different homozygotes (e.g., favoring common and heterozygosities (Table 3). This approach enables
us to explicitly give estimates and to elucidate the sam-homozygotes, but selecting against rare homozygotes).

Thus, extra care is needed to choose homozygous QTL pling properties of these estimates. However, our tests
for two- and three-locus associations are not indepen-with similar selection advantages for such an analysis.

There are a variety of methods of estimating and dent as shown in the simulation results (Table 3). Hill
(1975) discussed the use of the multiplicative approachinterpreting multilocus gametic disequilibria from hap-

loid data or diploid data from a Hardy-Weinberg equilib- (or log-linear model analysis) for developing an inde-
pendent test for no three-locus association, but with therium population (e.g., Bennett 1954; Brown et al. 1980;

Barton 2000). In contrast, with the diploid data from a presence of two-locus associations. Another possibility
is the exact test as suggested by Zaykin et al. (1995). InHardy-Weinberg disequilibrium population, a complete

characterization of multilocus associations also requires the exact test, the probability of the observed multilocus
genotypic (zygotic) array conditional on the genotypicother types of genic disequilibria (Cockerham and

Weir 1973; Weir 1979). However, the exceedingly large arrays expected under an appropriate hypothesis of zero
zygotic association is evaluated to determine whethernumber of genic disequilibria encountered for multiple

alleles at many loci makes such detailed characterization or not it lies in the tail of the empirical distribution
generated by permutation. For example, the condi-difficult for comparing multilocus organizations among

several populations. The multilocus zygotic associations tional probability required for testing if �123 � 0, given
the presence of all three two-locus associations, is givenanalyzed here summarize different genic disequilibria

with no need to consider whether or not the study popu- by
lation is in Hardy-Weinberg equilibrium. The estimation

Pr�{nabc|{nab�}, {na�c }, {n�bc }� �
�1

a�0 �1
b�0nab�!�1

a�0 �1
c�0na�c!�1

b�0 �1
c�0n�bc !

n!�1
a�0 �1

b�0 �1
c�0 nabc !

,and hypothesis testing are quite straightforward as they
are merely the direct adoption of the procedures used

where nab�, na�c , and n�bc are marginal total counts offor diallelic haploid data. Thus, our method presents a
the abth, acth, and bc th classes of zygotes at locus pairssimple solution to the analysis of complex multilocus
12, 13, and 23, respectively. However, both log-linearstructures in diploid populations.
model analysis and exact test do not allow for the explicitOf course, such a highly compacted summary in the
expression of the multilocus zygotic associations.multilocus zygotic associations represents a severe loss

I thank Dr. Yun-Xin Fu and a reviewer for helpful comments. Thisof information. In particular, since the analysis is based
research was partially supported by the Natural Sciences and Engi-on the frequencies of zygote classes, it completely ig-
neering Research Council of Canada grant OGP0183983.nores haplotype information such as linkages between

different loci. Thus, when significant zygotic associa-
tions are detected, there is a need to determine which
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