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Evolution produces complex and structured networks of interact-
ing components in chemical, biological, and social systems. We
describe a simple mathematical model for the evolution of an
idealized chemical system to study how a network of cooperative
molecular species arises and evolves to become more complex and
structured. The network is modeled by a directed weighted graph
whose positive and negative links represent ‘‘catalytic’’ and ‘‘in-
hibitory’’ interactions among the molecular species, and which
evolves as the least populated species (typically those that go
extinct) are replaced by new ones. A small autocatalytic set,
appearing by chance, provides the seed for the spontaneous
growth of connectivity and cooperation in the graph. A highly
structured chemical organization arises inevitably as the autocat-
alytic set enlarges and percolates through the network in a short
analytically determined timescale. This self organization does not
require the presence of self-replicating species. The network also
exhibits catastrophes over long timescales triggered by the chance
elimination of ‘‘keystone’’ species, followed by recoveries.

S tructured networks of interacting components are a hallmark
of several complex systems, for example, the chemical net-

work of molecular species in cells (1), the web of interdependent
biological species in ecosystems (2, 3), and social and economic
networks of interacting agents in societies (4–7). The structure
of these networks is a product of evolution, shaped partly by the
environment and physical constraints and partly by the popula-
tion (or other) dynamics in the system. For example, imagine a
pond on the prebiotic earth containing a set of interacting
molecular species with some concentrations. The interactions
among the species in the pond affect how the populations evolve
with time. If a population goes to zero, or if new molecular
species enter the pond from the environment (through storms,
f loods, or tides), the effective chemical network existing in the
pond changes. We discuss a mathematical model that attempts
to incorporate this interplay between a network, populations,
and the environment in a simple and idealized fashion. The
model [including an earlier version (8, 9)] was inspired by the
ideas and results in refs. 10–18. Related but different models are
studied in refs. 19–21.

The Model
The system consists of s species labeled by the index i 5 1,2,. . . ,s.
The network of interactions between species is specified by the
s 3 s real matrix C [ {cij}. The network can be visualized as a
directed graph whose nodes represent the species. A nonzero cij
is represented by a directed weighted link from node j to node
i. If cij . 0, then the corresponding link is a cooperative link:
species j catalyzes the production of species i. If cij , 0, it is a
destructive link: the presence of j causes a depletion of i (22).

Population Dynamics. The model contains another dynamical
variable x [ (x1,. . . . xs), where xi stands for the relative popu-
lation of the ith species (0 # xi # 1, (i51

s xi 5 1)). The time
evolution of x depends on the interaction coefficients C, as is

usual in population models. The specific evolution rule we
consider is

ẋ i 5 fi if xi . 0 or fi $ 0,

5 0 if xi 5 0 and fi , 0, [1]

where

fi 5 O
j 5 1

s

ci j xj 2 xi O
k,j 5 1

s

ckjxj .

This is a particularly simple idealization of catalyzed chemical
reaction dynamics in a well stirred reactor (representing, say, a
prebiotic pond). It is motivated from the following consider-
ations: If species j catalyzes the ligation of reactants A and B to
form the species i, A 1 B

j
3 i, then the rate of growth of the

population yi of species i in a well stirred reactor will be given by
ẏi 5 k(1 1 nyj)nAnB 2 fyi, where nA,nB are reactant concen-
trations, k is the rate constant for the spontaneous reaction, n is
the catalytic efficiency, and f represents a common death rate
or dilution flux in the reactor (23). Assuming the catalyzed
reaction is much faster than the spontaneous reaction, and the
concentrations of the reactants are large and fixed, the rate
equation becomes ẏi 5 cyj 2 fyi, where c is a constant. If species
i has multiple catalysts, we get ẏi 5 (j

s cijyj 2 fyi. The first of Eqs.
1 follows from this on using the definition xi 5 yiy(j51

s yj. Note
that the second (quadratic) term in fi follows automatically from
the ẏi equation and the nonlinear relationship between xi and yi.
Physically, it is needed to preserve the normalization of the xi
under time evolution. When negative links are permitted, the
second of Eqs. 1 is needed in general to prevent relative
populations from going negative. (With negative links, a more
realistic chemical interpretation would be obtained if ẋi were
proportional to xi, but for simplicity we retain the form of Eq. 1
in this paper.) Eq. 1 may be viewed as defining an artificial
chemistry in the spirit of refs. 13–17.

Graph Dynamics. The dynamics of C in turn depends on x, as
follows: Start with a random graph of s nodes: cij is nonzero with
probability p and zero with probability 1 2 p. If nonzero, cij is
chosen randomly in the interval [21, 1] for i Þ j and [21, 0] for
i 5 j. Thus a link between two distinct species, if it exists, is just
as likely to be cooperative as destructive, and a link from a
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species to itself can only be inhibitive, i.e., autocatalytic or
self-replicating individual species are not allowed. The variable
x is initialized by choosing each xi randomly between 0 and 1 and
then rescaling all xi uniformly such that (i51

s xi 5 1. The
evolution of the network proceeds in three steps:

(i) Keeping the network fixed, the populations are evolved
according to Eq. 1 for a time T, which is large enough for x to
get reasonably close to its attractor. We denote Xi [ xi(T).

(ii) The set of nodes i with the least value of Xi is determined.
We call this the set of ‘‘least fit’’ nodes, identifying the relative
population of a species in the attractor (or, more specifically, at
T) with its ‘‘fitness’’ in the environment defined by the graph.
One of the least fit nodes is chosen randomly (say i0) and
removed from the system along with all its links, leaving a graph
of s 2 1 species.

(iii) A new node is added to the graph so that it again has s
nodes. The links of the added node (cii0 and ci0i, for i 5 1, . . . , s) are
assigned randomly according to the same rule as for the nodes in
the initial graph. The new species is given a small relative population
xi0 5 x0, and the other populations are rescaled to keep (i51

s xi 5 1.
This process, from step i onwards, is iterated many times.

The rules for the evolution of the network C are intended to
capture two key features of natural evolution, namely selection
and novelty. The species that has the least population in the
attractor configuration is the one most likely to be eliminated in
a large fluctuation in a possible hostile environment. Often, the
least value of Xi is zero. Thus the model implements selection by
eliminating from the network a species that has become extinct
or has the least chance of survival (18). [Relaxing in various ways
the assumption (18) that only the least populated species is
removed does not change the qualitative picture presented here;
details on the robustness of the model to various deformations
will be presented elsewhere.] Novelty is introduced in the
network in the form of a new species. This species has on average
the same connectivity as the initial set of species, but its actual
connections with the existing set are drawn randomly. E.g., if a
storm brings into a prebiotic pond a new molecular species from
the environment, the new species might be statistically similar to
the one being eliminated, but its actual catalytic and inhibitory
interactions with the surviving species can be quite different.
Another common feature of natural evolution is that populations
typically evolve on a fast timescale compared with the network.
This is captured in the model by having the xi relax to their
attractor before the network is updated. The idealization of a
fixed total number of species s is one that we hope to relax in
future work.

The model described above differs from the one studied in
refs. 8 and 9 in that it allows negative links and varying link
strengths, and that the population dynamics, given by Eq. 1 is no
longer linear. The earlier model had only fixed point attractors;
here limit cycles are also observed. Because C now has negative
entries, the formalism of nonnegative matrices no longer applies.

Results
Emergence of Cooperation and Interdependence. Fig. 1 shows a
sample run. The same qualitative behavior is seen in each of
several hundred runs performed for p values ranging from
0.00002 to 0.01 and for s 5 100, 150, 200. That the ratio of
number of cooperative to destructive links at first remains
constant at unity (statistically) and then increases by more than
an order of magnitude is evidence of the emergence of coop-
eration. Fig. 1 also shows how a measure of the mutual inter-
dependence of the species changes with time. This measure,
‘‘interdependency,’’ denoted #d, is defined as #d [ (1/s)(i51

s di,
where di is the ‘‘dependency’’ of the ith node. di [ (kjuck juhk

i ,
where hk

i is 1 if there exists a directed path from k to i and 0
otherwise. di is the sum of (the absolute value of) the strengths

of all links that eventually feed into i along some directed path.
di describes not just the character of the ‘‘neighborhood’’ of the
ith species but also the long-range connections that affect
its dynamics. The increase in #d by an order of magnitude is a
quantitative measure of the increase of interdependence of
species in the network. The increase in the total density of links
(l1 1 l2)ys is another aspect of the increase of complexity of the
system. Note that in the model selection rewards only ‘‘perfor-
mance’’ as measured in terms of relative population; the rules do
not select for higher cooperativity per se. Because a new species
is equally likely to have positive or negative links with other
species, the introduction of novelty is also not biased in favor of
cooperativity. That this behavior is not a consequence of any
intrinsic bias in the model that favors the increase of cooperation
and interdependence is evidenced by the flat initial region of all
of the curves.

Fig. 1. A run with parameter values s 5 100, p 5 0.005, and x0 5 1024. (a)
Number of populated species, s1, in the attractor of Eq. 1 (i.e., number of nodes
with Xi . 0) after the nth addition of a new species (i.e., after n graph update
time steps). (b) The number, l1, of positive links (cij . 0) in the graph (blue); the
number, l2, of negative links (green); and ‘‘interdependency,’’ #d, of the species
in the network (red). The curves have three distinct regions. Initially s1 is small;
most of the species have zero relative populations. l1 and l2 also do not vary
much from their initial (random graph) value ('ps2y2 5 25) and remain
approximately equal. #d hovers about its initial low value. In the second region
s1, l1 and #d show a sharp increase, and l2 decreases. In the third region s1, l1
and #d level off (but with fluctuations), and almost all species have nonzero
populations in contrast to the initial period.
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Autocatalytic Sets. The explanation for the above behavior lies in
the formation and growth of certain structures, autocatalytic sets
(ACSs), in the graph. An ACS is defined as a set of nodes such
that each node has at least one incoming positive link from a
node in the set. Thus an ACS has the property of catalytic
closure, i.e., it contains a catalyst for each of its members
(24–26). The simplest example of an ACS is a cycle of positive
links. Every ACS is not such a cycle but it can be shown that an
ACS must contain a cycle of positive links (9). In Fig. 1, there is
no ACS in the graph until n 5 1,903. A small ACS (which
happens to be a cycle of positive links between two nodes)
appears at n [ n1 5 1,904, exactly where the behavior of the s1
curve changes. As time proceeds, this ACS becomes more
complex and enlarges until at n [ n2 5 3,643, the entire graph
becomes an ACS. l1 and #d exhibit an increase and l2 a decrease
as the ACS comes to occupy a significant part of the graph. After
the ACS first appears (at n 5 n1), the set of populated nodes in
the attractor configuration (s1 in number) is always an ACS
(except for certain catastrophic events to be discussed later),
which we call the ‘‘dominant ACS.’’ The spontaneous appear-
ance of a small ACS at some n 5 n1, its persistence (except for
catastrophes), and its growth until it spans the graph at n 5 n2,
are seen in each of the several hundred runs mentioned earlier.
The growth of the ACS across the graph between n1 and n2
occurs exponentially (with stochastic f luctuations),

s1~n! < s1~n1!e~n 2 n1!/tg, tg 5 2/p. [2]

This expression (derived below) agrees with simulations as
shown in Fig. 2. The average timescale ta [ ^n1& for the first
appearance of the ACS is given, for sufficiently small p, by ta '
4y(p2s) (51,600 for p 5 0.005 and s 5 100). This follows from
the fact that the probability that a graph not containing an ACS
will acquire a 2 cycle of positive links at the next update is p2sy4,
with larger cycles being much less likely to appear when ps ,,
1.

Up to n 5 n1, the graph has no ACS. It has chains and trees
of positive and negative links and possibly loops containing
negative links. These latter structures are not robust. For exam-
ple, consider a chain of two positive links 13233. Because
catalytic links are pointing to node 3, it will do well population-
ally compared with nodes 1 and 2. However, because 1 has no

incoming catalytic links, its relative population will decline to
zero under Eq. 1, and it can be picked for replacement in the next
graph update. This can disrupt the chain and hence erode the
‘‘well being’’ of node 3 until eventually, after some graph
updates, the latter can also join the ranks of the least fit. Species
3 gets eliminated eventually because it does not feed back into
and ‘‘protect’’ species 1 and 2, on whom its ‘‘well being’’ depends.
In a graph without an ACS, no structure is protected from
disruption. Because every node is liable to be replaced sooner or
later, the graph remains as random as the initial graph (we have
checked that the probability distribution of the number of
incoming and outgoing links at a node remains the appropriate
binomial for n , n1). This explains why s1, l6, and #d hover around
their initial values.

The picture changes the moment a small ACS appears in the
graph. The key point is that by virtue of catalytic closure,
members of the ACS do well collectively in the population
dynamics governed by Eq. 1. An ACS is a collective self
replicator and beats chains, trees, and other non-ACS structures
in the population game, reducing their Xi to zero when it appears.
Thus, because graph update proceeds by replacing one of the
nodes with Xi 5 0 (if present) with a new one, such a replacement
being outside the dominant ACS can cause no damage to the
links that constitute the ACS. That is why the ACS structure,
once it appears, is much more robust than the non-ACS struc-
tures discussed earlier. If the new node happens to get an
incoming positive link from the dominant ACS, it becomes part
of it. Thus the dominant ACS tends to expand in the graph as new
nodes get attached to it (8, 9, 15), and s1 increases. In Dn graph
updates, the average increase in s1, which is the number of added
nodes that will get a positive link from one of the s1 nodes of the
dominant ACS, is Ds1 ' (py2)s1Dn, for small p. This proves Eq.
2. (Note that the exponential growth described by Eq. 2 is not to
be confused with the exponential growth of populations yi of
species that are part of the ACS. Eq. 2 reflects the growth of the
ACS across the graph or the increase in the number of species
that constitute the ACS.)

Because the dominant ACS grows by adding positive links from
the existing dominant ACS, the number of positive links increases
as the ACS grows. On the other hand, nodes receiving negative links
usually end up being least fit, hence negative links get removed
when these nodes are eliminated. Which novelty is captured thus
depends on the existing ‘‘context’’; the network evolves by prefer-
entially capturing links and nodes that ‘‘latch on’’ cooperatively to
the existing ACS and by disregarding those that do not. The
‘‘context’’ itself arises when the ACS structure first appears; this
event transforms the nature of network evolution from random to
‘‘purposeful’’ (in this case directed toward increasing cooperation).
Before the ACS appears, nothing interesting happens even though
selection is operative (the least populated species are being elim-
inated). It is only after the ACS topological structure appears that
selection for cooperation and complexity begins. Initially the ACS
is small, and its impact on links and interdependency is not visible.
As it grows and comes to occupy a significant part of the graph, the
latter quantities depart significantly from their initial random graph
values.

Inevitability of Autocatalytic Sets. Note that the appearance of an
ACS, although a chance event, is inevitable. For sp ,, 1, the
probability that a graph not containing a 2 cycle will acquire one
at the next time step is p2sy4 [ q. Because the probability of
occurrence of 3 cycles, etc., is much smaller, the probability
distribution of arrival times n1 is approximated by P(n1) 5
q~1 2 q!n1 2 1, whose mean ta is 1yq. Because this probability
declines exponentially after a timescale 1yq, the appearance of
an ACS is inevitable, even for arbitrarily small (but finite) p.

Occasionally in a graph update, s1 can decrease for various

Fig. 2. Power law dependence of tg on p. Each data point shows the average
of tg over 5 different runs with s 5 100 and the given p value. The error bars
correspond to one standard deviation. The best fit line has slope 21.02 6 0.03
and intercept 20.08 6 0.26, which is consistent with the expected slope 21
and intercept 0.

Jain and Krishna PNAS u January 16, 2001 u vol. 98 u no. 2 u 545

EV
O

LU
TI

O
N



reasons. If the new node forms an ACS of its own with nodes
outside the dominant ACS, and the new ACS has a higher
population growth rate (as determined by Eq. 1) than the old
ACS, it drives the species of the latter to extinction and becomes
the new dominant ACS. Alternatively, the new node could be a
‘‘destructive parasite:’’ it receives one or more positive links from
and gives one or more negative links to the dominant ACS. Then
part or whole of the ACS may join the set of least-fit nodes.
Structures that diminish the size of the dominant ACS or destroy
it appear rarely. For example, in Fig. 1, destructive parasites
appeared 6 times at n 5 3,388, 3,478, 3,576, 3,579, 3,592, and
3,613. In each case, s1 decreased by 1.

Emergence of Structure. At n 5 n2, the whole graph becomes an
ACS; the entire system can collectively self replicate despite the
explicit absence of individual self replicators. Such a fully
autocatalytic set is a very nonrandom structure. Consider a
graph of s nodes and let the probability of a positive link existing
between any pair of nodes be p*. Such a graph has on average
m* 5 p*(s 2 1) incoming or outgoing positive links per node. For
the entire graph to be an ACS, each node must have at least one
incoming positive link, i.e., each row of the matrix C must contain
at least one positive element. Hence the probability, P, for the
entire random graph to be an ACS is

P 5 probability that every row has at least one positive entry
5 [probability that a row has at least one positive entry]s

5 [1 2 (probability that every entry of a row is # 0)]s

5 [1 2 (1 2 p*)s21]s

5 [1 2 (1 2 m*/(s 2 1))s21]s.

For large s and m* ; O(1),

P < ~1 2 e2m*!s 5 e2as, [3]

where a is positive and O(1). At n 5 n2, we find in all our runs
that l1(n2) [ l* is greater than s but of order s, i.e., m* ' O(1).
Thus dynamical evolution in the model via the ACS mechanism
converts a random organization into a highly structured one that
is exponentially unlikely to appear by chance. In the displayed
run at n 5 n2, the graph had 117 positive links. The probability
that a random graph with s 5 100 nodes and m* 5 1.17 would
be an ACS is given by Eq. 3 to be '10216.

Such a structure would take an exponentially long time to arise
by pure chance. The reason it arises inevitably in a short timescale
in the present model is the following: a small ACS can appear by
chance quite readily and, once appeared, it grows exponentially fast
across the graph by the mechanism outlined earlier. The dynamical
appearance of such a structure may be regarded as the emergence
of ‘‘organizational order.’’ The appearance of ‘‘exponentially un-
likely’’ structures in the prebiotic context has been a puzzle. That in
the present model such structures inevitably form in a short time
may be relevant for the origin of life problem.

The Self-Organization Timescale in a Prebiotic Scenario. We now
speculate on a possible application to prebiotic chemical evolu-
tion. Imagine the molecular species to be small peptide chains
with weak catalytic activity in a prebiotic pond alluded to earlier.
The pond periodically receives an influx of new molecular
species being randomly generated elsewhere in the environment
through tides, storms, or floods. Between these influxes of
novelty, the pond behaves as a well stirred reactor where the
populations of existent molecular species evolve according to (a
realistic version of) Eq. 1 and reach their attractor configuration.
Under the assumption that the present model captures what
happens in such a pond, the growth timescale (Eq. 2) for a highly
structured almost fully autocatalytic chemical organization in
the pond is tg 5 2yp in units of the graph update time step. In
this scenario, the latter time unit corresponds to the periodicity

of the influx of new molecular species, hence it ranges from 1 day
(for tides) to 1 year (for floods). Further, in the present model
py2 is the probability that a random small peptide will catalyze
the production of another (26), and this has been estimated in
ref. 12 as being in the range 1025–10210. With py2 ' 1028, for
example, the timescale for a highly structured chemical organi-
zation to grow in the pond would be estimated to be of the order
of 106–108 years. It is believed that life originated on Earth in a
few hundred million years after the oceans condensed. These
considerations suggest that it might be worthwhile to empirically
pin down the ‘‘catalytic probability’’ p (introduced in ref. 26) for
peptides, catalytic RNA, lipids, etc., on the one hand, and
explore chemically more realistic models on the other.

Catastrophes and Recoveries in Network Dynamics. After n 5 n2, the
character of the network evolution changes again. For the first
time, the least-fit node will be one of the ACS members. Most
of the time elimination of the node does not affect the ACS
significantly, and s1 f luctuates between s and s 2 1. Sometimes
the least-fit node could be a ‘‘keystone’’ species, which plays an
important organizational role in the network despite its low
population. When such a node is eliminated, many other nodes
can get disconnected from the ACS, resulting in large dips in
s1 and #d and subsequently large fluctuations in l1 and l2. These
large ‘‘extinction events’’ can be seen in Fig. 3. Occasionally, the
ACS can even be destroyed completely. The system recovers on
the timescale tg after large extinctions if the ACS is not com-
pletely destroyed; if it is, and the next few updates obliterate the
memory of previous structures in the graph, then again a time on
average ta elapses before an ACS arises, and the self-
organization process begins anew. It may be of interest (espe-
cially in ecology, economics, and finance) that network dynamics
based on a fitness selection and the ‘‘incremental’’ introduction
of novelty, as discussed here, can by itself cause catastrophic
events without the presence of large external perturbations.

Discussion
We have described an evolutionary model in which the dy-
namics of species’ populations (fast variables) and the graph of
interactions among them (slow variables) are mutually cou-
pled. The network dynamics displays self organization seeded
by the chance but inevitable appearance of a small cooperative
structure, namely an ACS. In a dynamics that penalizes species
for low population performance, the collective cooperativity

Fig. 3. The run of Fig. 1a displayed over a much longer timescale.
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of the ACS members makes the set relatively robust against
disruption. New species that happen to latch on cooperatively
to this structure preferentially survive, further enlarging the
ACS in the process. Eventually the graph acquires a highly
nonrandom structure. We have discussed the time evolution of
quantitative measures of cooperation, interdependence, and
structure of the network, which capture various aspects of the
complexity of the system.

It is noteworthy that collectively replicating ACSs arise even
though individual species are not self replicating. Thus the
present mechanism is different from the hypercycle (27), where
a template is needed to produce copies of existing species. Unlike
the hypercycle, the ACS is not disrupted by parasites and short

circuits and grows in complexity, as evidenced in all our runs. It can
be disrupted, however, when it loses a ‘‘keystone’’ species.

It is also worth mentioning one departure from ref. 12, in that
we find that a fully autocatalytic system (or percolating ACS) is
not needed a priori for self organization. In the present model,
a small ACS, once formed, typically expands (see also ref. 15)
and eventually percolates the whole network dynamically. This
dynamical process might be relevant for economic takeoff and
technological growth in societies.
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