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ABSTRACT
A novel multitrait fine-mapping method is presented. The method is implemented by a model that

treats QTL effects as random variables. The covariance matrix of allelic effects is proportional to the IBD
matrix, where each element is the probability that a pair of alleles is identical by descent, given marker
information and QTL position. These probabilities are calculated on the basis of similarities of marker
haplotypes of individuals of the first generation of genotyped individuals, using “gene dropping” (linkage
disequilibrium) and transmission of markers from genotyped parents to genotyped offspring (linkage).
A small simulation study based on a granddaughter design was carried out to illustrate that the method
provides accurate estimates of QTL position. Results from the simulation also indicate that it is possible
to distinguish between a model postulating one pleiotropic QTL affecting two traits vs. one postulating
two closely linked loci, each affecting one of the traits.

IN recent years a number of genome scans have been (2002) showed that this information from linkage dis-
reported. The aim of these studies was to identify equilibrium could be combined with linkage informa-

regions on the genome with genes affecting traits of tion in a model with random QTL effects.
interest. This is achieved by linkage analysis, which uti- The advantage of this method is that it utilizes infor-
lizes information on recombination events that occur mation on both the historic recombination events, since
between genetic markers when gametes are formed and the mutation in the QTL occurred, and the recombina-
transmitted from parents to offspring. The low number tions observed in the recorded family structure. There-
of recombination events between closely linked markers fore, closely linked markers provide much more infor-
restricts the precision of quantitative trait loci (QTL) mation than pure linkage analysis and the QTL can
mapping using linkage analysis. In genome scans in be mapped to a region of 1–3 cM (Meuwissen and
livestock populations a QTL can typically be mapped Goddard 2000).
to a chromosomal region of 10–30 cM. To utilize QTL In most QTL-mapping experiments several traits are
in selective breeding, or to identify functional genes, a measured. Usually, QTL are mapped for individual traits
higher level of resolution of position estimates is re- using single-trait analyses. However, there are several
quired. reasons why it is important to infer QTL-related parame-

An assumption common to linkage analysis methods ters using multitrait methods.
is that founder individuals with no parents are unrelated First, many of the traits are environmentally and ge-
and noninbred. It follows from this assumption that netically correlated. To use all information optimally
the probability of genes in founders being identical by the correlation structure between traits should be taken
descent (IBD) at marker loci or QTL is zero. However, into account in the analysis. This can increase the statisti-
similarities in haplotypes of closely linked markers cal power of detection. However, analyzing many traits
around a given position provide information on the jointly will not necessarily lead to higher power of detec-
probability of founder genes being identical by descent tion because an increased number of parameters must
in this position. Because individuals that carry a mutant be inferred. At least, when only two traits are considered
gene will also be IBD in a chromosomal region sur- it has been shown, in the framework of linkage analysis,
rounding the gene, linkage disequilibrium between that the statistical power to detect a QTL can be in-
haplotypes and QTL loci can be utilized to map QTL creased by utilizing information from correlated traits.
(Meuwissen and Goddard 2000). Meuwissen et al. Such increase in power was demonstrated using regres-

sion methods (Jiang and Zeng 1995; Calinski et al.
2000; Knott and Haley 2000), a maximum-likelihood
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lished data). It is particularly important to utilize the evidence that the proposed method can be used for the
rather difficult task of distinguishing between a modelcorrelated information when mapping QTL for low her-

itability traits that are correlated to a trait of higher postulating one pleiotropic QTL affecting two traits and
one postulating two closely linked QTL, each affectingheritability (P. Sørensen, M. S. Lund, B. Guldbrandt-

sen, J. Jensen and D. Sorensen, unpublished data). In one trait.
this case, the single-trait analysis can have substantially
lower statistical power compared to a multiple-trait anal-

METHODSysis, which combines phenotypic information from both
traits. This is important, because utilizing identified Model: The multivariate mixed model can be written
QTL through marker-assisted selection for traits with as
low heritability will have a relatively higher impact on
practical breeding work. y � X� � Zu � �

nqtl

i�1

Wqi � e, (1)
Second, decomposing the genetic correlation and

thereby assessing the effect of the QTL on all traits in where y is a n � t vector of observations on t traits, X
the breeding goal is important. The contribution of a is a design matrix, � is a vector of fixed effects, Z is a
QTL to the genetic correlation between two traits does matrix relating records to individuals, u is a vector of
not necessarily follow the overall genetic correlation. additive polygenic effects, W is a matrix relating each
Such information is relevant when the value of the QTL individual’s record to its QTL effect, qi is a vector of
for selection is assessed. additive QTL effects corresponding to the ith QTL, and

Third, knowledge of the genetic background of the e is a vector of residuals. The number of QTL, nqtl, is
QTL contribution to genetic correlations is valuable. A here assumed to be equal to one or two.
genetic correlation can be the result of pleiotropic ef- The random variables u, q, and e are assumed to be
fects of a single QTL affecting more than one trait or multivariate normally distributed and mutually uncorre-
of linkage disequilibrium between two or more QTL, lated. Specifically:
each affecting one trait only (Falconer and Mackay

u � MVN(0, G), where G � G0 � A and1996). The important issue is to decide whether one or
two QTL are involved. Specifically, if a chromosomal
region is found to affect two traits, it is important to

G0 � �
�2

g1 … �g1,g t
...

. . .
...

�gt,gl … �2
g t
� ,distinguish whether the association is due to a pleiotro-

pic QTL that affects both traits or due to close linkage of
two QTL, each affecting one trait. If the aim is selective
breeding, and the QTL contribute to an unfavorable qi|M,pi � MVN(0, Ki), where Ki � K0i � IBDi|M,pi

and
genetic correlation, it is crucial to know if it is due to
one pleiotropic QTL or to two linked QTL. If there is
one pleiotropic QTL, then the genetic correlation is K0i � �

�2
q1 … �q1,q t

...
. . .

...

�g t,g1 … �2
q t
� ,

fixed; if there are two linked loci, selection of individuals
in which a recombination between the QTL has changed
the linkage phase can change the unfavorable correla- and e � MVN(0, R), where R � E0 � I and
tion. If the aim is to clone the functional gene, it is
obviously important that the linked QTL are not mod-
eled as one pleiotropic QTL with a position somewhere E0 � �

�2
e1 … �e1,e t

...
. . .

...

�e t,e1 … �2
e t
� .

between the true QTL positions (Martinez and Cur-
now 1992).

The necessary tests to distinguish between one-locus Above, A is the additive genetic relationship matrix and
IBDi|M,pi is the IBD matrix for the ith QTL, conditionalor two-loci models can, in principle, be performed using

multitrait linkage analysis. However, the QTL position on marker data (M) and the position (pi) of the ith
QTL on the chromosome.is estimated with accuracy too low to distinguish between

a single gene with pleiotropic effects or two loci, each IBD matrix: The following four steps were used to calcu-
late the IBD matrices for QTL i. First, a gametic relation-affecting one trait. Combining fine mapping in a

multitrait framework is expected to result in higher ship matrix (Fernando and Grossman 1989) was gener-
ated on the basis of linkage disequilibrium (see steps onepower to carry out this test.

The objectives of this study are, first, to present a and two below) and linkage information (step three be-
low). This matrix was then transformed into the IBD ma-method for multitrait fine mapping using combined

linkage disequilibrium and linkage analysis and, second, trix to diminish the dimensionality (step four below).
Step one: For each position pi, a table of IBD probabil-to show via a small example that the method gives accu-

rate position estimates of closely linked QTL, each af- ities, conditional on haplotype similarities, was gener-
ated. This is denoted (PIBD|N1,Nr,pi). Similarities between afecting one trait. Finally, the small example provides



407Multitrait QTL Fine Mapping

pair of haplotypes were defined as the number of alleles where � � (vech(G0)�vech(K 0)�vech(E0)�) is the vector
at consecutive marker loci, to the left and to the right containing the N unique elements of the symmetric
of pi, that were identical by state (IBS). The similarities matrices G0, K 0, and E0, and K�y is the vector of “error
are denoted as (Nl, Nr). If the linkage group consists contrasts.” The restricted likelihood was maximized us-
of 11 marker loci and pi is in marker bracket k (k � 1, ing the average information restricted maximum-likeli-
. . . , 10) there are k markers to the left and 11 � k hood (AI-REML) algorithm (Jensen et al. 1997). The
markers to the right of pi. Thus, there can be 0–k markers AI-REML algorithm maximizes the restricted likelihood
IBS to the left of pi and 0–11 � k markers IBS to the right with respect to the variance components (G0, K 0, and
of pi. This means that the dimension of PIBD|Nl,Nr,pi is (k � E0). Preceding the AI-REML analysis and using only
1) � (11 � k). The probabilities of haplotypes being IBD marker data, the IBD matrix IBDi|M,pi is computed, condi-
at pi for each of the possible similarities were assessed tional on the QTL position pi. Maximizing a sequence
using the gene-drop method of Meuwissen and Goddard of restricted likelihoods over a grid of specific positions
(2000), using 100,000 replicated gene drops. yields a profile of the restricted likelihood of the QTL

For each individual in the conceptual base popula- position.
tion, two haplotypes were sampled. At each position pi The AI-REML algorithm is based on first and second
a QTL locus was assumed. All QTL alleles were unique, derivatives of the restricted log likelihood (Jensen et al.
such that any alleles that were IBS in subsequent genera- 1997). It was implemented by combining it with the
tions were also IBD. Subsequent generations were simu- expectation-maximization (EM) algorithm (Dempster
lated by randomly sampling parents from the previous et al. 1977), to ensure that parameter estimates stay
generation to produce No offspring. Marker and QTL within the parameter space (Jensen et al. 1997). There
alleles were then transmitted from parents to offspring, are cases, however, when estimates of the elements of
allowing for recombinations between each locus ac- K0 are expected to fall at the boundary of the parameter
cording to Haldane’s map function (Haldane 1919). space. Specifically, if a biallelic QTL has a pleiotropic
After 100 generations the similarities of all pairs of hap- effect on two or more traits, then the QTL correlation
lotypes were assessed and the number of pairs in each between the traits is unity, which has to be taken into
group (NNl,Nr,pi) was updated. Within each group, the account to check for convergence. This was achieved
number of haplotypes that were IBD in the putative here using two different criteria. One of these checked
QTL position pi was assessed. This number is denoted for small values of the vector of first derivatives of the
(NIBD|Nl,Nr,pi). After 100,000 gene drops, the IBD probabili- restricted log likelihood. If the algorithm converges to
ties at each position pi, conditional on haplotype similar- a point inside the parameter space, then the values
ities, were calculated as PIBD|Nl,Nr,pi � NIBD,Nl,Nr,pi/NNl,Nr,pi . of the vector of first derivatives of the restricted log

Step two: In this step we return to the data set to be likelihood should approach zero. However, if the esti-
analyzed. First, the founder haplotypes were established mates are at the boundary of the parameter space, then
and the similarity of each pair of haplotypes NlNr(i, the vector of first derivatives is not necessarily zero.
j ) was assessed. The probability of identity by descent Therefore the other convergence criterion requires that
between haplotype i and haplotype j at position pi was changes in estimates of the (co)variance components
found in the appropriate table that was generated in between successive rounds are smaller than a minimum,
step one (PIBD|Nl,Nr,pi) and inserted as element (i, j ) in well-tuned value.
the gametic relationship matrix. Simulation of data: The proposed method was tested

Step three: In the case of individuals with genotyped using simulated data sets based on a granddaughter
parents, IBD probabilities were calculated on the basis design (Weller et al. 1990), which is presently the most
of the inheritance of marker alleles from parents to commonly used design in QTL mapping in dairy popula-
offspring. The element (i, j ) of the gametic relationship tions. It is assumed that a previous linkage analysis study
matrix was computed using the recurrence equations had identified a 10-cM region including one or two QTL
of Wang et al. (1995). that affect two traits. The aim is to test if there is informa-

Step four: The IBD matrix was computed using the tion to distinguish between one pleiotropic QTL affecting
linear relationship between the IBD matrix and the both traits and two QTL, each affecting one trait.
gametic relationship matrix (George et al. 2000). Pedigree: The simulation was built on a founder popu-

Statistical analysis: Inferences were drawn using re- lation created 100 generations ago with a population
stricted maximum likelihood (Patterson and Thomp- size of 100 (50 males and 50 females). For each of the
son 1971). Conditional on the IBD matrix for the QTL subsequent 100 generations, 50 males and 50 females
effects, IBDi|M,pi, the restricted likelihood of the multivar- were produced by randomly sampling parents from the
iate mixed model, assuming a single QTL, is previous generation. After the first 100 generations, in-

dividuals of the genotyped population were sampled.L(�|K�y, Q|M,p) � ��p(K�y|u,q, E0 � I)p(u|G0 � A)
Ten sires and 200 dams (later referred to as grandsires
and granddams) were produced by sampling parents� p(q|K 0 � IBDi|M,pi)dudq
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TABLE 1 �e1i

e2i
� � MVN�0,

1
n�0.5� �2

u1

�u1,u2

�u1,u2

�2
u2

� � � �2
e1

�e1,e 2

�e1,e 2

�2
e 2

���.Input parameters for simulated data sets

The parameters used for simulation of phenotypes areVariance
shown in Table 1.

Effect Trait 1 Trait 2 Correlation Analysis of simulated data: When the IBD matrices
were calculated, marker haplotypes were assumed knownPolygenic 20 20 0.5
for grandsires and unknown for granddams. This meansQTL 1 12–20 0 0
that the maternally inherited haplotypes in the sonsQTL 2 0 12–20 0

Residuals 60 60 �0.5 were assumed to be founder haplotypes and to contribute
with linkage disequilibrium information accordingly.

To mimic a situation where linkage analysis has identi-
fied a 10-cM region including one or two QTL that

randomly from the 100th generation. Each sire was affect two traits, each trait of the simulated data was
mated to 20 dams and each mating produced one son. analyzed initially using a single-trait model (i.e., model

Marker and QTL alleles: Marker alleles were sampled (1) with t � 1). A significant QTL was identified if the
for the 11 biallelic loci placed with a distance of 1 cM null hypothesis with no QTL was rejected. If a significant
between each locus. Two QTL were positioned 5 cM QTL was detected for both traits, the data were analyzed
apart in marker bracket 3 and marker bracket 8. In the subsequently using a pleiotropic model (i.e., model (1)
founder population, the two alleles of each marker locus with t � 2, nqtl � 1, and
were sampled with equal probability, and all QTL alleles
were assigned a unique number. Marker and QTL al- K0 � � �2

q1

�q1,q 2

�q1,q 2

�2
q 2

�)leles were transmitted from parents to offspring during a
period spanning 100 generations. Recombinations were

and a two-QTL model (i.e., model (1) with t � 2, nqtl � 2,sampled according to Haldane’s mapping function
(Haldane 1919).

K01 � ��
2
q1

0
0
0�,From among the QTL alleles that were still present

after 100 generations, one was sampled at random for
each QTL as being the mutant gene, while all other and
QTL alleles were assumed to be of the wild type. The
frequency of the mutant gene was restricted to be between K02 � �00

0
�2

q 2
�).

0.2 and 0.8. This resulted in different QTL variances be-
tween replicates (0.12–0.2) as indicated in Table 1. The test for pleiotropy vs. two linked loci was based on

Phenotypes: For each of the 200 sons in the last genera- a test statistic involving the ratio of the log likelihood
tion of the pedigree, a daughter yield deviation (DYD; of both models, evaluated at their maximum-likelihood
Van Raden and Wiggans 1991) was simulated on the estimates. The null hypothesis poses that the model
basis of 100 daughters. Phenotypic records were simu- contains one pleiotropic segregating QTL. The test was
lated for two traits using the following model for the performed using Monte Carlo-derived significant thresh-
DYD of the ith son, olds, as explained below. The power of the test was calcu-

lated as the proportion of times, out of 100 replicates,

�DYD1i

DYD2i
� �

1
n�

n

j�1
��a

p
1ij

0 � � � 0
ap

2ij
�� � �u1i

u 2i
� � �e1i

e 2i
�, that the null hypothesis was rejected.

Significance thresholds: First, the significance threshold
for the single-trait tests was found by simulation. Fivewhere ap

hij are the effects of paternally transmitted alleles
hundred replicates were simulated under the null hy-on trait h in daughter j of son i, uhi are the polygenic
pothesis of no QTL segregating. Each replicate was sim-effects on trait h of son i, and ehi are the residual effects
ulated with the same structure, the same genetic vari-on trait h of son i. Polygenic effects for grandsires were
ance, and the same environmental variance as the datasampled from
sets including a QTL. The simulated data sets were then
analyzed using a single-trait model with and without a�u1

u 2
� � MVN�0, � �2

u1

�u1,u2

�u1,u2

�2
u2

��, QTL fitted. For each replicate, the test statistic based
on the ratio of the log likelihoods of the models was
calculated, and the significance threshold was set suchand for son i from
that 5% of the test statistics were higher than the
threshold.

�u1i

u 2i
� � MVN�0.5�u1GS

u 2GS
�, 0.75� �2

u1

�u1,u2

�u1,u2

�2
u2

��, Second, the significance threshold for the tests for
pleiotropy vs. linkage was found by simulation as follows.

where uhGS is the polygenic value of the grandsire for Two hundred and fifty replicates were simulated under
the null hypothesis, in which a single pleiotropic QTLtrait h. Residual effects were sampled from
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Figure 2.—Distribution of QTL position estimates. The
x-axis is the marker interval and the y-axis the number of times
the QTL affecting trait one (light gray bars) and the QTL
affecting trait two (dark gray bars) were estimated in the differ-
ent marker intervals.

disequilibria and linkage analysis, extending the work
of Meuwissen and Goddard (2000). The performance
of the method was illustrated using simulated data. The

Figure 1.—Contour plot of mean likelihood of positions results (Figure 2) showed that the position of two closely
of the QTL affecting trait 1 (p1) and the QTL affecting trait

linked loci, each affecting one trait, could be estimated2 (p 2) over 100 replicates.
correctly on average, with the proposed method. The
two histograms of the estimated positions of the QTL

was assumed to affect both traits. The effect of the pleio- affecting trait one and trait two were well separated and
tropic QTL on each trait was the same as the effect of overlap only in areas where the probability mass was
the two linked QTL. In each replicate, both traits were small. The results of Meuwissen and Goddard (2000)
analyzed using a single-trait model. If both tests were suggested that the precision in terms of marker intervals
significant, the traits were analyzed jointly using the was fairly constant over different marker densities. It is
pleiotropic model and the two-QTL model. The signifi- therefore expected that QTL that are more closely
cance threshold was assessed on the basis of the empiri- linked than those in the present study (e.g., 1 cM) can
cal distribution of the test statistic (ratio of log likeli- still be distinguished from a pleiotropic QTL if a denser
hoods) over replicates. marker map is used (e.g., 0.25 cM). Furthermore, in

the simulations, random drift over the 100 generations
might have caused a proportion of the markers to be-

RESULTS
come monomorphic in the genotyped individuals. This

Figure 1 shows the mean profile log likelihood for might have adversely affected the method to distinguish
the QTL positions, over 100 replicates. On average, the between one pleiotropic QTL and two QTL each affect-
ridge of the log-likelihood curve indicates that the esti- ing one trait.
mates of the positions are at interval 3 for the QTL More precise inferences about the position of one
affecting trait 1 and interval 8 for the QTL affecting pleiotropic QTL affecting two traits using multitrait link-
trait 2. These average estimates agree well with the input age analysis, compared to single-trait analyses, have been
parameters. reported in the literature (Jiang and Zeng 1995;

Figure 2 shows the number of times the different Almasy et al. 1997; P. Sørensen, M. S. Lund, B. Guld-
intervals had the highest log-likelihood value for the brandtsen, J. Jensen and D. Sorensen, unpublished
QTL affecting trait 1 (light gray columns) and for the data). Similar results are expected to hold for the
QTL affecting trait 2 (dark gray columns). For both QTL method proposed here as well, even though we did not
the most frequently estimated position was the correct investigate this problem.
input parameter used in the simulations. The histo- An important and difficult question that we addressed
grams show some skewness: This is because the QTL is whether the proposed method can distinguish be-
were placed at the end of a confined interval and be- tween a model postulating one pleiotropic QTL and
cause of the small size of the experiment. another postulating two closely linked QTL, each affect-

When data were simulated on the basis of the two- ing one trait. This is a problem of model choice, in a
QTL model, the null hypothesis, which assumes that situation where models are not nested and have the
the state of nature is represented by a single-QTL model, same number of parameters. This issue was discussed
was rejected in 56% of the replicates. from a frequentist perspective by Cox (1961, 1962).

Within the constraints of the paradigm, we have avoided
a frontal comparison of the models and instead posed

DISCUSSION
the question as follows. When data are simulated under
the two-QTL model, in what proportion of times overWe have presented a multitrait method for fine-map-

ping detection of QTL, based on combined linkage conceptual replications is the null hypothesis postulat-
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