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ABSTRACT
The population-genetic consequences of population structure are of great interest and have been studied

extensively. An area of particular interest is the interaction among population structure, natural selection,
and genetic drift. At first glance, different results in this area give very different impressions of the effect
of population subdivision on effective population size (Ne), suggesting that no single value of Ne can
completely characterize a structured population. Results presented here show that a population conforming
to Wright’s island model of subdivision with genic selection can be related to an idealized panmictic
population (a Wright-Fisher population). This equivalent panmictic population has a larger size than the
actual population; i.e., Ne is larger than the actual population size, as expected from many results for this
type of population structure. The selection coefficient in the equivalent panmictic population, referred
to here as the effective selection coefficient (se), is smaller than the actual selection coefficient (s). This
explains how the fixation probability of a selected allele can be unaffected by population subdivision
despite the fact that subdivision increases Ne, for the product Nese is not altered by subdivision.

THE genetic consequences of population structure— simple migration models with no selection (cited above),
there have been many efforts to calculate effective sizesubdivision of the population or population viscos-

ity—have been of interest to population geneticists since under more general conditions. Slatkin (1977) and
Maruyama and Kimura (1980) studied the effects ofthe beginnings of the field (Wright 1931). An obvious

motivation for this interest is that most, if not all, real extinction and recolonization of subpopulations. Santi-
ago and Caballero (1995) dealt with selection underpopulations have some sort of structure. An additional,

more theoretical, motivation concerns the notion of various mating systems. Nordborg (1997) explored a
generalization of spatial structure in which alleles moveeffective population size. It is not clear to what extent

this measure is applicable to subdivided populations. A among classes that can be defined in any way. In some
of the cases analyzed, classes corresponded to couplingsingle effective size might be insufficient to characterize

a structured population, which might not be compara- with different alleles at linked loci that were under selec-
tion. Whitlock and Barton (1997) considered a veryble in every way to any panmictic population.

Natural selection in a structured population provides general model that included extinction and recoloniza-
tion and arbitrary patterns of migration among demes.what seems like an example of the inadequacy of a single

Ne as a descriptor of a population. Maruyama (1970b, Wang and Caballero (1999) review various develop-
ments in this area. It should be noted that the question1974) showed that subdivision does not affect an allele’s

fixation probability under genic selection if migration of effective size is complicated by the fact that different
definitions of Ne can yield very different values for adoes not change the overall allele frequency and selec-

tion and drift occur separately in each deme. This might structured population (Ewens 1979; Gregorius 1991;
Chesser et al. 1993; Caballero 1994).seem to indicate that the effective population size (Ne)

of a subdivided population is equal to its actual size for Maruyama (1972a,b,c) studied the effects of selec-
tion on structured populations described by stepping-some purposes. On the other hand, various treatments

of genetic drift in a subdivided population show that Ne stone and spatially continuous models. He assumed re-
current mutation, which replenishes allelic diversity,is increased by subdivision under these same conditions:
and derived distributions of allele frequencies at themore neutral variation is maintained in a subdivided
resulting mutation/selection/drift equilibrium. Despitepopulation, and genetic drift happens on a longer time-
several differences between the models, some of thescale (Wright 1939; Maruyama 1970a; Slatkin 1981,
results presented here are closely related to those of1991; Takahata 1991; Nei and Takahata 1993).
Maruyama.Much theoretical work has been done on the effective

The model of population structure considered heresize of structured populations. In addition to work on
is Wright’s (1931) island model. Specifically, the ver-
sion in which a large number of demes (“islands”) ex-
change migrants is considered (Wright 1940, 1969;1Corresponding author: 2307 Massachusetts Ave., Cambridge, MA

02140. E-mail: cherry@oeb.harvard.edu Rannala 1996; Rousset 2001), rather than the version
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in which one or more islands receive migrants from the place of N and the variance is given approximately
bya continental source population. Many treatments of

subdivided populations, including that presented here,
make the assumption that the number of subpopula- V�x �

1
Ne

x(1 � x).
tions is large. Under this assumption, the population-
wide allele frequency in an island model changes more This equation is essentially the definition of the variance
slowly than the frequency within a deme, so long as effective population size (Ewens 1979, equation 3.96).
selection is absent or sufficiently weak. This means that For populations to which these expressions apply, both
from the point of view of any particular deme, the other the mean and the variance are (approximately) propor-
demes serve as a source population that has a more tional to x(1 � x), and their ratio is therefore indepen-
or less constant allelic composition over relatively long dent of x.
periods of time. This leads to a quasi-equilibrium in For our subdivided population, no single allele fre-
which each deme is like an island population that has quency completely describes the population. A variable
been receiving migrants from an unchanging source of obvious interest is the overall allele frequency x. How-
population (Rannala 1996; Gillespie 1998, p. 101; ever, a particular value of x can be realized in many
Rousset 2001). different ways. At one extreme, all demes could have

A diffusion approximation is given here for the com- the same allele frequency (x). At another, a fraction x
bined process of genetic drift and genic selection under of the demes could have allele frequency one, while the
the island model of subdivision. This diffusion is equiva- rest have frequency zero. Between these extremes lie a
lent to that describing a certain ideal (Wright-Fisher) myriad of possibilities. Nonetheless, we can still hope
population. The size of the equivalent Wright-Fisher to write a diffusion for x. The key is that for a particular
population (Ne, by definition) is larger than that of the value of x, and for given values of m and N, we can know
actual population. However, this equivalent population roughly what distribution of within-deme allele frequen-
also has a smaller selection coefficient, referred to here cies to expect when D is large. Most importantly for the
as the effective selection coefficient se. The product of present purposes, we can write an expression for the
population size and selection coefficient is the same for expected value of xi(1 � xi), where xi is a within-deme
the actual population and the equivalent ideal popula- allele frequency, as a function of x.
tion, as required for consistency with Maruyama’s The change in overall allele frequency x is the mean
(1970b) result. of the changes in the xi. The variance in one of these

changes is �xi(1 � xi)/N. The variance in the change
in x, the mean of the xi, is equal toMODEL AND RESULTS

Consider a population consisting of D demes, each 1
ND 2 �

i
xi(1 � xi).containing N haploid individuals. Migration occurs at

rate m. This means that under strict neutrality the parent
of an individual would come from within the deme with The average of a large number of identically distributed
probability 1 � m and from the population at large with random variables will be close to their common expected
probability m. With selection, the sampling of alleles value. Thus, for large D, the above will be close to
from these potential parents is biased toward more fit
alleles in the usual way. Two alleles are considered, and 1

ND
Exi(1 � xi).further mutation is neglected. One allele has a fitness

of 1 � s relative to the other. The frequency of this
Two forces, migration and selection, contribute to theallele in the ith deme is denoted by xi, and x denotes
mean change within a deme. Strictly speaking, thesethe mean frequency among demes, i.e., the overall fre-
forces interact in a way that depends on the order inquency of the allele in the entire population.
which selection and migration occur. However, underFor a diffusion approximation we need expressions
the usual assumptions that m � 1 and s � 1, thesefor the per-generation mean and variance of the change
components of change can be treated separately. Thein allele frequency as functions of that allele frequency.
component due to migration has mean m(x � xi). ThisThese are well established for populations with no struc-
quantity sums to zero across demes (migration does notture. The mean change in a panmictic population, M�x,
change the overall allele frequency in this model). Inis given approximately by
a particular deme, the mean change due to selection is

M�x � sx(1 � x), �sxi(1 � xi). Thus the mean change in overall allele
frequency is approximatelywhere x is the allele frequency. The variance V�x is given

approximately by x(1 � x)/N for a haploid Wright- sExi(1 � xi).
Fisher population consisting of N individuals. For other
population models, the effective population size Ne takes Thus we would have the desired expressions for both
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the mean and the variance of the change in x if we had of what follows, does not restrict us to especially weak
selection. It allows that NDs, the quantity that deter-Exi(1 � xi) as a function of x.

Imagine that the migrants received by a deme had mines fixation probabilities, can be quite large in magni-
tude. Indeed if |Ns| is not small compared to 1, |NDs|an allele frequency x whose value was fixed for all time.

Under these conditions, it is known that the allele fre- will be quite large for even moderate D. In that case,
an infinite-population model would describe the popu-quency in the deme would reach an equilibrium distri-

bution that is given approximately by the probability lation well: the more fit allele, when not initially rare,
would almost certainly go to fixation via a nearly deter-density
ministic path, and an advantageous allele present in a

Ce 2Nsxx a�1(1 � x)b�1 , (1)
single copy would fix with a probability of �2s.

We can now write the expected value of xi(1 � xi) aswhere a � 2Nmx, b � 2Nm(1 � x), and C is a normal-
ization constant (Wright 1931). a function of x, using knowledge of the moments of a

�-distribution (Equation 2). The first moment of aIn reality, x changes over time. However, if these
changes are sufficiently slow, then a deme will be ex- �-distribution is a/(a � b), and the second moment is

a(a � 1)/(a � b)(a � b � 1). For the � family memberposed to roughly the same value of x for some time and
would be approximately at the equilibrium (Wright of interest, a � 2Nmx and b � 2Nm(1 � x). Substitu-

tion and simplification yield1931). Under what conditions would the change in x
be sufficiently slow?

Drift within a deme is a more rapid process than drift Exi(1 � xi) � Exi � Ex2
i � � 2Nm

2Nm � 1�x(1 � x). (3)
within the population as a whole. Within-deme drift has
a characteristic time of N generations, whereas for the Thus, the mean of the within-deme quantity xi(1 � xi)
population as a whole this time is at least ND generations is proportional to x(1 � x). The proportionality con-
(this is the limit for high migration; subdivision makes stant 2Nm/(2Nm � 1) is a familiar expression for 1 �
population-wide drift even slower). Migration only FST under an island model, where FST is the fractional
speeds the approach of a deme to its equilibrium distri- decrease in heterozygosity due to subdivision. The mean
bution. Specifically, the deviation of Exi(1 � xi) from change in x is given approximately by
its equilibrium value decreases by a factor of (1 � 1/
N)(1 � m)2 each generation. This follows from the

M�x � s � 2Nm
2Nm � 1�x(1 � x).

recursion relation for Exi(1 � xi) under the constant
x assumption, with the condition that Exi � x at the
outset. Thus, absent of selection, the population will be The variance is given approximately by
in a state of quasi-equilibrium, with the distribution of
within-deme allele frequencies given above. V�x �

1
DN � 2Nm

2Nm � 1�x(1 � x),
Very strong selection might change x so rapidly that

this quasi-equilibrium approximation does not hold.
which is similar to the expression used by MaruyamaHowever, a simple limit on the magnitude of s guaran-
(1972a, Equation 4) in the context of a stepping-stonetees that this approximation works well. The average
model of population structure. These are the same aschange in x due to selection is at most sx(1 � x) per
the mean and variance for a panmictic Wright-Fishergeneration (population structure slows the rate below
population with certain parameters. The size of thisthis, as will be clear from what follows), which cannot
equivalent panmictic population, Ne, is given bybe greater in magnitude than |s|/4. If |s| is small com-

pared to 1/N, little change in x will occur during the
N generations that it takes for within-deme drift to oc- Ne � DN�� 2Nm

2Nm � 1� � �1 �
1

2Nm�DN .
cur, and the quasi-equilibrium will hold.

Under this same condition (|Ns| � 1), selection is not
The selection coefficient in the equivalent population,a strong force in determining the equilibrium distribu-
referred to here as the effective selection coefficienttion of within-deme allele frequencies (Equation 1).
and denoted by se, is given byThis distribution becomes approximately the same as

that expected under neutrality. This is a �-distribution
se � � 2Nm

2Nm � 1�s .whose probability density function (pdf) is

Cxa�1(1 � x)b�1 , (2)
The product Nese is equal to DNs, as required for consis-
tency with Maruyama’s (1970b) conclusion that subdi-with a � 2Nmx and b � 2Nm(1 � x). The same ap-

proximation was used by Dobzhansky and Wright vision does not affect fixation probability in this model.
Nonetheless, the fact that Ne is larger than the actual(1941), who applied it to recessive-lethal alleles with

deleterious heterozygous effects. population size ND, and se is smaller than s, means that
changes in allele frequency happen more slowly thanThe assumption that |Ns| � 1, which is made in all
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Figure 1.—The observed distribution of allele frequencies
among demes at one time point in a simulation (bars) is

Figure 2.—Actual vs. predicted values of the mean of xi(1 �compared to the theoretical � density function (curve). The
xi). Each point represents a time point in a simulation. Theparameters for the �-distribution are determined by the ob-
points come from 100 independent simulations, each of whichserved overall allele frequency x and the value of Nm in the
was assessed at intervals of 100 generations. The simulationsimulation. The parameters used in the simulation were as
parameters were D � 100, N � 100, m � 0.01, s � 0.001. Thefollows: D � 1000, N � 100, m � 0.01, s � 0.001. In the
starting condition was x � 1⁄2(xi � 1⁄2 for all i). The line corre-generation shown, x was 0.611.
sponds to equality of predicted and actual values.

in a panmictic population, as established by previous
The only aspect of this distribution that is directlyinvestigations (Slatkin 1981; Takahata 1991).

relevant to the diffusion is the mean value of the xi(1 �
xi). Figure 2 compares the observed mean of the xi(1 �
xi) to the value predicted on the basis of the observed

COMPUTER SIMULATIONS x. This predicted value is given by Equation 3. Each
plotted point represents the predicted and observed valuesThe approximations used above for the among-deme
at a time point. The data come from many independentdistribution of allele frequencies can be tested by com-
simulations, with D � 100, N � 100, m � 0.01, and s �parison of the theoretical predictions to the results of
0.001. The observed values agree well with the predic-computer simulations. In these simulations the state of
tions. This confirms that the mean of the xi(1 � xi) isthe population is represented by an array of D integers,
given, to a good approximation, by a function of x.each corresponding to a deme. Each integer indicates

Another computational test of the analytic approxi-the number of copies of the allele in the deme and
mation involves the evolution of the distribution of thehence ranges from 0 to N. Each generation, the value
overall allele frequency x over time. The diffusion ap-for each deme is drawn from a binomial distribution.
proximation developed here relates this distribution toThe index parameter n of this binomial is equal to N.
that describing a certain panmictic population. This canThe probability parameter p is determined by the cur-
be related to a much smaller population by a scaling ofrent allele frequency in the deme xi, the population-
time. This is convenient because it is feasible to obtainwide mean allele frequency x, the migration rate, and
an exact numerical solution for this smaller populationthe selection coefficient. Let p̃ � (1 � m)xi � mx. This
by repeated application of its transition matrix. This iswould be the mean allele frequency in the ith deme in
an alternative to numerical integration of expressionsthe next generation if there were no selection. With

selection, we have p � (1 � s)p̃/(1 � sp̃). given by Kimura (1955a,b), and the result is easier to
compare to a histogram because it is discrete and lacksFigure 1 shows the distribution of allele frequencies

among demes in one particular generation of a simula- �-functions at the boundaries. Figure 3 compares the
resulting prediction for the distribution of x to the re-tion. The parameter values used in the simulation were

D � 1000, N � 100, m � 0.01, and s � 0.001. The � sults of many simulations after 5000 generations. The
parameters were D � 100, N � 100, m � 0.01, anddensity function given by Equation 2, with x equal to

the actual overall allele frequency, should approximate s � 0.001, and the initial allele frequency was 1⁄2. The
theoretical prediction is in excellent agreement withthis distribution. This function is also shown in Figure

1, and it agrees well with the observed distribution. the simulation results.
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Figure 3.—The distribution of
overall allele frequencies after 5000
generations of 20,000 independent
simulation runs (bars) is compared to
a theoretical prediction. In the simula-
tions, D � 100, N � 100, m � 0.01,
s � 0.0001, and the initial allele fre-
quency is 1/2. The predicted distribu-
tion is obtained by iteration of the
transition matrix for a Wright-Fisher
population with N � 150 and Ns �
Nese, with time scaled by a factor of
100 (because Ne � 15,000).

A closely related distribution is that of the absorption tions. As an additional test, the mean of these absorption
times can be compared to that predicted by the diffusiontime, the time until fixation or extinction of an allele.

Figure 4 compares the distribution predicted on the approximation. Diffusion theory gives the mean absorp-
basis of Ne and se to simulation results for D � 100, N � tion time in a Wright-Fisher population as a certain
100, m � 0.001, s � 0.0001, and an initial allele fre- integral (Ewens 1979, Equations 4.22 and 5.47). Numer-
quency of 1⁄2. Again there is excellent agreement be- ical evaluation of this integral, with N and s replaced
tween the prediction and the outcome of the simula- by Ne and se, yields the desired prediction. For the pa-

rameters used in the simulations presented in Figure
4, the predicted mean absorption time is 7.76 � 104

generations. The actual mean in the simulations, 7.62 �
104 generations, is close to this. For comparison, the
mean predicted in the absence of subdivision is 1.29 �
104 generations, and without selection the prediction is
8.32 � 104 generations.

Table 1 compares the observed and predicted mean
absorption times for a variety of parameter values with
an initial allele frequency of 1⁄2. For D � 100 and N �
100, the simulation results are in excellent agreement
with the predictions. All of the observed values are
slightly smaller than the predictions, but only by at most
a few percent. With D � 1000 and a mere 10 individuals
per deme, the simulation results are again close to the
theoretical predictions, even with strong selection and
weak migration. For smaller numbers of demes this
agreement deteriorates somewhat as migration becomes
weak, as expected because the predictions involve the
assumption that D is large. However, even with as fewFigure 4.—The distribution of time until absorption (fixa-

tion or extinction) in 50,000 simulations (bars), compared to as 10 demes, the observed means differ from the predic-
a theoretical prediction (curve). The simulation parameters tions by 	20%.
were as follows: D � 100, N � 100, m � 0.001, s � 0.0001. Table 2 shows results for alleles starting out at a singleThe initial allele frequency was 1⁄2. The predicted distribution

copy. For the higher migration rates the mean absorp-is based on iteration of the transition matrix for a Wright-
Fisher population of size 1000. tion times are in accord with the predicted values. For
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TABLE 1

Predicted and observed mean absorption times for an initial allele frequency of 1⁄2

No. of Deme Migration Selection Predicted mean Observed mean
demes size rate coefficient Nm Nese � NDs absorption time absorption time

D � 100 N � 100 m � 0.1 s � 0.0001 10 1 13,579 13,497 
 69
s � 0.0005 10 5 6,656 6,615 
 24
s � 0.001 10 10 3,911 3,879 
 11

m � 0.01 s � 0.0001 1 1 19,399 19,246 
 98
s � 0.0005 1 5 9,508 9,362 
 35
s � 0.001 1 10 5,587 5,442 
 16

m � 0.001 s � 0.0001 0.1 1 77,594 76,195 
 248
s � 0.0005 0.1 5 38,033 37,013 
 140
s � 0.001 0.1 10 22,347 21,168 
 62

m � 0.0001 s � 0.0001 0.01 1 659,553 645,863 
 6,572
s � 0.0005 0.01 5 323,283 314,510 
 2,432
s � 0.001 0.01 10 189,951 181,408 
 773

D � 1000 N � 10 m � 0.01 s � 0.001 0.1 10 22,347 21,957 
 89
m � 0.001 s � 0.001 0.01 10 189,951 190,847 
 1,700

D � 30 N � 100 m � 0.001 s � 0.001 0.1 3 16,146 15,064 
 71
m � 0.0001 s � 0.001 0.01 3 137,241 126,867 
 587

D � 10 N � 100 m � 0.1 s � 0.001 10 1 1,358 1,345 
 7
m � 0.01 s � 0.001 1 1 1,940 1,837 
 10
m � 0.001 s � 0.001 0.1 1 7,759 6,728 
 39
m � 0.0001 s � 0.001 0.01 1 65,955 55,399 
 329
m � 0.00001 s � 0.001 0.001 1 647,913 571,948 
 15,587

the lower migration rates the observed means are spread to other demes, and the time to loss is similar
to that in a population of size N. A number more infor-smaller than the predictions. This phenomenon has

nothing to do with selection; it occurs even in its ab- mative than the mean absorption time is the mean time
until fixation (conditional on eventual fixation rathersence. It reflects the fact that extinction, the usual fate

of an allele present in a single copy, occurs very quickly. than on loss). Observed values of this quantity are com-
pared to predictions in Table 2 [predicted values wereWhen migration is weak, quasi-equilibrium cannot be

achieved this rapidly. In the limit of very low migration, calculated according to Kimura and Ohta (1969, Equa-
tion 17), with se substituted for s and adjustments madeextinction almost always occurs before the allele can

TABLE 2

Predicted and observed mean absorption and fixation times for an allele present in a single copy, with D � 100 and N � 100

Migration Selection Predicted mean Observed mean Predicted mean Observed mean
rate coefficient Nm Nese � NDs absorption time absorption time fixation time fixation time

m � 0.1 s � 0 10 0 21.4 20.3 
 0.1 20,999 20,170 
 327
s � 0.0001 10 1 23.4 22.2 
 0.4 19,931 18,847 
 614
s � 0.0005 10 5 27.2 26.9 
 0.4 11,620 11,877 
 138
s � 0.001 10 10 28.8 27.8 
 0.4 7,391 7,307 
 47

m � 0.01 s � 0 1 0 30.6 25.7 
 0.2 29,999 30,110 
 518
s � 0.0001 1 1 33.5 28.9 
 0.2 28,473 28,397 
 281
s � 0.0005 1 5 38.9 34.2 
 0.3 16,600 16,424 
 85
s � 0.001 1 10 41.1 35.3 
 0.4 10,559 10,417 
 53

m � 0.001 s � 0 0.1 0 122.5 73.2 
 0.7 119,994 121,379 
 2,110
s � 0.0001 0.1 1 133.9 83.0 
 1.1 113,893 114,134 
 1,819
s � 0.0005 0.1 5 155.6 105.1 
 0.7 66,400 65,548 
 245
s � 0.001 0.1 10 164.6 112.7 
 0.9 42,236 41,028 
 118

m � 0.0001 s � 0 0.01 0 1,041 556 
 19 1,019,949 1,027,879 
 55,420.2
s � 0.0001 0.01 1 1,138 608 
 14 968,093 934,624 
 23,741
s � 0.0005 0.01 5 1,323 801 
 20 564,400 568,132 
 6,749
s � 0.001 0.01 10 1,399 899 
 17 359,004 352,044 
 2,290
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for haploidy]. The mean fixation times in the simula- panmictic. Both the mean and the variance of the
change in allele frequency are approximately propor-tions are in excellent agreement with these predictions:

the observed means are all within a few percent of the tional to the mean of xi(1 � xi). Subdivision therefore
slows down drift and selection by the same factor. Whilepredicted values, even when migration rates are small.

In all of the simulations presented above, except se is directly proportional to the mean change in allele
frequency, Ne is inversely proportional to the variance,where s � 0, |NDs| � 1 (NDs ranges from 1 to 100).
so it changes by the same factor but in the oppositeTherefore selection has a significant effect on the fate
direction. The quantity Nese, which is the ratio of theof the allele in the population as a whole. Thus the
mean to the variance of the change in allele frequency,simulations test the ability of the theory to account for
is unaffected by subdivision. Therefore, as expectedselection; had |NDs| been small, the deviation of the
from the results of Maruyama (1970b, 1974), fixationresults from the strictly neutral case would be insignifi-
probabilities are also unaffected by subdivision. How-cant, and the simulations would test only whether the
ever, the rate at which allele frequencies change is de-theory worked well under neutrality. The results demon-
creased. Because the two components of this change,strate that the theoretical approximations work well in
selection and drift, are slowed by the same factor, thethe presence of significant selection, so long as |Ns| is
effect of subdivision on the trajectory of allele frequencysmall compared to one (Ns ranges from 0.01 to 0.1 in
is simply a dilation in time.the simulations).

We thank Jon Wilkins for helpful discussions. This work was sup-
ported by National Science Foundation grant DEB-9815367 to J.W.
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