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ABSTRACT
The probability that an advantageous mutant rises to fixation in a viral quasispecies is investigated in

the framework of multitype branching processes. Whether fixation is possible depends on the overall
growth rate of the quasispecies that will form if invasion is successful rather than on the individual fitness
of the invading mutant. The exact fixation probability can be calculated only if the fitnesses of all potential
members of the invading quasispecies are known. Quasispecies fixation has two important characteristics:
First, a sequence with negative selection coefficient has a positive fixation probability as long as it has the
potential to grow into a quasispecies with an overall growth rate that exceeds that of the established
quasispecies. Second, the fixation probabilities of sequences with identical fitnesses can nevertheless vary
over many orders of magnitudes. Two approximations for the probability of fixation are introduced. Both
approximations require only partial knowledge about the potential members of the invading quasispecies.
The performance of these two approximations is compared to the exact fixation probability on a network
of RNA sequences with identical secondary structure.

ONE of the most remarkable aspects of the dynamics tion genetics, the usual assumption is that mutations
are rare events, such that an invading mutant will notof RNA viruses is the high rate at which mutant

variants are produced. At mutation rates close to one mutate again while it is moving toward either fixation
or extinction. In the quasispecies setting, on the othersubstitution per genome per generation (Drake 1993;

Drake and Holland 1999), a virus population forms hand, most of the immediate offspring of a mutant will
have further mutations, and their offspring will as well,a highly diverse cloud of mutants (Domingo et al. 1976,

1978; Holland et al. 1982; Steinhauer et al. 1989; Bie- and so on. As a consequence, the fitness of a prospective
invading quasispecies is not given by the fitness of thebricher and Luce 1993; Burch and Chao 2000), a so-

called quasispecies (Eigen and Schuster 1979; Nowak initial mutant, but rather by the average fitness of the
offspring mutant cloud that will form eventually. One1992; Domingo and Holland 1997; Domingo et al.

2001). At the same time, the sequence space is so large of the more surprising results of these dynamics is that
a mutant with the ability to replace the currently existingthat even for population sizes up to 1012, there is a

constant stream of new mutants that have never existed quasispecies may actually have a reduced replication
rate, if at the same time its robustness against furtherbefore. Most of these mutants have impaired fitness,

but occasionally, a new mutant will fare better than all mutations is increased (Schuster and Swetina 1988;
Wilke 2001b; Wilke et al. 2001; Krakauer and Plotkincurrently existing virions, for example, by presenting

an epitope that the immune system fails to recognize. 2002).
Quasispecies theory in its original formulation byWith a certain probability, this mutant will rise to fixa-

tion, where fixation is understood in the sense that the Eigen and Schuster (1979) is based on deterministic
differential equations and as such cannot deal with themutant becomes the ancestor of a new quasispecies,

which completely replaces the currently existing one. fluctuations that are responsible for fixation or extinc-
tion of individual mutants. Within the more generalThe problem of the fixation of an advantageous mu-

tant is an old one, with a long history of investigations in mathematical framework of multitype branching pro-
cesses, it is possible to describe both the deterministicclassical population genetics, reaching back to Haldane
aspects of large populations and the fluctuations inher-and Fisher (Fisher 1922, 1930; Haldane 1927; Kimura
ent in the dynamics of small and very small populations1957, 1964, 1970; Ewens 1967; Kimura and King 1979;
(Demetrius et al. 1985; Hofbauer and Sigmund 1988;Barton 1995; Bürger and Ewens 1995; Otto and Bar-
Hermisson et al. 2002). An expression for the probabil-ton 1997; Pollak 2000). However, these investigations
ity of fixation follows naturally from branching processdiffer from the quasispecies case in one important as-
theory. We discuss how this expression relates to thepect: the mutation rates considered. In classical popula-
predictions of the deterministic quasispecies equations,
as well as to the results of classical population genetics.

The remainder of the article is organized as follows.1Address for correspondence: Digital Life Laboratory 136-93, Caltech,
Pasadena, CA 91125. E-mail: wilke@caltech.edu First, we derive a general expression for the probability
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of fixation in an arbitrary fitness landscape. Then, we
P(k1, . . . , kn|i) �

N !
(N � �r kr)!�r kr!discuss the special case of fixation on a neutral network,

that is, the case in which all sequences of the invading
� �

n

r�1

(Mir/N)kr �1 � �
n

r�1

Mir/N �
N��r kr

quasispecies have the same fitness, and derive two ap-
proximations for the fixation probability that can be
evaluated without the knowledge of the full-fitness land- (2)

scape. To give a concrete example, we apply both the (see appendix), with Mij � wiQji/�w�. The matrix ele-
exact expression and the approximations to a known ments Mij give the expected number of offspring of type
network of �50,000 RNA sequences. For this neutral j from sequences of type i in one generation. In the
network, we also discuss how the fixation probability following, we assume that the population size is so large
changes if multiple sequences invade at the same time. that we can approximate P(k1, . . . , kn|i) by its limit for

an infinitely large population. This limit is a multivariate
Poisson distribution:

THEORETICAL FRAMEWORK

P(k1, . . . , kn|i) � �
n

r�1
� 1
kr!

Mkrir�e��r M ir . (3)For a population evolving under high mutational
pressure, we have to understand fixation in the sense

By using the theory of branching processes and by as-that a mutant is fixed once it has become a common
suming an infinite population size in Equation 3, weancestor of the whole population. The more traditional
restrict the applicability of our theory to certain scenar-definition of fixation, which is to regard a mutation as
ios. We can apply our theory only to those types offixed if all sequences in the population carry it, is not
fixation events that increase the average fitness of theapplicable: The mutational pressure constantly creates
population. The situation of genetic drift, whereby anew deleterious mutants, which may not carry a particu-
neutral or deleterious mutant is fixed because of sto-lar mutation although their ancestors did so. If we un-
chastic fluctuations in a small population (Kimura 1970;derstand fixation as the process by which a mutant be-
Kimura and King 1979), is not covered by our theory.comes a common ancestor of the whole population,
This latter type of fixation event reduces the averagethen the probability that a mutant is fixed is given by
fitness or leaves it unaltered.the probability that the cascade of further mutated off-

Let xi be the probability that the offspring cascadespring of the invading mutant does not come to a halt.
spawned by a sequence i goes extinct after a finite num-We can calculate this probability from the theory of
ber of generations. From the theory of multitypemultitype branching processes.
branching processes (Harris 1963), we know that theThe general setting to which our theory applies is
vector of extinction probabilities x � (x1, . . . , xn) satisfiesas follows. Consider a viral quasispecies in mutation-
x � f(x), where f(z) � (f1(z), . . . , fn(z)) is the probability-selection balance, with an average fitness �w�. If genera-
generating function of the distribution of offspringtions are discrete and nonoverlapping, and the popula-
probabilities P(k1, . . . , kn|i). The probability-generatingtion size N is constant, then the probability that a virion
function is defined asi produces k offspring in one generation is given by

Wright-Fisher sampling, fi(z) � �
k1,...,kn

P(k1, . . . , kn|i)z k11 . . . z knn . (4)

P(k|i) � �Nk �� k
i(1 � �i)N�k , (1)

After inserting Equation 3 into Equation 4, we obtain
fi(z) � e �r M ir(z r � 1). With the convention e x � (e x1, . . . ,

with �i � wi/(�w�N), where wi is the fitness of virion i. e xn), we can rewrite this expression as
Assume that a rare mutation leads to the emergence

of a virion with the potential to form a new quasispecies f(z) � eM(z�1) . (5)
and to replace the already established one in the pro-

Since the probability of fixation �i of a sequence i iscess. This new quasispecies (in the following also called
given by the probability that the offspring cascadethe invading quasispecies) may consist of sequences of
spawned by i does not go extinct, we have �i � 1 � xi.type 1, 2, . . . , n, with replication rates wi. Let the
The vector of fixation probabilities satisfies thereforeprobability that a sequence j produces an erroneous
1 � � � f(1 � �). With Equation 5, we findcopy i be given by Qij. As long as the total abundance

of the invading quasispecies is small compared to the 1 � � � e�M� . (6)
established quasispecies, we can assume that �w� is not
affected by the presence of the invading quasispecies. This equation has exactly one solution with 0 � �i � 1
Then, the probability that a single sequence of type i for all i if the spectral radius �M of M � 1 (Harris 1963;
generates (k1, . . . , kn) offspring of types 1, . . . , n can for the matrices M we are considering here, the spectral

radius coincides with the largest positive eigenvalue ofbe expressed as
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M, by virtue of the Frobenius-Perron theorem). Other- tion is a technicality that simplifies the analysis. General-
ization to more elaborate mutation schemes is possiblewise, �i � 0 for all i.

To compare Equation 6 to the result of Haldane along the lines of Wilke (2001a).
We denote the sequence length by L and the number(1927), we take the logarithm on both sides of Equation

6 and expand to second order: of different bases by 	 (	 � 4 for RNA/DNA). For
the matrix M, we have to take into account only the

log(1 � �i) � ��i � �2
i /2 � ��

k
Mik�k . (7) sequences belonging to the neutral network. It is useful

to introduce the connection graph G � (Gij). The ele-
With si � Mii � 1, this simplifies to ments Gij are 1 if and only if two sequences i and j are

exactly one mutation apart. In all other cases, Gij � 0.�i � si 
 √s 2
i 
 2�k�iMik�k . (8)

We can express M in terms of G as
If si � 0 and all off-diagonal elements of M are 0, then

M � (s 
 1)1 
 �G , (9)Equation 8 reduces to Haldane’s result �i � 2si; that is,
the fixation probability of a sequence is twice its selective where s � �(1 � )/�w� � 1, � � �/[�w�L(	 � 1)],
advantage. If the off-diagonal elements are nonzero, and 1 is the identity matrix. We restrict our analysis to
then the fixation probability is increased, because the primitive connection graphs, in which case the spectral
invading sequence gets support from its mutational radius �G of G is given by the unique positive eigenvalue
neighbors. In particular, even if some si � 0, the corre- of largest modulus of G (Varga 2000). (Irreducibility,
sponding �i are positive as long as �M � 1. This means which is often assumed in similar contexts, is not suffi-
that in quasispecies fixation, sequences that by them- cient, since complex eigenvalues of modulus �G may
selves reproduce too slowly to outcompete the currently exist if G is not primitive. Irreducible undirected con-
established quasispecies can nevertheless found a new nection graphs of the kind we are considering here are
quasispecies that grows fast enough to overtake the pop- primitive if they contain at least one cycle of odd length.)
ulation. The spectral radius of M is given in terms of the

For simplicity, we have considered only discrete, non- spectral radius of the connection graph �G as
overlapping generations. Generalization to continuous

�M � s 
 1 
 ��G . (10)time is straightforward (see, e.g., Harris 1963; Hermis-
son et al. 2002). In the continuous-time case, the vector This implies that fixation can occur as long as s is not
of fixation probabilities � is again determined by an smaller than ���G.
equation of the form 1 � � � f(1 � �). However, In an experimental setting, we cannot expect to have
the generating function f(z) is in general not given by knowledge of the complete connection graph G. There-
Equation 5. Its functional form depends on the details fore, it is important to have approximations for the
of the continuous-time process that is being modeled. fixation probability �i. We consider two alternative meth-
For example, if reproduction occurs through binary ods. Both are based on replacing the matrix M in Equa-
fission, f(z) will be quadratic in the variables z1, . . . , zn. tion 6 by a suitable diagonal matrix. This replacement

leads to a decoupling of the equations for different �i.
The quantity that is easiest to obtain experimentally

FIXATION ON A NEUTRAL NETWORK
is the growth rate of the invading quasispecies relative
to the established quasispecies, when initially both areExact expressions and estimates: So far, we have made

no assumptions about the structure and fitness distribu- present in large and equal amounts. From the definition
of M, we see that this relative growth rate correspondstion of the invading quasispecies. This has led to a gen-

eral equation for the vector of fixation probabilities to the spectral radius �M of M. If we assume that every
mutant present in the invading quasispecies has an ex-�, but not much further analysis is possible without a

concrete model for the fitness landscape of the invading pectation of �M offspring per generation, then we can
replace M in Equation 6 with a matrix that has entriesquasispecies (we do not have to make any further as-

sumptions about the established quasispecies, since it �M on the diagonal, while all off-diagonal elements are
zero. Then, Equation 6 simplifies to 1 � �i � e��M�i forenters the equations only through its average fitness

�w�). The concrete fitness landscape we study is that of a all i. Clearly, this approximation will overestimate the
�i for some mutants (mostly those that produce onneutral network (Huynen et al. 1996; Bornberg-Bauer

1997) of related sequences with identical replication average ��M offspring) and underestimate it for others
(mostly those that produce on average ��M offspring).rate �. All sequences that are not part of the neutral

network are assumed to have a vanishing replication In the following, we refer to this estimate as the determin-
istic growth estimate, because it is based on the assump-rate. Mutations occur as random substitutions of single

bases, and we allow for at most one substitution per tion that the invading quasispecies grows according to
the deterministic equations from the outset.replication event, similar to the approach of van Nim-

wegen et al. (1999). The probability of a substitution is The alternative method of estimating �i is as follows.
It is reasonable to assume that the first couple of replica-given by . The restriction to at most a single substitu-
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tion cycles mostly determine fixation or extinction for
an invading sequence. During these initial generations,
the subpopulation descending from the invading se-
quence cannot explore the full neutral network if the
network is large. Therefore, the major contribution to
the fixation probability comes from the connection ma-
trix of the local genetic neighborhood of the invading
sequence, and sequences farther away on the neutral
network are relatively unimportant. The idea behind
the second approximation is therefore to calculate the
fixation probability on the basis of a small area of geno-
type space surrounding the invading sequence. In the
simplest case, we consider only the invading sequence
and its immediate mutational neighbors. Assume se-
quence i has �i neutral neighbors, i.e., �jGij � �i. Then

Figure 1.—Fixation probability vs. mutation rate in a neu-the total expected number of offspring of sequence i is
tral network of 51,028 RNA sequences taken from van Nim-�jMij � s 
 1 
 ��i. Under the assumption that all
wegen et al. (1999). Solid lines correspond to the solution ofoffspring of i have the same expected number of further the full equations, dashed lines correspond to the neutrality

offspring, the probability of fixation satisfies the equa- estimate, and the dotted line indicates the deterministic
tion 1 � �i � e�(s
1
��i)�i . We call the solution to this growth estimate. � � 1.05, L � 18, �G � 15.7, �w� � 1 �

[1 � �G/(3L)].equation the neutrality estimate. As in the case of the
deterministic growth estimate, it will overestimate the
true fixation probability for some sequences and under-

given neutrality, the fixation probabilities vary over upestimate it for others.
to seven orders of magnitude. This demonstrates theFixation on an RNA neutral network: We compared
important influence of not only the nearest neighborsthe two estimates to the exact fixation probabilities on
but also the wider genetic neighborhood on the fate ofa neutral network of RNA sequences. The network of
a single sequence in quasispecies evolution. The neutral-51,028 sequences of length L � 18 was found through
ity estimate substantially underestimates the fixationexhaustive enumeration by van Nimwegen et al. (1999).
probabilities of those sequences that have only few im-The spectral radius of the network’s connection graph
mediate neutral neighbors, but are otherwise locatedis �G � 15.7. To calculate fixation probabilities on this
in a region of the genotype space where the density ofneutral network, we have to make an assumption about
neutral sequences is high. In principle, we could im-the average fitness �w� of the established quasispecies.
prove the neutrality estimate by taking into account allWe assume �w� � 1 � [1 � �G/(3L)], in which case
neutral sequences up to some distance d, but in practicethe relative growth rate of the invading quasispecies (at
this method becomes quickly as unwieldy as calculatingmacroscopic concentration) with respect to the estab-
the exact fixation probabilities.lished quasispecies follows from Equation 10 as �M � �,

Multiple invading sequences: The above considera-independent of the mutation rate.
tions address only the case of a single invading sequence.Figure 1 displays the exact fixation probabilities (ob-
The generalization to more than one invading sequencetained numerically from Equation 6) and the two esti-
is straightforward. Assume that a set S of N sequences,mates as functions of the mutation rate. We have shown
with S � {i1, . . . , iN}, invades an established quasispecies.the average fixation probability � � ��i/n, the mini-
The probability that this invasion is successful is givenmum probability �min � mini{�i}, and the maximum
by 1 � �i�S(1 � �i), where �i are the fixation probabili-probability �max � maxi{�i}. Since we chose �w� such
ties of the individual sequences. The probability of suc-that �M is independent of , the deterministic growth
cessful invasion of N sequences can be used as an indica-estimate is independent of . We observe that the deter-
tor for the population size at which the deterministicministic growth estimate lies consistently above the aver-
quasispecies equations capture the relevant dynamicsage �, but below the maximum �max. The neutrality
of a finite population. The fluctuations distinguishingestimate underestimates the smallest fixation probabili-
the stochastic process of a finite population from theties and overestimates the largest ones. Its average lies
deterministic description can be neglected if the inva-slightly below � for small mutation rates and above �
sion probability is close to one. In Figure 3, the fixationfor large mutation rates. A more detailed plot of the
probability on the same neutral network of RNA se-fixation probabilities at a fixed mutation rate of  �
quences that we have used before is displayed against0.5 is given in Figure 2. There, we display the fixation
the size of the invading population. The individual dataprobability vs. the neutrality (number of neutral neigh-
points are averaged over 1000 independent trials, wherebors) of the invading sequence. The spread in the fixa-

tion probabilities is remarkable. For sequences with a for each trial the N starting sequences were chosen at
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Figure 3.—Fixation probability � vs. size of the invadingFigure 2.—Fixation probability vs. neutrality � of the invad-
population N in a neutral network of 51,028 RNA sequences.ing sequence in a neutral network of 51,028 RNA sequences
The fixation probability is averaged over 1000 independenttaken from van Nimwegen et al. (1999). The dots stem from
sets of invading sequences, chosen at random. The error barsthe exact numerical solution, the dashed line corresponds
indicate the standard deviation. Lines are meant as a guideto the neutrality estimate, and the dotted line indicates the
to the eye.  � 0.2, L � 18, �G � 15.7, �w� � 1 � [1 � �G/deterministic growth estimate. The inset shows the distribu-
(3L)].tion of neutralities in the network.  � 0.5, � � 1.05, L �

18, �G � 15.7, �w� � 1 � [1 � �G/(3L)].

of the invading sequence. Although experimentally te-
dious, these fitnesses can be measured in principle. Forrandom. As before, �w� is chosen such that � is the
example, Elena and Lenski (1997) generated 225 mu-average number of offspring of the invading quasispe-
tant strains of the bacterium Escherichia coli (each mutantcies in the deterministic limit.
differed from the wild type by one, two, or three muta-Figure 3 shows that the population need not cover
tions) and measured the relative fitnesses of the mutantthe relevant sequence space to behave as predicted by
strains to the wild type. The mutant neighborhood ofthe deterministic equations. On a neutral network of
an RNA virus can conceivably be measured in a similar

�50,000 sequences, a population of �1000 behaves de-
manner.terministically at an advantage in growth rate of only

The predictive power of both the deterministic growth1%. It is important to note that this advantage has been
estimate and the neutrality estimate depends strongly

calculated under the assumption of an infinite popula-
on the distribution of neutral sequences in sequence

tion and that sufficiently small populations will grow
space. For example, both estimates become exact for

substantially slower (van Nimwegen et al. 1999). Appar- the case of a uniform neutral lattice, in which all se-
ently, here a population that covers only 2% of the quences have exactly the same neutrality. Furthermore,
neutral network is not sufficiently small to experience we expect the neutrality estimate to perform particularly
this reduction in growth rate. well in networks in which a sequence’s neutrality is

strongly correlated to the neutralities of its immediate
and more distant neutral neighbors. The deterministicDISCUSSION
growth estimate, on the other hand, will yield the best

The exact expression for the probability of fixation in results if the neutral network does not decompose into
the quasispecies context is easy to evaluate numerically areas that are substantially more densely or less densely
if the fitnesses of all relevant sequences are known. connected than other areas. However, to what extent
However, these data are normally not available for ex- these conditions are met in natural systems is question-
perimental systems, and approximations must be used. able. As we have seen in this article, the connection
What is most easily available experimentally is the rela- graph of a comparatively simple neutral network—
tive rate of growth of the two quasispecies at macro- consisting of RNA sequences that are only 18 bp long—is
scopic concentrations, which is the basis of the deter- already so heterogeneous that both estimates fail to give
ministic growth estimate. Since this estimate gives only an accurate prediction of the fixation probability for a
a single number, independently of the sequence actually substantial fraction of sequences on that network. It is
seeding the invading quasispecies, it does not reflect reasonable to assume that the distribution of high-fit-
local variations in the density of viable sequences around ness sequences in sequence space for an RNA virus that
the invading sequence. The neutrality estimate does not consists of several thousand bases is at least as heteroge-
suffer from this shortcoming. However, it requires the neous as the one in our toy RNA network, probably

more so.knowledge of the fitnesses of the immediate neighbors
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In this work, we have considered only the fate of a invading sequence has some influence on the exact
value of that probability, but does not affect whethersingle invading quasispecies. However, while an invad-

ing quasispecies is moving toward fixation or extinction, fixation is possible at all. Moreover, when the population
size reaches several hundred, with probability of almostanother mutant, one that belongs to a quasispecies of

even higher mean fitness, may appear. The fixation one the population will, for reasonable choices of the
parameters, behave as predicted by the deterministicprobability of the first invader will then be modulated

by the dynamics of the second one and vice versa, an equations. A similar result has been obtained by van
Nimwegen et al. (1999) for flow reactor simulations,effect commonly referred to as “clonal interference”

(Gerrish and Lenski 1998). Clonal interference has where, on the same neutral network of RNA sequences
that we have studied here, quasispecies effects startedbeen reported in experiments with vesicular stomatitis

virus (Miralles et al. 1999, 2000) and with the bacte- to become important when the product of population
size and mutation rate N exceeded the value 10 (seerium E. coli (de Visser et al. 1999). Currently, an accu-

rate mathematical description of clonal interference for Figure 3 of van Nimwegen et al. 1999).
Wilke (2001b) studied the probability of fixation forthe quasispecies case is not available.

The approach we have followed in this work cannot RNA sequences in a simulated flow reactor. The mea-
sured fixation probability was compared to an expres-be directly generalized to include clonal interference,

because the assumption of a constant background aver- sion equivalent to the deterministic growth estimate of
this work (since continuous time simulations were usedage fitness �w� is not justified in the context of two

(or more) competing branching processes. A second to generate the data, the exact expressions differ from
those given here). The analytic expression correctly pre-problem that we have to solve in a theory of quasispecies

clonal interference is the identification of advantageous dicted the parameter regions for which fixation was
possible. In particular, the mutation rate at which amutants. Throughout this article, we have used the

definition that an advantageous mutant is one that can slower replicator with better mutational support could
successfully invade a quasispecies consisting of sequencesgrow into a quasispecies with higher average fitness than

that of the currently established quasispecies. To use with higher individual fitnesses was determined accu-
rately. However, the exact fixation probabilities seemedthis definition in the context of clonal interference,

we need to have a priori knowledge about how to best to be slightly overestimated. (Within the statistical accu-
racy of the data, a definite decision on this issue couldsubdivide the sequence space into independent quasi-

species. Only with this knowledge can we decide whether not be made. While the data were in agreement with the
model according to a �2 test, they were not in agreementa particular new mutant is part of the parent quasispe-

cies or rather the founding member of a new quasispe- according to a nonparametric test based on how often
the data points fell above or below the predicted value.)cies. A possible way to study clonal interference in future

work will be to consider a particular fitness landscape— The probability of fixation of advantageous mutants
is obviously of tremendous importance for disease dy-for example, a set of intertwined neutral networks at

different fitness levels—for which the a priori separation namics and vaccines. For example, live vaccinces of at-
tenuated poliovirus can contain small amounts of viru-into distinct quasispecies is possible. For such a land-

scape, numerical studies of clonal interference will be lent poliovirus variants (Chumakov et al. 1991), the
reason being that attenuated and virulent virus variantsstraightforward, and an analytic description should be

possible as well. For landscapes that are a priori un- are often separated by only one or a few mutations.
In experiments, small amounts of highly virulent virusknown, even the numerical investigation of clonal inter-

ference will remain difficult until a workable method remain typically suppressed by the less virulent virus,
but once a threshold concentration of the highly viru-for the identification of advantageous mutants has been

found. lent virus variant is reached, infection occurs (de la
Torre and Holland 1990; Chumakov et al. 1991; TengRecently, Jenkins et al. (2001) and Holmes and Moya

(2002) expressed doubts regarding the relevancy of the et al. 1996). The apparent existence of such a threshold
may well be a result of insufficient resolution of thequasispecies model for virology (but see Domingo

2002). They argued that there is no unequivocal experi- experiments. Whether the highly virulent strain will
grow is determined by stochastic fluctuations, and, asmental evidence for the quasispecies nature of RNA

viruses and that the deterministic quasispecies equations we have seen in Figure 3, the probability of fixation
decays quickly with shrinking initial concentration ofare potentially not applicable to viral evolution on theo-

retical grounds, due to the immense size of the sequence the virulent strain. If such a strain in a vaccine has a
1% chance to cause infection, then �100 replicates ofspace. The results of this article show that the second

concern is not entirely justified. A single sequence has the appropriate assay are necessary to observe at least
one infection with certainty. Probabilities of this magni-a positive probability to rise to fixation if and only if

the average fitness of the quasispecies that will form tude or lower can easily be missed at low numbers of
replicates, so that the virulent strain appears to be safelyeventually exceeds the average fitness of the currently

established quasispecies. The individual fitness of the suppressed.
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is proportional to its fitness wi, the probability that a quences of type s is the probability that kr offspring are
of type r, �krr , times the probability that ks offspring arerandomly chosen sequence in the next generation is

offspring of sequence i is given by � � wi/(�w�N), where of type s, �kss , times the probability that the remaining
�w� is the average fitness in the population. Since there offspring either are of different types or have different

parent sequences, (1 � �r � �s)N�kr�ks, times the numberare N sequences in the population, the probability that k
of them are offspring of sequence i is binomial, P(k|i) � of possible ways in which kr and ks sequences can be

chosen out of the total of N sequences in the population.(N
k)� k(1 � �)N�k . Now consider a sequence of type r in

This latter number is a multinomial coefficient, N!/the offspring generation. For the probability that the
[kr!ks!(N � kr � ks)!]. Putting everything together, weparent of sequence r is a particular sequence i of the
findprevious generation, we find �r � Q ri� � wiQ ri/(�w�N),

because only a fraction Q ri of the total offspring of i will
P(kr, ks|i) �

N !
kr!ks!(N � kr � ks)!

� krr �kss (1 � �r � �s)N�kr�ks .be of type r. Following the previous argument, we find
for the probability that sequence i leaves kr offspring of (A1)
type r : P(kr|i) � (N

kr)� k
r(1 � �r)N�kr .

By repeating this argument for n different sequenceWe can extend the above argument to sequences of
types, and with the definition Mij :� N�j � wiQji/�w�, wetwo types, r and s. The probability that sequence i leaves
arrive at Equation 3.kr offspring sequences of type r and ks offspring se-


