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ABSTRACT
Molecular markers have been used to map quantitative trait loci. However, they are rarely used to

evaluate effects of chromosome segments of the entire genome. The original interval-mapping approach
and various modified versions of it may have limited use in evaluating the genetic effects of the entire
genome because they require evaluation of multiple models and model selection. Here we present a
Bayesian regression method to simultaneously estimate genetic effects associated with markers of the
entire genome. With the Bayesian method, we were able to handle situations in which the number of
effects is even larger than the number of observations. The key to the success is that we allow each marker
effect to have its own variance parameter, which in turn has its own prior distribution so that the variance
can be estimated from the data. Under this hierarchical model, we were able to handle a large number
of markers and most of the markers may have negligible effects. As a result, it is possible to evaluate the
distribution of the marker effects. Using data from the North American Barley Genome Mapping Project
in double-haploid barley, we found that the distribution of gene effects follows closely an L-shaped Gamma
distribution, which is in contrast to the bell-shaped Gamma distribution when the gene effects were
estimated from interval mapping. In addition, we show that the Bayesian method serves as an alternative
or even better QTL mapping method because it produces clearer signals for QTL. Similar results were
found from simulated data sets of F2 and backcross (BC) families.

THE genetic variation of a quantitative trait is con- significant loci are reported. As Goring et al. (2001 and
trolled by the segregation of multiple genes. In references therein) stated that the reported QTL are

classical quantitative genetics, the overall genetic vari- almost always biased upward, they are not of much use
ance is described by the infinitesimal model, which as- for evaluating the distribution of the gene effect across
sumes that the number of loci is infinitely large, each loci. Otto and Jones (2000) recently incorporated sta-
with an infinitely small effect. The genetic variances of tistical test information into the study of QTL distribu-
individual loci are so small that they cannot be investi- tion, using a truncated negative exponential distribu-
gated separately, but collectively via phenotypic resem- tion. Their method actually depends on results of
blance between relatives (Lynch and Walsh 1998). It interval mapping of QTL.
has been hypothesized that the genetic variance of most Interval mapping requires multiple tests under multi-
quantitative traits is actually controlled by a few loci ple models. The test statistic becomes a function of the
with large effects and a large number of loci with small genome location and forms a test statistic profile after
effects. Under this hypothesis, the distribution of the the entire genome has been searched. Permutation tests
gene effect across loci may be described by a negative (Churchill and Doerge 1994) or other means of mul-
exponential distribution (Otto and Jones 2000). The tiple test adjustment (Piepho 2001) are required to
effects of the major genes can be studied via segregation control the genome-wise type I error rate at a desired
analysis. The numerous genes with small effects, how- level. Upon completion of the genome search, the QTL
ever, still cannot be investigated individually. As a result, effects need to be compiled and the total variance ex-
evaluation of the hypothesis of negative exponential plained by the detected QTL needs to be calculated.
distribution of gene effect appears to be impossible. However, QTL effects are estimated from different mod-

With the advent of new molecular technology, satu- els. As a result, some inconsistency may often occur,
rated markers are being generated along the genome. such as the total variance explained by the QTL is too
Investigators are now able to investigate not only the high. In addition, multiple estimates of the residual
effects of the major genes but also their locations in variance are generated and choosing the proper one
the genome. This is called quantitative trait loci (QTL) for calculating the total phenotypic variance has become
mapping (Lander and Botstein 1989). However, QTL a problem. Models that include multiple QTL have been
mapping involves multiple tests for individual loci. Only developed (Sillanpaa and Arjas 1998; Kao et al. 1999).

With these models, the problems of multiple tests and
variance evaluation have been eliminated, but a new
problem has been introduced with regard to model1Author e-mail: xu@genetics.ucr.edu
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selection. A few issues need close attention in model coefficient bj is the effect of marker j associated with the
selection. The criteria of deleting and inserting a QTL trait. It will absorb partly the effects of all QTL located
may be arbitrary. The sampling space of possible models between markers j � 1 and j � 1, as shown by Zeng
(with different combinations of presence and absence (1993).
of each putative QTL) may be too large to be fully For an F2 population, a dominance effect is associated
explored. In addition, model selection will also cause to each marker locus. The linear model becomes
biased estimates of gene effects if a single model is
selected as the final model, although the biases can yi � b0 � �

p

j
xijbj � �

p

j
wijdj � ei , (2)

be reduced using the Bayesian method where several
models are considered (Satagopan et al. 1996). These where xij and wij are defined as xij � √2 and wij � �1
problems have not been fully resolved. Any problems for genotype A1A1, xij � 0 and wij � 1 for A1A2, and xij �
occurring in interval mapping will devaluate the signifi-

�√2 and wij � �1 for A2A2. Let G 11, G 12, and G 22 be the
cance of the work by Otto and Jones (2000). genotypic values for the three genotypes. The regression

In this study, we propose a method for simultaneously coefficients are defined as bj � G 11 � G 22 for the additive
evaluating marker effects of the entire genome. By effect and dj � 2G 12 � G 11 � G 22 for the dominance
marker effect, we mean the QTL effects associated with effect. Note that x and w coded this way are independent
markers. If the marker density is relatively high, most

and each has a zero expectation and a unity variance.
of the QTL effects will be picked up by the markers and

With a high marker density, most of the marker inter-
the results may be used to evaluate the distribution of

vals will contain no QTL. Therefore, most of the regres-
gene effect across the genome. Hereon, we use the

sion coefficient will have a theoretical value of zero. Inwords QTL effect and marker effect interchangeably.
addition, the dummy variables will be highly correlatedTwo problems are associated with simultaneous evalua-
across loci, leading to a high degree of multicolinearity.tion. One is how to handle the large number of markers
When the number of markers exceeds the number ofin a single model. The other is how to deal with the
individuals, the ordinary least-squares approach willmarkers with close-to-zero effects. We handle these
have no unique solution. Therefore, we must utilize aproblems by using a Bayesian method under the random
method that can handle the problem of multicolinear-regression coefficient model. In the Bayesian frame-
ity. We show that the Bayesian regression method is thework, each gene effect is assigned a normal prior with
ideal solution for this problem.mean zero and a unique variance. The effect-specific

Bayesian estimation: The Bayesian estimation is de-prior variance is further assigned a vague prior so that
scribed only in the context of DH populations because,the variance can be estimated from the data. This ap-
with a minor modification, the method can be appliedproach is analogous to the Bayesian method of Meuwis-
to F2 populations as well. Our Bayesian model differssen et al. (2001) for BLUP prediction of gene effects in
from the usual regression model in that each bj is as-outbred populations.
sumed to be sampled from a normal distribution with
mean zero and variance �2

j .
METHODS In the Bayesian framework, we treat everything as a

random variable, including the parameters. Each ran-Linear model: Let yi for i � 1, . . . , n be the phenotypic
dom variable has a distribution. We classify variablesvalue of the ith individual in a mapping population with
into observables and unobservables. The observablesonly two segregating genotypes, e.g., a backcross (BC)
include y � {yi} for i � 1, . . . , n and marker information.or a double-haploid (DH) population. The linear model
The unobservables include b � {bj } and v � {�2

j } for j �for yi is
0, . . . , p. The distribution of the observables is a function
of the unobservables and is called the likelihood func-yi � b 0 � �

p

j
xijbj � ei, (1)

tion. The distribution of the unobservables is called the
prior distribution. The purpose of Bayesian analysis iswhere b 0 is the population mean, p is the total number
to infer the conditional distribution of the parametersof markers in the entire genome, xij is a dummy variable
given the observed data, called the posterior distribu-indicating the genotype of the j th marker for individual
tion. Bayesian analysis implemented via the Markovi, bj is the QTL effect associated with marker j, and ei is
chain Monte Carlo (MCMC) does not need an explicitthe residual error with a N(0, �2

0) distribution. For a DH
form of the posterior distribution; rather, it draws apopulation, an individual can take only one of the two
sample of the unobservables from the joint posteriorgenotypes, A1A1 and A2A2, at any locus. The dummy
distribution. From the joint posterior sample, one canvariable is defined as xij � 1 for A1A1 and xij � �1 for
easily obtain the desired Bayesian estimates, such as theA2A2. Define the genetic effects associated with A1A1 and
posterior means and posterior variances.A2A2 by G 11 and G 22, respectively, and then the regression

In this study, we choose the following prior distribu-coefficient is bj � G 11 � G 22. This model is the multiple
regression model of Zeng (1993). The partial regression tions, p(b 0) � 1, p(�2

0) � 1/�2
0, p(bj) � N(0, �2

j ), and
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p(�2
j ) � 1/�2

j for j � 1, . . . , p. The joint prior of the which are used to sample bj. The newly sampled bj is
denoted by b (1)

j and will replace b (0)
j in all subsequentunobservables p(b, v) takes the product of the priors of

individual parameters. The likelihood is sampling processes.
Step 4. Update �2

0: The residual variance is sampled
p(y|b, v) � �

n

i�1

p(yi|b, �2
0) � (�2

0)�n/2 from a scaled inverted chi-square distribution; that
is, �2(1)

0 � (1/�2
n)�n

i�1 (yi � b (0)
0 � �p

j�1 xijb (0)
j )2, where

�2
n is a random number sampled from a chi-square

� exp �� 1
2�2

0
�
n

i�1

(yi � b 0 � �
p

j�1

xijbj)2� . (3)
distribution with n d.f. The variances are immediately
updated: �2(0)

0 � �2(1)
0 .

The joint posterior distribution has a form of Step 5. Update �2
j for j � 1, . . . , p: We sample �2

j from
a scaled inverted chi-square distribution; that is,p(b, v|y) � p(y|b, v)p(b, v). (4)
�2(1)

j � b2(0)
j /�2

1, where �2
1 is a random number sampled

Genotypes of missing markers were generated ran- from a chi-square distribution with 1 d.f.
domly in each iteration on the basis of the probability Step 6. Update missing marker genotypes.
inferred jointly from the nearest nonmissing flanking Step 7. Repeat 2–6: At this moment, we have completed
markers and the phenotype. The probability from the one sweep of the MCMC and are ready to continue
markers is treated as the prior probability. After incorpo- our sampling for the next round. When the chain
ration of the marker (QTL) effects through the pheno-

converges to the stationary distribution, the sampled
type, the probability becomes the posterior probability,

parameters actually follow the joint posterior distribu-
which is used to generate the missing marker genotype.

tion. When the sample of a single parameter is viewed,In HD, BC, and F2 populations, a codominant marker
this univariate sample is actually the marginal poste-is either fully informative or noninformative. Therefore,
rior sample for this parameter.using the nearest nonmissing markers is equivalent to

using the multipoint method. For dominant markers,
a marker in an F2 population can be partially informative RESULTS
and the multipoint method (Jiang and Zeng 1997)

DH mapping in barley: Data from the North Americanshould be used.
Barley Genome Mapping Project (Tinker et al. 1996)In the MCMC-implemented Bayesian analysis, we sam-
were used for analysis. Seven traits were investigated inple the unobservables from the above joint posterior
the project: yield, heading, maturity, height, lodging,distribution. The sampling is performed in the following
kernel weight, and test weight. The DH population con-sequences.
tained 145 lines (n � 145); each was grown in a range

Step 1. Initialization: We first initialize all unobserv- of environments. A total of 127 mapped markers (p �
ables, denoted by 127) covering �1500 cM of the genome along seven

linkage groups were used in the analysis. All seven traits
Q(0) � [b (0)

0 , . . . , b (0)
p , �2(0)

0 , . . . , �2(0)
p ]. were reanalyzed in this study, but only the result of

kernel weight was represented here. Note that the dataThe location parameters b are initialized with zero
sets were updated after they were first published in 1996,value and the scale parameters v are initialized with
but the difference between the updated and the originala positive number. The unobservables also include
data was minor so that the results are still comparablemissing marker genotypes, which are initialized by
between the current analysis and the analysis by therandom sampling on the basis of the posterior proba-
original authors.bility, conditional on the initial values of the model

The average phenotypic value across the environ-effects and variances.
ments was calculated for each line and these averageStep 2. Updating b0: The conditional posterior distribu-
values were treated as the original phenotypic recordstion of b0 is Normal with mean b0 � (1/n) �n

i�1 (yi �
(yi) for analysis. Although results of interval mapping�p

j�1xijb(0)
j ) and variance s2

0 � (1/n) �2(0)
0 , from which a

showed significant QTL-by-environmental interaction,new b0 is sampled. The sampled b0 is denoted by b(1)
0 ,

most QTL showed effects in the same direction acrosswhich will replace b(0)
0 in all subsequent sampling pro-

environments. Therefore, we report only the analysis ofcesses.
average values across environments. In the QTL map-Step 3. Update bj : The conditional posterior distribu-
ping program, the phenotypic values were further stan-tion for bj is Normal with mean
dardized using yi � (yi � y)/sy, where y is the mean and

bj � ��
n

i�1

x 2
ij � �2(0)

0 /�2(0)
j ��1�

n

i�1

xij �yi � b (0)
0 � �

p

k�j
xikb

(0)
k � sy is the standard deviation of y. The standardized record

was subject to Bayesian analysis. With the standardiza-
(5) tion, users can always choose the default initial values

and variance provided by the program.
The default initial values were set at bj � 0 and �2

j �s 2
j � ��

n

i�1

x 2
ij � �2(0)

0 /�2(0)
j ��1�2(0)

0 , (6)
0.5 for j � 0, . . . , p. The length of the Markov chain
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Figure 1.—Marker effects of kernel weight in
barley plotted against marker locations along the
genome. (a) Multiple-marker Bayesian analysis;
(b) individual-marker regression analysis. The
dotted vertical reference lines separate the seven
linkage groups.

contained 51,000 sweeps. The sampled parameter values first marker of the second chromosome occupies the
same position (212 cM) as the last marker of the firstfrom the first 1000 sweeps of the chain (burn-in period)

were discarded from the analysis. From there on, the chromosome. Figure 1a (multiple-marker Bayesian)
clearly shows four candidate regions with evidence ofobservations were saved for every 50 sweeps to reduce

the series correlation. Therefore, the posterior sample QTL and these regions coincide with the peaks shown
in Figure 1b (individual marker regression). The twocontains 1000 observations for post-Bayesian analysis.

The posterior means of the marker effects (as the Bayes- regions with larger effects have been declared by Tinker
et al. (1996) as significant. One striking result found inian estimates) are reported.

For comparison, we also performed the single-marker the multiple-marker Bayesian analysis is that the mark-
ers with large effects in the single-marker analysis main-analyses with the simple regression method for each

marker. Since the marker density is quite high, results tain their large effects in the Bayesian analysis while
the markers with small effects in regression have beenof single-marker analyses should be close to those of

interval mapping. Figure 1 shows the plot of the marker shrunk in the Bayesian analysis. The signals of QTL are
so much clearer in the Bayesian analysis than in theeffects against the genome location (cM) of the markers

for kernel weight. Note that the seven linkage groups regression analysis. We also analyzed the remaining six
traits and they all show similar patterns; i.e., the majorhave been ligated into a single genome. The genome

location of each marker takes the cumulative position peaks in Bayesian analysis coincide with those of the
single-marker analysis and the interval mapping re-measured from the left to the right. For example, the
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Figure 2.—Frequency distributions of marker
effects of kernel weight in barley. (a) Multiple-
marker Bayesian analysis; (b) individual-marker
regression analysis.

ported by Tinker et al. (1996; data not shown). There- the Gamma distribution with � � 0.1145 and 	 �
1.1396. The shapes of the two distributions are quitefore, the proposed Bayesian analysis including all mark-

ers in the genome can serve as an alternative (and even different. The multiple-marker analysis generated an
L-shaped distribution because 	 
 1 and the individual-better) QTL-mapping method to the interval-mapping

method. marker analysis generated a bell-shaped distribution be-
cause 	 � 1. The distributions of QTL effects estimatedThe second striking feature of the Bayesian analysis

is that most of the markers have an estimated effect close for the remaining six traits follow the same trends (see
Table 1). Therefore, the Bayesian analysis is a viableto zero, which follows the prediction of the oligogenic

model. The single-marker regression analysis, however, tool for evaluating the polygenic effects of the entire
genome.produces spurious effects for many markers. Although

it provides a good tool for QTL detection, it is simply The proportion of phenotypic variance explained by
the markers is expressed as ĥ2 � 1 � �̂2

0 where �̂2
0 is thenot useful for evaluation of the genetic effects of the

genome. Figure 2 shows the distribution of the absolute Bayesian estimate of the residual variance. This formula
is a special form of ĥ2 � (�̂2

y � �̂2
0)/�̂2

y , where �̂2
y � 1 isvalue of estimated gene effect along the genome for

kernel weight. The estimates of multiple-marker analysis the phenotypic variance (after the standardization).
With the single-marker analysis, we cannot find a properfit the Gamma distribution with the scale and shape

parameters of � � 0.0579 and 	 � 0.2233, respectively, �̂2
0 to use because each marker has its own �̂2

0. If we took
ĥ 2 � �p

j�1ĥ 2
j � �p

j�1(1 � �̂2
0j), where �̂2

0j is the residualwhile the estimates of the individual marker analysis fit
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TABLE 1 peaks with small effects, however, failed to be detected
with the interval mapping. We performed several addi-Parameters of Gamma distributions of QTL effects in barley
tional analyses to verify whether these subpeaks are true
or due to stochastic error in MCMC. We found thatMultiple-marker Individual-

analysisa marker analysis these subpeaks occurred most of the times but failed
to show up in a few replications (data not shown). There-Trait � 	 � 	
fore, the QTL evidence of the two subpeaks is not strong.

Kernel weight 0.0579 0.2233 0.1145 1.1396 However, in Bayesian analysis, we do not claim insignifi-
Yield 0.0100 0.4194 0.0862 1.3148 cance of QTL. Instead, we report small posterior esti-
Heading 0.0285 0.3132 0.0955 1.6229 mates for the two peaks. The two major QTL identified
Height 0.0181 0.3154 0.0862 1.3109 remained in the model for all replicates.Maturity 0.0323 0.2928 0.0985 1.3743

To explore the behavior of the QTL-effect profileTest weight 0.0184 0.3097 0.0854 1.3403
under the null model, we reshuffled the phenotypicLodging 0.0165 0.3034 0.1059 1.0591
data so that the association between the markers and

a Note that � is the scale parameter and 	 is the shape the phenotype would be artificially destroyed. We thenparameter. When 	 
 1 the curve is L-shaped, when 	 � 1
performed Bayesian analysis on the reshuffled data. Thisthe curve is exponential, and when 	 � 1 the curve is bell
is equivalent to the permutation analysis of Churchillshaped.
and Doerge (1994). Among analyses of 10 reshuffled
data sets, most of them showed a very flat profile (close

variance when the j th marker is fitted, we would soon to zero estimates for all markers). The 10 profiles were
end up with ĥ 2 � 1, which contradicts with the defini- drawn in the same graph (Figure 3), which shows very
tion of h 2. Therefore, we report only ĥ 2 from the Bayes- little variation of the estimated marker effects among
ian analysis (Table 2). During the sampling process, the reshuffled data. We now feel more confident that
sometimes the residual variance can be �1, which ex- the major peaks identified are not likely due to spurious
plains the �5% values of the posterior distribution of effects.
h2. Kernel weight has the highest polygenic variance F2 mapping with simulated data: To demonstrate that
(0.6484), followed by maturity (0.4549) and heading the proposed Bayesian method can handle data with
(0.4042). The remaining traits show lower polygenic the number of effects larger than the number of individ-
variances (explained by markers). Overall, the poly- uals, we simulated 301 markers in an F2 population
genic variances explained by markers were smaller than with 300 individuals. Each marker is associated with an
those reported by Tinker et al. (1996) with the tradi- additive and a dominance effect, and thus the model
tional (nonmarker) analysis. Test weight has a high h2

includes 602 effects. For convenience of programming,
in the traditional analysis (h2 � 0.61) but a low h2 ex- we arranged the 301 markers in a single large chromo-
plained by markers (h2 � 0.1665). It is possible that some with 5 cM between consecutive markers. The total
some of the major genes may be located in the regions length of the hypothetical chromosome is 1500 cM. We
with large gaps of markers. For example, the largest simulated four QTL with their locations and sizes listed
gap (�70 cM long) occurs between markers aHor2 and in Table 3. The true population mean and residual
NWG943 on chromosome 5. A gap with this size will variance are b 0 � 5.0 and �2

0 � 10, respectively. The
certainly fail to pick up any QTL in between. genetic variance due to each QTL is determined by �g �

The two major peaks identified with the Bayesian a2 � d 2, where a and d are the additive and dominance
analysis (Figure 1) for kernel weight coincide with the effects, respectively. The total genetic variance for the
two QTL identified with the interval mapping. The two four QTL is �18.0 (excluding the negligible covariance

due to linkage). Therefore, the proportion of the total
phenotypic variance explained by the four QTL is H �TABLE 2
18.0/(18.0 � 10.0) � 64.26%.Proportion of phenotypic variance explained by markers

First, we made a simplification for the distribution of
bj. We assumed that bj � N(0, 1/) for j � 1, . . . , p,Standard
where  is a constant positive number. This leads toTrait Mean deviation 5%a 95%a

the usual Bayesian regression analysis with a common
Kernel weight 0.6484 0.0735 0.5189 0.7550 variance for all bj. It is also analogous to the ridge regres-
Yield 0.1343 0.1739 �0.1895 0.3956

sion (Hoerl and Kennard 1970). When  is chosen asHeading 0.4042 0.1103 0.2038 0.5726
a very small positive number, there is no unique solutionHeight 0.2131 0.1747 �0.0750 0.5049
for the model with this many effects. We then graduallyMaturity 0.4549 0.1040 0.2614 0.6047

Test weight 0.1665 0.1910 �0.1679 0.4374 increased  until a unique solution is possible for the
Lodging 0.2318 0.1268 0.0109 0.4210 regression coefficients. We examined the estimated re-

gression coefficient and plotted them against the chro-a The percentiles 5% and 95% stand for the 5th and 95th
mosome location (Figure 4, a and b). Note that thepercentile values of the posterior distribution (90% credibility

interval). ridge estimates of the effects vary widely around zero
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Figure 3.—Multiple-marker Bayesian analysis
(null model). Marker effects plotted against
marker locations along the genome of kernel
weight in barley from 10 reshuffled data sets (per-
mutation analysis).

with no clear signals at the QTL positions. Further in- ers is ĥ 2 � 17.08/(17.08 � 9.75) � 0.6365, almost hitting
crease of  has reduced the variation of the estimates, the true value of 0.6426.
but still there are no signals of QTL along the genome. BC mapping with simulated data: We also simulated
Instead of choosing  subjectively, we attempted to let data from a BC family to examine the behavior of the
the data speak for themselves, where we treated  as a method in some interesting situations. First, we simu-
random variable sampled from its conditional posterior lated four QTL with exactly the same setup as the F2

distribution,  � �2
p/�p

j�1b2
j , where �2

p is a sampled chi- simulation except that the first and last QTL have nega-
square variable with p degrees of freedom. The result tive effects (QTL with effects in different directions).
is almost identical to the situation of constant  (data We set the genetic effects to 2.828, �1.414, 2.000, and
not shown). When we adopted the Bayesian approach �2.000 for the four QTL, respectively. This made the
developed in this study using bj specific variances, the variance of each QTL identical to the variance listed in
results are strikingly different (Figure 4, c and d). The Table 3 for the F2 design. For example, the first QTL
signals of QTL become extremely clear at the true posi- variance is 8 � 2.8282 and the second is 2 � (� 1.414)2,
tions. The estimated effects of the identified QTL are etc. The estimated marker effects plotted against the
very close to those of the true position simulated (Table genome location are shown in Figure 5. The method
4). The QTL located at position 250 cM is weak (ex- works equally well as the situation where QTL act in
plaining �7% of the phenotypic variance, 3.5% by addi- the same direction.
tive effect and 3.5% by dominance). The estimated addi- We then simulated 11 QTL evenly placed in the single
tive effect is half the size of the true value. The large chromosome of 1500 cM. The QTL are numbered
dominance effect is also reduced by half, but the other from 1 to 11 with variances in descending order: 20,
half is picked up by the next marker 5 cM away from 10, 5, 2.5, 1.25, 0.625, 0.3125, 0.3125, 0.3125, 0.3125,
the true position. This is expected because a small QTL and 0.3125. The total variance of the 11 QTL is �40
should be hard to estimate. The estimated residual vari- (ignoring the covariance due to linkage). The pheno-
ance is 9.75, close to the true value of 10. The estimated typic variance is 40 � 10 � 50. Therefore, the first QTL
proportion of variance explained by the five listed mark- explains 40% of the phenotypic variance and the second

QTL explains 20% of the phenotypic variance and so
on. The actual effects of the 11 QTL simply take the

TABLE 3
square root of the corresponding variances. The result

Locations and sizes of the four QTL used in the simulation of Bayesian analysis is depicted in Figure 6. The signals
of the large QTL are quite clear until the variance is

Position Additive Dominance Variance reduced to 0.625, under which the method failed to
QTL (cM) (a) (d) (�g) give any meaningful estimates. The smallest QTL that
1 0 2.0 2.0 8.0 the method can pick up in this example explains 1.25%
2 250 1.0 1.0 2.0 of the phenotypic variance.
3 500 2.0 0.0 4.0 Finally, we simulated four QTL with effects equal to
4 750 0.0 2.0 4.0 2.828, 1.414, 2.000, and 2.000, respectively. QTL nos.� 18.0

1, 2, and 4 are located at positions 0, 250, and 750 cM,
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Figure 4.—Marker effects
estimated from ridge regres-
sion and Bayesian analysis plot-
ted against marker locations
along a simulated large chro-
mosome of 1500 cM. (a and b)
The additive effect and domi-
nance effects from ridge re-
gression; (c and d) the additive
and dominance effects from
Bayesian analysis. The vertical
reference lines indicate the po-
sitions of the markers with non-
zero simulated QTL effects.

DISCUSSIONrespectively, whereas the position of QTL no. 3 varies
from 255 to 290 cM with a 5-cM increment. From this Whittaker et al. (2000) first applied ridge regression
simulation experiment we can examine the ability of to marker-assisted selection and showed that ridge re-
the method to separate closely linked QTL (nos. 2 and gression can substantially improve the selection effi-
3). Figure 7 shows the plots of the marker effects on ciency. In their analysis, markers included in the model
the genome location when the two linked QTL (nos. 2 were selected on the basis of QTL mapping results and
and 3) are (a) 5 cM, (b) 10 cM, (c) 15 cM, (d) 20 cM, the number of markers was much smaller than the num-
(e) 25 cM, (f) 30 cM, (g) 35 cM, and (h) 40 cM apart. ber of individuals. We demonstrated that ridge regres-
We can see that the method separates the two closely sion is not a viable choice for QTL mapping if the model
linked QTL very well when the distance between the includes markers of the entire genome. The reason is
two QTL is �5 cM. When the distance is 5 cM the two that ridge regression treats all effects equally across loci.
markers are adjacent with no intermediate markers to Our prior knowledge is that most markers have negligi-

ble effects. We need a method to discriminate the effectsseparate, and thus they are inseparable.

TABLE 4

Estimated QTL parameters from the simulated data

QTL Position (cM) a aL aU d dL dU

1 0 1.8460 1.4901 2.1711 2.0976 1.7767 2.4373
2a 250 0.4954 0.0000 1.0128 0.5384 0.0000 1.2317
2b 255 0 0 0 0.3986 0 1.1795
3 500 2.0020 1.6694 2.2914 0 0 0
4 750 0 0 0 2.0956 1.7322 2.4854

Note that a and d stand for the additive and dominance effects, respectively; aL and aU stand for the 5th
and 95th percentiles of the posterior sample for the additive effect; dL and dU are defined similarly for the
dominance effect.
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Figure 5.—Bayesian estimates of marker effects
in the simulated BC family when the QTL have
effects in different directions. The open dia-
monds (�) indicate the true positions of the four
simulated QTL.

across markers. The inverse of the variance actually Gamma distribution from multiple-marker analysis (L-
shaped) is quite different from that of the individualserves as a coefficient of penalty. If a marker has a

noticeable effect, it should not be penalized as severely marker analysis (bell-shaped). An L-shaped Gamma dis-
tribution is probably closer to reality. Hayes and God-as a marker with a negligible effect and thus should be

given a large variance. An extremely small variance will dard (2001) collected data from many QTL mapping
experiments in pigs and dairy cattle and investigatedcause a close to zero estimate of bj. In fact, most of the

markers will be given an extremely small �2
j and thus the distribution of the QTL effects. They found that the

distribution of QTL effects is more toward L-shapedtheir effects will be negligibly small. Updating the vari-
ance �2

j for the jth marker is important because it de- distribution, especially in the cattle, although the distri-
bution in pigs is slightly bell-shaped. Mackay’s (1996)pends on the sampled bj from the previous round; i.e.,

�2
j � b 2

j /�2
1. If bj → 0, then �2

j → 0 in general. However, experiments in Drosophila showed that many loci have
small effects on abdominal and sternopleural bristledividing b 2

j by a chi-square variable allows �2
j to have a

chance to recover because �2
1 can be very small by number, but few loci cause most of the genetic variation.

Edwards et al. (1987) investigated the associations ofchance.
As demonstrated in Figure 2, the marker effects fit a markers with 82 traits in corn and discovered the

L-shaped distribution of QTL effects. In addition to theGamma distribution nicely. However, the shape of the

Figure 6.—Bayesian estimates of marker effects
in the simulated BC family with 11 QTL of various
sizes. The open diamonds (�) indicate the true
positions of the simulated QTL.
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Figure 7.—Bayesian estimates of marker effects
in the simulated BC family with four QTL, two of
which (QTL nos. 2 and 3) are tightly linked from
5 cM (a) to 40 cM (h) with a 5-cM increment. The
open diamonds (�) indicate the true positions of
the simulated QTL.

empirical evidence of L-shaped distribution, Bost et al. (2001) took into account the estimation errors by assum-
ing normal distributions for the estimated QTL effects.(1999, 2001) proved that the L-shaped distribution can

be generated by the intrinsic property of metabolic path- However, numerical integration was required to fit the
Gamma model, and, therefore, for simplicity we did notways due to the summation property of control coeffi-

cients of the enzymes on the variation of the fluxes. consider the estimation errors when fitting the Gamma
model. In fact, it is possible to choose a Gamma priorBoth Mackay (2001) and Bost et al. (2001) accepted

the fact that some experimental and statistical artifacts for each marker effect and directly estimate the scale
and shape parameters in the Bayesian analysis. Themay cause the L-shaped distribution.

One caveat in fitting the Gamma distribution of problem is that Gamma is not a conjugate prior in QTL
mapping and we would not be able to take advantagemarker effect needs to be clarified. We normally fit a

model by using observations (true gene effects in this of the Gibbs sampling (Geman and Geman 1984) and
would be forced to use the Metropolis-Hastings algo-case), but here we used estimated gene effects to fit a

model and completely ignored the estimation errors of rithm (Metropolis et al. 1953; Hastings 1970), which
is less efficient than the Gibbs sampling. Although itthe gene effects. When fitting the Gamma distribution

using estimated gene effects, Hayes and Goddard will be interesting to compare the results of fitting Nor-
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Figure 7.—Continued.

mal and Gamma priors for the gene effects, we decided level; (ii) in their study, each locus had �50 different
alleles and these alleles had a common variance whereasto leave this as an option for future studies.

The original idea of our work was stimulated by the in our QTL mapping study, each locus has only two
alleles and the allelic difference has a unique variance;work of Meuwissen et al. (2001), who proposed the

Bayesian method to simultaneously evaluate effects of and (iii) they analyzed simulated data whereas we ana-
lyzed both the simulated data and the data collecteda large number of markers in a genome. They took a

mixed-model approach by treating each QTL allele as from the fields. Note that the QTL alleles in their study
were actually defined as marker haplotypes, the combi-a random effect sampled from a normal distribution.

Amazingly, they were able to estimate effects of 1000 nations of alleles of several consecutive markers. In line-
crossing experiments, as investigated in this study, wemarkers involving 50,000 allelic effects with only 2200

phenotypic records. The authors investigated this prob- can deal directly with marker alleles instead of consecu-
tive marker haplotypes. Therefore, the work in this studylem also from the marker-assisted selection point of

view under the framework of association study at the is more related to QTL mapping than to association
study.population level. Their work is different from ours in

that (i) theirs was an association study at the population Traditional methods of QTL mapping include single-
marker analysis and interval mapping. In single-markerlevel whereas ours is a linkage-mapping study at a family
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analysis, one marker is analyzed at a time and the model handle closed markers depends on the sample size and
the type of population. Large sample sizes will alloweffect is the effect of the marker in question. Interval
separation of more closed markers. Populations car-mapping allows the effect of an arbitrary position be-
rying historical recombination events, e.g., recombinanttween two flanking markers to be estimated. When the
inbred lines, can also handle more closed markers.marker density is sufficiently high, the single-marker

The next step of the multiple-marker analysis is toanalysis reaches its asymptotic limit—the interval map-
estimate epistatic effects between pairwise markers.ping. Recently, a multiple-interval mapping was pro-
With the epistatic model, the number of effects in-posed in which a single linear model may contain all
creases rapidly as the number of markers increases. Itpossible QTL (Kao et al. 1999). Since there has been
is not clear at this moment whether a model with manyno convenient way to handle too many intervals simulta-
hundred times more effects than the number of observa-neously, intervals must be selectively included in the
tions still works with the proposed method. We are con-model, generating a model selection problem. Let us
fident that additive and dominance effects can be han-call the multiple-interval mapping with model selection
dled easily for data generated in most QTL-mappingthe selective multiple-interval mapping. The true multi-
projects.ple-interval mapping should include all intervals de-

fined by markers. The multiple-marker analysis pro- Dr. Chenwu Xu (postdoctorate) helped download the data from
the internet and helped perform some preliminary data manipulationposed in this study will reach its asymptotic limit—the
to meet the required format of the C�� program. Ms Hui Wangtrue multiple-interval mapping (including all intervals)
(Ph.D. student) performed part of the simulation experiments. Both

when the marker density is sufficiently high. If the are greatly appreciated for their contributions to the project. This
marker density is low, interval mapping and multiple- work was supported by the National Institutes of Health (grant R01-

GM55321) and the U.S. Department of Agriculture National Researchinterval mapping may offer some advantage over marker
Initiative Competitive Grants Program (00-35300-9245).analysis if a QTL is located in the middle of a large

interval because they can point to one side rather than
to two sides of the marker. If a QTL is located right at
a marker, interval mapping offers no advantage over LITERATURE CITED
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