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ABSTRACT

Using the set of Saccharomyces cerevisiae mutants individually deleted for 5718 yeast genes, we screened
for altered sensitivity to the antifungal protein, K1 killer toxin, that binds to a cell wall B-glucan receptor
and subsequently forms lethal pores in the plasma membrane. Mutations in 268 genes, including 42 in
genes of unknown function, had a phenotype, often mild, with 186 showing resistance and 82 hypersensitiv-
ity compared to wild type. Only 15 of these genes were previously known to cause a toxin phenotype when
mutated. Mutants for 144 genes were analyzed for alkali-soluble B-glucan levels; 63 showed alterations.
Further, mutants for 118 genes with altered toxin sensitivity were screened for SDS, hygromycin B, and
calcofluor white sensitivity as indicators of cell surface defects; 88 showed some additional defect. There
is a markedly nonrandom functional distribution of the mutants. Many genes affect specific areas of
cellular activity, including cell wall glucan and mannoprotein synthesis, secretory pathway trafficking, lipid
and sterol biosynthesis, and cell surface signal transduction, and offer new insights into these processes

and their integration.

HE sequenced and analyzed Saccharomyces cerevisiae

genome has enabled a program of precise targeted
gene disruption, resulting in a collection of mutant strains
deficient in each gene (WINZELER ef al. 1999; GIAVER
et al. 2002; see also: http:/sequence-www.stanford.edu/
group/yeast/yeast_deletion_project/deletions3.html).
Such a collection promotes the discovery of cellular
roles for genes by facilitating the characterization of
mutant phenotypes and allows a comprehensive exami-
nation of the genetic complexity of a phenotype. We
have used the S. cerevisiae gene disruption set to screen
for K1 killer toxin phenotypes. Toxin resistance has
been extensively studied by classical genetics, and many
genes have been identified. This toxin is encoded on
the M1 satellite virion of the L. dsRNA virus of S. cerevisiae
(WICKNER 1996). Toxin sensitivity results from binding
of the protein to the cell surface and its subsequent
action at the plasma membrane promoting a lethal loss
of cellular ions (reviewed in Bussey 1991; BREINIG e/
al. 2002). Defects in the genes involved in these pro-
cesses may change cellular sensitivity to this toxin, and
known resistant mutants define genes whose products

! Present address: Institute of Biochemistry, Swiss Federal Institute of
Technology, Zurich CH-8093, Switzerland.

Present address: Department of Bioapplied Chemistry, Osaka City
University, 3-3-138 Sugimoto, Sumiyoshi-ku Osaka, 558-8585, Japan.

*Corresponding author: Department of Biology, McGill University,
1205 Ave. Docteur Penfield, Montreal, Quebec H3A 1B1, Canada.
E-mail: howard.bussey@mcgill.ca

Genetics 163: 875-894 (March 2003)

are involved in cell wall synthesis and regulation (SHAHI-
NIAN and Bussey 2000). Here we describe the results
of global screens of haploids and homozygous and het-
erozygous diploid mutants for altered KI toxin sensi-
tivity.

MATERIALS AND METHODS

Strains and media: Wild-type strains were BY4742 (MATw)
and BY4743 (MATa/MATo; BRACHMANN et al. 1998), except
where noted in Figure 1B, which also presents some results
from strain SEY6210 (ROBINSON et al. 1988). Deletant strains
were from the Saccharomyces Genome Deletion Consortium
(GIAVER et al. 2002) and are available at Research Genetics
(http: /www.resgen.com/products/YEASTD.php3; see Table
1 for complete genotype descriptions). Haploid bigl and pkcl
mutants were obtained by dissection of the heterozygous dip-
loid strains on media supplemented with 0.6 M and 1.0 m
sorbitol, respectively. To improve spore viability of pkcI tetrads,
1.0 M sorbitol was added during the zymolyase treatment of
asci. Yeast were grown in standard YPD medium (SHERMAN
1991), unless otherwise stated. YPD/G418 medium, used to
pregrow the mutants for 18 hr on 2% agar plates, is made of
YPD supplemented with 200 mg/liter geneticin (GIBCO-BRL,
Grand Island, NY). To test for drug sensitivity, YPD plates
contained 25 or 50 pg/ml of calcofluor white, 30 or 80 pug/
ml of hygromycin B, or 0.05% SDS.

K1 killer toxin assay: K1 toxin sensitivity was measured as
follows (for details see BROWN et al. 1994). Yeast mutant strains
(haploid MATa as well as the homozygous and heterozygous
diploids) were pregrown for 18 hr at 30° on YPD/G418 in
parallel with corresponding wild types pregrown on YPD. To
control for variation in toxin activity between experiments,
three wild-type controls were incorporated into every batch
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TABLE 1

Yeast strains

Strain Genotype Source

BY4742 MATo his3A1 leu2A0 lys2A0 ura3A0 BRACHMANN et al. (1998)

BY4743 MATa/MATa his3A1/his3A 1 leu2A0/leu2A0 BRACHMANN ¢t al. (1998)
LYS2/lys2A0 MET15/met15A0 ura3A0/ura3A0

Haploid” As BY4742, orfA::kanMX4 WINZELER et al. (1999)

Heterozygous” As BY4743, orfA::kanMX4/ORF WINZELER et al. (1999)

Homozygous" As BY4743, orfA::kanMX4/orfA::kanMX4 WINZELER et al. (1999)

SEY6210 MATw leu2-3,112 wra3-52 his3-A200 ROBINSON et al. (1988)
trp1-A 901 lys2-801 suc2-A9

HABS8S0 As SEY6210 except mnn9::kanMX2 SHAHINIAN el al. (1998)

HAB900* As SEY6210 except fksl::GFP-HIS3 KETELA ef al. (1999)

“Indicates mutants obtained from the Saccharomyces Genome Deletion Consortium.

" Haploid derived from TK103 strain.

of mutants tested (100-600 mutants/batch). Approximately
1 X 10° cells were resuspended in 100 pl of sterile water, of
which 5 pl was used to inoculate 5 ml of molten YPD agar
medium (1% agar, 0.001% methylene blue, and 1 X Halvorson
buffered at pH 4.7) held at 45°. Sorbitol was supplemented
for bigl and pkcl mutants, and for a wild-type control, as
described above. This medium was quickly poured into 60- X
15-mm petri dishes and allowed to cool for 1 hr at room
temperature. Then 5 pl K1 Kkiller toxin (1000X stock diluted
1:10; BROWN et al. 1994) was spotted on the surface of the
solidified medium. The plates were incubated overnight at
18° followed by 24 hr at 30° (48 hr for slow growth mutants).
For each mutant showing a “killing” or “death” zone different
from wild type, a picture comparing the mutant and appro-
priate control was taken with the IS-500 Digital Imaging Sys-
tem, version 2.02 (Alpha-Innotech). Two measurements of
the killing zone were made with PhotoShop 4.0 and the aver-
age was saved in a database (FileMaker Pro 5.0) together with
the picture. Mutants with a killing zone <90% or >110% were
retested up to four times to confirm the observed phenotype.
These percentages were determined as [ (mutant killing zone
diameter) / (wild-type killing zone diameter) X 100]. A subset
of mutants showing killing zones <75% or >115% was selected
for further characterization.

Kl toxin survival assay: To determine cell survival after
toxin treatment, 200 pl of a cell culture grown to log phase
in YPD pH 4.7 and adjusted to ODyg, 0.5 was incubated with
50 pl toxin (1000X stock diluted up to 1:25) for 3 hr at 18°
on a labquake. Percentage of surviving cells was calculated
following plating onto YPD agar after incubation with toxin
and counting colonies after 2 days at 30°.

Drug phenotype assay: Drug sensitivity was determined by
spotting diluted cultures on plates containing various drugs
as described (RaMm et al. 1994; LUSSIER et al. 1997). Briefly, 5
ml of liquid YPD medium, inoculated with freshly grown cells
on YPD /G418, was incubated overnight at 30°. The cell density
of these exponentially growing cultures was standardized with
water at an ODg, of between 0.485 and 0.515, and 2 pl of a
set of 10-fold serial dilutions were spotted on YPD supple-
mented with calcofluor white, hygromycin B, or SDS (see
Strains and media for drug concentrations). Hypersensitivity
or resistance was monitored for each drug after 48 and 72 hr
growth at 30°. The cells were also spotted on a control plate
(YPD without drug), which allowed a comparison with the
growth rate of the mutants after 24 hr growth at 30°. Pictures
of all conditions tested were downloaded into a FileMaker 5.0
database (see above for details).

Cell wall composition analysis: Total 3-glucan analysis: Hap-
loid strains used for alkali-insoluble B-glucan determinations
were MATa slalA and bigIA, respectively, obtained or derived
from the Saccharomyces Genome Deletion Consortium (see
Strains and media above) and compared to wild-type strain
BY4742, while mnn9A (HAB880) and fksIA (HAB900) were
compared to parental strain SEY6210. Crude cell walls were
isolated and the levels of alkali-insoluble (-1,3-glucan and
B-1,6-glucan quantified as previously described (DIJKGRAAF et
al. 2002). The bigIA mutant and the corresponding wild type
were grown in medium containing 0.6 M sorbitol to provide
osmotic support.

Alkali-soluble 3-1,6- and B-1,3-glucan analysis: Alkali-soluble
B-1,6- and B-1,3-glucan immunodetection was performed as
described by LUSSIER et al. (1998) and summarized here. Yeast
were pregrown on YPD/G418 for 18 hr at 30°, grown for
24 hr at 30° in 10 ml YPD liquid, and harvested by a 10-min
centrifugation at 1860 X g. Cell pellets were washed with 5 ml
of water and resuspended in 100 pl of water plus 100 wl of
glass beads. The cells were then subjected to five cycles of
vortexing for 30 sec, interspersed with 30-sec incubations on
ice. Total cellular protein of the lysate was determined with
the Bradford assay (BRADFORD 1976; Bio-Rad, Mississauga,
ON, Canada) prior to alkali extraction (1.5 N NaOH, 1 hr,
75°). A set of 1:2 serial dilutions of the alkali-soluble fractions
were then spotted on Hybond-C nitrocellulose membrane
(Amersham, Oakville, ON, Canada). The immunoblotting was
performed in Tris-buffered saline Tween containing 5% non-
fat dried milk powder using either a 2000-fold dilution of
affinity-purified rabbit anti-B-1,6-glucan primary antibody
(Lussikr et al. 1998) or a 1000-fold dilution of anti-3-1,3-
glucan primary antibody (Biosupplies Australia Pty, Victoria,
Australia), both with a 2000-fold dilution of horseradish perox-
idase goat anti-rabbit secondary antibody (Amersham). The
membranes were developed with a chemiluminescence detec-
tion kit (Amersham). Dot blots were scanned with a UMAX
Astra 1220s scanner and signals were quantitated with Adobe
Photoshop software, using the histogram function. The level
of 3-1,6- and f-1,3-glucan for each mutant was estimated by
a comparison with a wild-type dilution series, with mutants
classified by ranges of 20-35% (see footnote in Table 5).

RESULTS

Kl toxin sensitivity of deletion mutants: The toxin
sensitivities of deletion mutants for 5718 genes were
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compared to those of the parental strain. The screen
was performed on haploid (MATx) and homozygous
diploid mutants, with toxin sensitivity being almost iden-
tical in both backgrounds. The heterozygous diploid
collection was also tested, with the finding that 42 genes
have a haploinsufficient toxin phenotype. The individ-
ual deletion of most genes has no effect on toxin sensitiv-
ity. These aphenotypic mutations include genes with a
wide range of other phenotypes, such as slow growth
and respiratory deficiency, and provide an important
control for trivial cellular alterations that might affect
the killing zone phenotype. For mutants in almost all
genes, despite some affliction, the killer phenotype is
wild type. Mutants in 268 genes (4.7%) have a pheno-
type distinct from wild-type toxin sensitivity, with 15 of
these genes previously known to have such a phenotype
(SHAHINIAN and Bussey 2000; pE GrooT et al. 2001).
Tables 2—4 list these mutants in functional groupings.
A given gene is listed just once although some could
be included in more than one category. Although the
phenotypes are significant and reproducible, most null
mutants have partial phenotypes. For example, among
155 haploid-resistant mutants, only 30 are fully resistant
at the toxin concentration used (Table 2). Toxin sensi-
tivity can be suppressed or enhanced in mutants, leading
to resistance or hypersensitivity. Toxin resistance, which
was always found as a recessive phenotype, is likely
caused by a loss of function of some component needed
for toxin action. In hypersensitive mutants the mutation
synthetically enhances toxin lethality and can be func-
tionally informative. Among the mutations resulting in
a toxin phenotype, 42 were in uncharacterized open
reading frames (ORFs) of unknown function. Of these,
3 were given a KRE (killer toxin resistant) number, and
8 genes with hypersensitive mutants were called FYV
(function required for yeast viability upon toxin expo-
sure) and given a number (Tables 2—4).

Mutants for 118 genes with toxin phenotypes were
examined for altered sensitivity to SDS, calcofluor white,
and hygromycin B as hypersensitivity or resistance to
these compounds is indicative of cell surface defects
(LUSSIER ef al. 1997; Ross-MACDONALD et al. 1999). Mu-
tants in 88 of these genes showed some additional phe-
notype (Tables 2-4),independently suggesting that they
have some cell surface perturbation. As 3-1,6-glucan is
the primary component of the cell wall receptor for the
toxin, mutants in 144 genes with toxin phenotypes were
examined for alkali-soluble 3-1,6-and B-1,3-glucan levels
(Table 5) with 63 showing an altered level of one or both
polymers. Genes previously identified as killer resistant
provide positive controls for this global screen (Tables
2 and 4). A number of characterized genes not known
to have altered toxin sensitivity were found, suggesting
that they have roles in cell wall or surface organization.
Most mutants fall into a limited set of functional classes
and define specific areas of cellular biology, some of
which are described below (see also Tables 2 and 3).

Glucan synthesis: The yeast cell wall is made princi-
pally of four components: mannoproteins, chitin, 3-1,3-
glucan, and B-1,6-glucan (ORLEAN 1997; LIPKE and
OvALLE 1998). Protein mannosylation and -1,6-glucan
synthesis defects are known to lead to toxin resistance
by altering the cell wall receptor for the toxin (see SHAH-
INIAN and Bussey 2000 for a review; BREINIG et al. 2002).
Many mutations resulting in resistance to the K1 toxin
have a reduced amount of -1,6-glucan in the cell wall
and show slow growth or inviability depending on the
severity of the defect, and we anticipated finding new
genes affecting these processes. A complex pattern of
glucan phenotypes was found among the mutants exam-
ined for alkali-extractable 3-1,6- and 3-1,3-glucan levels,
with reduced or elevated amounts of one or both poly-
mers found (Table 5). Of mutants in 63 genes with
glucan phenotypes, 55 had effects on 3-1,6-glucan levels,
with the remaining 8 having 3-1,3-glucan-specific alter-
ations. Of the 55 with B-1,6-glucan phenotypes, 40 also
had some B-1,3-glucan phenotype, with 15 showing a
B-1,6-glucan-specific phenotype. Principal findings are
outlined below.

3-1,6-Glucan reduced: Mutants for five genes showing
partial toxin resistance had specific but partial alkali-
soluble B-1,6-glucan reductions. Among these was the
B-1,3-glucan synthesis-associated gene FKSI, and this
mutant also had reduced levels of alkali-insoluble 3-1,3-
glucan (Figure 1B; Table 5). The involvement of Fks1p
in both 3-1,3- and 3-1,6-glucan biogenesis has been stud-
ied further (DIKGRAAF ef al. 2002). Mutants in CNE]
encoding yeast calnexin have less 3-1,6-glucan (SHAHI-
NIAN et al. 1998), and this is also a mutant phenotype
of the uncharacterized gene YKL037Wencoding a small
integral membrane protein.

3-1,6-Glucan reduced with altered (3-1,3-glucan: big!
mutants had greatly reduced levels of 3-1,6-glucan and
an increase in B-1,3-glucan. BIGI is a conditional essen-
tial gene retaining partial viability on medium with os-
motic support (BICKLE et al. 1998). Heterozygous bigl/
BIGI diploids showed haploinsufficient toxin resistance
(Table 4), and haploid mutant cells grew very slowly
on medium containing 0.6 M sorbitol and were toxin
resistant (Figure 1A). Determination of the amount of
alkali-insoluble glucan in the cell wall of a big/ mutant
showed that the B-1,6-glucan was 5% of wild-type levels
(Figure 1B). The amount of 3-1,3-glucan in big/ mutants
increased, possibly through some wall compensatory
mechanism. Elsewhere, we have extended work on the
role of Biglp in B-1,6-glucan biogenesis (AzuMA et al.
2002).

Mutants for 13 genes had reductions in both alkali-
soluble B-1,6- and 3-1,3-glucan (Table 5), and three are
described briefly below. smil/knr4 mutants are resistant
both to the K1 toxin and to the K9 toxin from Hansenula
mrakiiand have wall glucan defects and a reduced in vitro
glucan synthase activity (HONG et al. 1994a,b). Smilp
localized to cytoplasmic patches near the presumptive
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TABLE 3

(Continued)

Calcofluor

K1 Kkiller toxin death zone (%)

Hygromycin B SDS

white

Homozygous

Haploid Heterozygous

Description of gene product

ORF

Gene name

8. Ungrouped or poorly characterized genes (12 genes)

125
136
123
144
117
112

wt

140
139
137
133
133
127
126
126
121
116
115
112

Required for normal growth rate and resistance to NaCl and H,O,
Mutant impaired in fructose-1,6-bisphosphatase degradation

Lipid and sterol metabolism

YLR0O87C
YDR359C
YLR242C

CSF1°

wt

VID21°

wt

ARVI*

wt

ER protein-translocation complex subunit

Prefoldin subunit 1

YBR171W
YJL179W

SEC66°
PFD1

wt

wt

wt

wt

DNA-directed polymerase a-binding protein

YPR135W

YIL047C

CTF4

145
110

wt

Member of the major facilitator superfamily

Hypothetical protein

SYGI

IWRI

wt

YDL115C

K1 Toxin Phenotypes of Yeast Genes

130
117
109

wt

Mitochondrial and ER import protein

YNL064C
YPR029C

YDJ1
APL4

2

wt

wt

Gamma-adaptin of clathrin-associated AP-1 complex

wt

YDR174W  Nonhistone protein

HMOI

ADKI

wn

127

wt

YDR226W  Adenylate kinase, cytosolic

Mutants with a wild-type phenotype in haploid or homozygous diploid background and those with a resistant phenotype in these backgrounds are not listed. NA, not available.

“Mutants with a $-glucan phenotype (see Table 5).
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bud site in unbudded cells and at the site of bud emer-
gence (MARTIN ef al. 1999) and may act in the polariza-
tion of glucan synthetic components. CSFI1 (YLR0OS87C)
encodes an integral membrane protein that may be a
plasma membrane carrier. The null mutant is hypersen-
sitive to Kl toxin, calcofluor white, SDS, and hygro-
mycin; ToOkAI ef al. (2000) showed the mutant to be salt
and hydrogen peroxide sensitive with low temperature
defects in growth and the uptake of glucose and leucine.
LAS21 (YJLO62W) participates in glycosylphosphatidylin-
ositol (GPI) synthesis, adding an ethanolamine phos-
phate to the a-1,6-linked mannose of the GPI mannose
core (BENACHOUR et al. 1999). As this mannose core is
the site of attachment of the -1,6-glucan moiety to GPI-
linked cell wall proteins, altered levels of B-1,6-glucan
might be expected, although the basis of neither the
B-1,3-glucan defect nor the mutant hypersensitivity to
K1 toxin is evident, indicating a need for further work.

-1,6-Glucan elevated: Killer mutants in 33 genes had
elevated levels of B-1,6-glucan (Table 5). A group of
B-1,6-glucan overproducers are mutant in genes in-
volved in assembly of the outer fungal-specific a-1,6-
glucan chain of N-.glycosyl chains (mnn9, mnnl0, and
anpl; see Table b and Figure 2). Mutants in these genes
are hypersensitive to killer toxin and are described fur-
ther in N-glycosylation below. A contrasting group of resis-
tant mutants overproducing B-1,6-glucan (and to a
lesser extent, B-1,3-glucan) are in a subgroup of genes
involved in cortical actin assembly and endocytosis (Ta-
ble 2 and slal mutant in Figure 1). Our results are
consistent with work reporting thickened cell walls in
some of these mutants (for a review see PRUYNE and
BRETSCHER 2000). Cell wall synthesis is normally re-
stricted to the growing bud, but in these mutants new
material is added inappropriately to the mother cell,
resulting in a thickened wall (L1 et al. 2002). It is surpris-
ing that cells with thickened cell walls and more 3-1,6-
glucan can be killer toxin resistant, since resistance typi-
cally arises through loss of cell wall -1,6-glucan and
less binding of the toxin. One explanation is that more
toxin is bound to the walls, reducing its effective concen-
tration, a resistance mechanism proposed for the SMKT
toxin of Pichia farinosa (Suzukl and SHIMMA 1999). A
second explanation is that the thickened cell wall blocks
toxin access to the plasma membrane.

Mutants for other genes that specifically overproduce
alkali-soluble -1,6-glucan have broadly acting gene
products, with mutants expected to be pleiotropic and
their effects indirect. These include MAPI encoding
one of an essential pair of methionine aminopeptidases;
this mutant is killer toxin, calcofluor white, hygromycin,
and SDS hypersensitive (Table 3) and has a random
budding pattern (N1 and SNYDER 2001). ERG4 encodes
an oxidoreductase required for ergosterol synthesis.
This mutant is partially toxin resistant, hypersensitive
to calcofluor white, hygromycin, and SDS (Table 2),
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TABLE 4

(Continued)

K1 killer toxin

Calcofluor

death zone %
heterozygous

SDS

Hygromycin B

white

Description of gene product

ORF

Gene name

2. Hypersensitive (death zone >110% of the wild type; 11 genes)

wt

wt

135
128
122
121
118
118
117
116

a-1 tubulin

YMLO085C
YOR224C
YDRO64W
YOL040C
YILO21W

RPBS

TUBI

DNA-directed RNA polymerase I, II, III 16 kD subunit

Ribosomal protein

wt

wt

wt

RPSI13
RPSI5

RPB3

wt

wt

wt

40S small subunit ribosomal protein

wt

wt

wt

DNA-directed RNA-polymerase II, 45 kD

Ribosomal protein S3.e

YNL178W
YDR404C
YNL223W
YPR187W

wt

wt

wt

RPS3

wt

DNA-directed RNA polymerase II, 19-kD subunit

Essential for autophagy

RPB7

wt

AUT2

K1 Toxin Phenotypes of Yeast Genes

ER%)

wt
wt

116
115

wt*

DNA-directed RNA polymerase I, II, IIT 18-kD subunit
3-ketosphinganine reductase

YBR265W

YBL105C

RPO26
TSCI10
PKC1

Regulates MAP kinase cascade involved in regulating cell wall metabolism

These gene deletion mutants are available only as heterozygotes and are usually essential.

“Mutants with a $-glucan phenotype (see Table 5).

*Under normal conditions this gene is essential, but haploid mutants can grow on sorbitol and are toxin resistant.

“Under normal conditions this gene is essential, but haploid mutants can grow on sorbitol and are toxin hypersensitive.
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and has a random budding pattern (N1 and SNYDER
2001). ERV14 (YGL054C) and ERV41 (YNL067C) encode
COPII vesicle coat proteins involved in endoplasmic
reticulum (ER)-to-Golgi trafficking (OTTE ef al. 2001),
and both show toxin resistance. Mutants in four genes
of unknown function also overproduce alkali-soluble
B-1,6-glucan (Table 5). Two of these genes, BUD27
(YFLO23W) and BUD30 (YDL151C), have random bud-
ding patterns when mutated (N1and SNYDER 2001), and
both are hypersensitive to killer toxin. FYV5 (YCL058C)
encodes a predicted small integral membrane protein,
with the mutant sensitive to sorbitol and low tempera-
ture (BIANCHI et al. 1999) and K1 toxin hypersensitive.
Finally, the null mutant of YGL0O07C has partial killer
toxin resistance (Table 2).

N-glycosylation: Defects in N-glucosylation and its pro-
cessing can lead to partial toxin resistance and reduced
levels of B-1,6-glucan (ROMERO el al. 1997; SHAHINIAN
et al. 1998). Our results extend this finding to many
other genes whose products are involved in the biosyn-
thesis and elaboration of the GlcsManyGlcNAc, oligosac-
charide precursor of N-glycoproteins (Tables 2 and 3;
Figure 2). If Golgi synthesis of the fungal-specific a-1,6-
mannose outer arm of the N-chain is blocked by muta-
tion in OCHI or in MNNY9, MNNI10, or ANPI of the
mannan polymerase complex, toxin hypersensitivity re-
sults, concomitant with higher levels of 3-1,6-glucan in
the cell wall (Tables 3 and 5; Figures 1 and 2; and
see MAGNELLI et al. 2002 for mnn9). The glucan levels
observed in an ochl mutant were similar to those ob-
tained in a mnn9 mutant (not shown). To explore this
further we determined the alkali-soluble glucan levels
for other mutants in the mannan polymerase complex
and the outer chain ec-mannosyltransferases (Figure 2),
irrespective of toxin phenotype. A mutant in mnnll,
part of the a-1,6-mannose-synthesizing mannan poly-
merase complex, also showed elevated glucan levels, as
did mnn2encoding the major a-1,2-mannosyltransferase
that initiates mannose branching from the a-1,6-glucan
backbone. However, a mutant in mnn5, whose gene
product extends the a-1,2-mannose branches from the
a-1,6-glucan backbone, had reduced levels of both
B-glucans. Previous work showed that a small amount
of glucan is attached to the N-chain structure (Tkacz
1984; vAN RINSUM et al. 1991; KOLLAR et al. 1997), and
a genetic study by SHAHINIAN et al. (1998) also suggested
this possibility. Our results show that core N-chain pro-
cessing is required for wild-type B-1,6-glucan levels,
while absence of the outer a-1,6-linked mannose side
chain or its first a-1,2-mannose branch can result in an
increase in cell wall $-1,6-glucan. However, mutants in
later mannosylation steps in elaborating branches from
the outer a-1,6-linked mannose side chain have no effect
or lead to reduced B-glucan levels.

Lipid and sterol synthesis and ion homeostasis: Mu-
tants for 10 genes involved in the biosynthesis or regula-
tion of lipids or sterols show partial toxin resistance
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TABLE 5
Genes whose deletion results in an altered alkali-soluble
B-glucan phenotype
Gene name ORF B-1,6-Glucan  B-1,3-Glucan
-1,6-Glucan only affected
Elevated
MAPI YLR244C ++ wt
ANPI YEL036C + wt
ERG#4 YGLO12W + wt
ERV14 YGL054C + wt
ERVA41 YMLO067C + wt
KEX1 YGL240W + wt
FYV5 YCLO058C + wt
BUD30 YDL151C + wt
BUD27 YFLO23W + wt
YGLOO7W + wt
Reduced
YKLO37W - wt
CNEI YALO58W - wt
FKS1 YLR342W - wt
KREI1 YGR166W - wt
PEP3 YLR148W (—) wt
-1,3-Glucan only affected
Elevated
THPI YOLO072W wt +
YNL213C wt +
BTS1 YPL0O69C wt (+)
GPA2 YERO20W wt (+)
FYV7 YLRO68C wt (+)
Reduced
SEC66 YBR171W wt -
ACCI YNRO16C wt (—)
SYS1 YJL004C wt (-)

B-1,6-Glucan and B-1,3-glucan affected
Both elevated

END3 YNLO084C +++ ++
VRPI YLR337C +4+ ++
SACY YDR389W + 4+ +
LASI7 YORI181W +++ (+)
VACS YELO13W ++ +
FYVI YDRO24W ++ +
IPKI YDR315C +4 (+)
FPSI YLLO43W + +
SACI YKL212W + +
VID21 YDR359C + +
EAF6 YJR082C + +
CDC25 YLR310C + (+)
GLY1 YEL046C + (+)
SUR4 YLR372W + (+)
VPS61 YDR136C + (+)
UTHI YKR042W (+) +
VPS27 YNROO6W (+) +
VPS67 YKRO20W (+) +
FYVI2 YOR183W (++) (++)
(continued)

(Table 2). These mutants have defects in membrane
structure, possibly affecting the efficiency of insertion
of the toxin into the plasma membrane or altering the

TABLE 5
(Continued)
Gene name ORF B-1,6-Glucan  B-1,3-Glucan
Both reduced
SMI1 YGR229C - -
PIN4 YBLO51C —— ——
CSF1 YLRO87C - -
LAS21 YJLO62W - -
COD3 YGL223C (—) -
PMT2 YAL023C (—) -
ARV1 YLR242C (—) (—)
MNN>5 YJL186W (-) (-)
FYVI1O YILO97W (-) (-)
KRE33 YNL132W (—) (—)
OSH1I YAR044W (-) (=)
SBE22 YHR103W (-) (=)
FYV6 YNL133C (=) (=)
B-1,6-Glucan elevated and B-1,3-glucan reduced
MNN10 YDR245W + ——
MNN?9 YPLO50C + -
YURI YJL139C (+) (-)
SHE4 YORO035C (+) (=)
-1,6-Glucan reduced and B-1,3-glucan elevated

BIGI YHR101C - (+)
KREI YNL322C —— (++)
KRE6 YPR159W - (++)
ROT2 YBR229C (—) (++)

Increase (I): +++, T > 100%; ++, 65 < 1< 100; +, 45 <
1< 65; (+), 25 < I < 45; (++), I < 25%. Decrease (D):
———, 85 < D<100; —, 65 <D <85, —, 45 < D < 65;
(—), 25 < D < 45; (——), D < 25%.

cellular membrane potential leading to reduced toxin-
induced ion permeability. Pertinently, defects in the
ATP-dependent Drs2p and Atp2p membrane channels
involved in cation and proton pumping confer toxin
resistance. The altered membrane composition in lipid
or sterol mutants could also affect secretory pathway
function, possibly linking their partial toxin resistance
phenotypes to those found in protein trafficking and
secretion (Table 2). For example, KEST is implicated in
ergosterol biology and can partially suppress the toxin
resistance of a krell-1 mutant, with Krellp being in-
volved in Golgi vesicular transport as a subunit of the
TRAPP II complex (JIANG et al. 1994; SACHER et al.
2001).

High-osmolarity and stress response pathways: To sur-
vive hyperosmotic conditions, S. cerevisiae increases cel-
lular glycerol levels by activation of the high-osmolarity
glycerol (HOG) mitogen-activated protein kinase (MAPK)
pathway. Such activation leads to elevated transcription
of genes required to cope with stress conditions, includ-
ing the synthesis of glycerol with a resultant increase in
internal osmolarity (Posas et al. 1998; RePp et al. 2000).
Mutants with an inactive HOG pathway are toxin hyper-
sensitive, while deletion of protein phosphatases, such
as PTP3, PTCI1, or PTC3, which act negatively on the
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Frcure 1.—Killer toxin sensitivity and quantification of ma-
jor cell wall polymers of different strains. (A) A total of 5 ul
of toxin was spotted onto agar seeded with a fresh culture of
each strain (see MATERIALS AND METHODS). The mutant “kill-
ing zone” diameter was compared to the corresponding wild
type and expressed as a percentage (see MATERIALS AND METH-
ops). (B) Measurement of cell wall B-1,6- and -1,3-glucan
levels was performed by extraction and fractionation of these
polymers from cell wall preparations, followed by quantifica-
tion of the alkali-insoluble fractions. The haploid mutants
were from the Saccharomyces Genome Deletion Consortium
(slaIA and bigIA) or from strains HAB880 and HAB900, re-
spectively, for mnn9A and fksIA mutants (see Table 4). To
facilitate comparison, the values of alkali-insoluble glucans
were expressed as percentages of the corresponding wild-type
level. The data represent averages of at least three indepen-
dent experiments with standard deviations not exceeding
10%.

pathway, lead to resistance (Tables 3 and 2, respectively;
Figure 3B). Deletion of HOGI resulted in a killing zone
diameter almost twice that of the wild type. For such
large killing zones, the diameter is limited by the diffu-
sion rate of the protein toxin and greatly underestimates
increased mutant sensitivity. To quantify sensitivity in a
hogl mutant, toxin-induced cell mortality was measured
using a cell survival assay (see MATERIALS AND METHODS).

A 10,000-fold reduction in cell viability was found when
compared to the wild type. Previous estimates indicate
that ~3 X 10" molecules of toxin are required to kill a
wild-type cell (BUssey et al. 1979). We compared the
sensitivity of the hogl parental wild type from the dele-
tion collection (strain BY4742) with strain S14a, on
which the original lethal dose estimate was made, and
found the strains to be of similar sensitivity (data not
shown). Thus, just a few toxin molecules per cell are
required to kill a sogl mutant, indicating that a func-
tional HOG pathway provides cells with a powerful way
to ameliorate the effects of this toxin.

The sequence of action of the K1 toxin begins with
its binding to B-1,6-glucan cell wall receptors (SHAHI-
NIAN and Bussey 2000). In a second step, the toxin
inserts into the plasma membrane in a receptor-depen-
dent process (BREINIG et al. 2002) and forms pores caus-
ing the leakage of ions and cellular metabolites, leading
to cell death (MARTINAC et al. 1990; AHMED et al. 1999).
To explore the defect in a hogl mutant we asked where
it occurred in the path of action of the toxin, by examin-
ing its epistasis in double-mutant combinations of hogl
with the toxin-resistant cell wall mutants krel and kre2,
both of which block synthesis of the cell wall receptor.
A krel hogl mutant was as fully resistant as a krel single
mutant, and a kre2 hogl mutant was nearly so. Thus,
defects in the cell wall receptor preventing binding of
the toxin are dominant over the hypersensitivity of the
hogl mutant. This result is consistent with hypersensitiv-
ity occurring through some downstream effect such as
ion homeostasis and/or lethal pore formation. One con-
sequence of the activation of the HOG pathway is the in-
duced expression of the glycerol-3-phosphate dehydroge-
nase Gpdlp, required in glycerol biosynthesis (ALBERTYN
et al. 1994). To test whether impaired glycerol produc-
tion was the basis of the hogl mutant hypersensitivity, a
gpdl gpd2 double deletion mutant was made to reduce
glycerol synthesis (GARCIA-RODRIGUEZ et al. 2000). This
mutant had wild-type toxin sensitivity (data not shown).
In further efforts to identify the downstream effectors
of Hoglp responsible for the basal toxin resistance, we
examined deletion mutants in the known transcription
factors of the pathway, namely Msnlp, Msn2p, Msn4p,
Hotlp, Skolp, and Rck2p (PrROFT and SERRANO 1999;
REP et al. 1999, 2000; BILSLAND-MARCHESAN ¢/ al. 2000).
All were wild type in sensitivity, as was the msn2 msn4
double mutant.

Cell integrity signaling: In response to cell wall alter-
ations, S. cerevisiae stimulates the Mpk1/Slt2p MAP ki-
nase by activation of a cell integrity signaling pathway
under the control of PKCI (Figure 3B). Loss of function
of this pathway results in deficiencies in cell wall con-
struction and cell lysis phenotypes, which can be par-
tially suppressed by osmotic stabilizers (LEVIN and
BARTLETT-HEUBUSCH 1992; PARAVICINT ¢f al. 1992; ROE-
MER ¢t al. 1994). Consistent with playing a key role in
cell surface integrity, a pkcl haploid mutant kept alive
by osmotic support is extremely sensitive to the toxin.
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@ Putative site of B-1,6-glucan attachment
[] N-acetyl glucosamine (GleNAc)

FiIGure  2.—Schematic
summary of N-glycan bio-
synthesis in yeast. N-glycosyl
precursor assembly is initi-
ated in the endoplasmic re-
ticulum. At the stage of
GlcNAc,Many, three glu-
cose residues are serially
transferred from the Dol-P-
Glc donor to the N-glycan
by the glucosyltransferases
Algbp, Alg8p, and AlglOp.
Glucosylation is required
for efficient transfer of the
N-glycan to target proteins
by a complex that includes
Ost3p. The glucose residues
are subsequently trimmed
by the sequential action of
glucosidases I and II,
Cwh41p and Rot2p, respec-
tively. Mlinked oligosaccha-
rides undergo further matu-
ration in the Golgi, where

N@—{:} Dolichol phosphate glucose (Dol-P-Glc)

addition of the fungal-spe-
cific “outer-chain” is initi-
ated by Ochlp and elabo-

rated by various enzymes, including the mannan polymerase complex (adapted from ORLEAN 1997; SHAHINIAN and Bussky
2000). Arrows indicate activation and bars indicate negative effects. (*) indicates essential genes; i.e., only heterozygous mutants
were tested. Genes whose deletion causes toxin hypersensitivity, red; resistance, blue; no phenotype, yellow; not tested, white.

B-Glucans are shown as follows: -1,6-glucan and B-1,3-

wild type; CJ B-1,6-glucan and B-1,3-glucan both wild type;

lucan both reduced; -1,6-glucan reduced and {3-1,3-glucan

B-1,6-glucan elevated and B-1,3-glucan wild type; BB B-1,6-

glucan elevated and $-1,3-glucan reduced. Mnn2p, AlglOp, and Hoclp are not listed in Tables 2 or 3; they are resistant or

hypersensitive to K1 toxin, but fall outside of the chosen ranges.

However, most of the upstream activators of Pkclp and
all known downstream MAPK signaling components of
the cell integrity pathway show no toxin phenotype (see
Figure 3B). The absence of phenotype for the upstream
integral plasma membrane activators of the pathway
may be explained by the functional redundancy of the
components (VERNA et al. 1997, KETELA et al. 1999;
PrrLip and Levin 2001). Rholp, the GTP-binding pro-
tein involved in relaying the signal from the plasma
membrane to Pkclp, is essential and the heterozygote
has a wild-type phenotype. However, in the MAP kinase
cascade downstream of Pkclp, the kinase Bcklp and
the MAP kinase Mpklp are unique and nonessential
(LeEvIN and ERREDE 1995). The absence of a toxin phe-
notype upon mutation of these components indicates
that hypersensitivity of a pkcl mutant is not caused by
the absence of activation of the MPKI MAP kinase path-
way, but in some other way (Figure 3B).

Ribosomal subunit proteins: Defects in many ribo-
somal subunit proteins lead to toxin hypersensitivity.
Of the 32 small ribosomal subunit genes, 8 are found
as single copy and 24 are duplicated, for a total of 56
ORFs (PLaNTA and MAGER 1998). Toxin hypersensitivity
is observed for mutants for 21 of the duplicated genes
(Tables 3 and 4). A single deletion of either copy often
shows hypersensitivity. In some cases only one of the

duplicated gene mutants shows the phenotype (RPSOB,
4B, 10A, 17A, 19B, 23B), suggesting that they have dis-
tinct functions. Since some phenotypes were relatively
weak (killing zone diameters <115% of the wild type),
not all mutants are listed in Table 3. Of the 8 single-
copy genes of the small ribosomal subunit, heterozygous
deletions in just 2 essential genes, RPSI13 and RPSI5,
gave toxin hypersensitivity (Table 4). The toxin hyper-
sensitivity phenotype was more prevalent among mu-
tants in the small subunit (43%) than among those in
the large (16%). A total of 46 genes encode the large
ribosomal subunit proteins, among which 35 are dupli-
cated (PLanTA and MAGER 1998); 12 of the duplicated
genes show toxin hypersensitivity when mutated (Tables
3 and 4).

DISCUSSION

The ability to directly establish a phenotype-to-gene
relationship is a great enabling strength of the mutant
collection. Moreover, since each gene can be examined
simply by testing a mutant, partial or weak phenotypes
can be readily analyzed (BENNETT et al. 2001; NI and
SNYDER 2001). The collection allows comprehensive
screening and a knowledge of which genes have been
examined, overcoming many of the limitations of a clas-
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sical random mutant screen. Despite the extensive use
of random screens for toxin resistance these failed to
saturate the genome, as we have found mutants in many
new genes. In addition, the mutant collection allows
one to know which genes remain to be tested and, im-
portantly, which genes do not have phenotypes. Such
comprehensive testing can turn up the unexpected, as
illustrated by a few examples. The extent of the relation-
ships between cell wall polymers was unanticipated. Wall
glucan work normally focuses on one or the other glu-
can synthetic pathway, and these are implicitly seen to
be specific. Yet fksI mutants, defective for a component
of the 3-1,3-glucan synthase, are affected for both {3-1,3-
and (-1,6-glucan (Figure 1A), as are a large number
of other mutants (Table 5). These interactions likely
indicate synthetic or regulatory links between these poly-
mers. The mnn9 mutation, which blocks synthesis of
the outer a-1,6-mannose arm of N-glycans, was assumed
specific and has been used to simplify structural analyses
of glucomannoproteins in the cell wall (VAN RINSUM et
al. 1991; MoNTIJN et al. 1994). The fact that a mnn9
mutation has other secondary effects that increase the
amount of glucan in the wall is an unexpected complica-
tion, with the possibility that previous work analyzed
structures absent from wild-type cells. Electrophysiologi-
cal work links the Toklp potassium channel with toxin
action (AHMED et al. 1999). In the deletion mutant col-
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lection used here neither the haploid MATa or MAT«o
nor the diploid heterozygous or homozygous deletion
of this gene had a phenotype. Thus, in this strain back-
ground Toklp has no detectable role in toxin action,
indicating that despite the ability of the toxin to activate
conductance of Toklp, this channel protein cannot be
the only target for the Kl toxin and is not a significant
in vivo target in this sensitive strain. Having mutants in
all cellular pathways allows the pursuit of phenotype
through functional modules and has value in making
such connections. Some specific examples are discussed
below.

Functional clustering: The screen identified several
examples of interactions that connect biological func-
tions into larger cellular processes, sometimes already
known in detail. For example, toxin phenotypes trace
the relationship between almost every biosynthetic step
of the N-glycosyl moiety of glycoproteins. The cytoskele-
tal mutants provide an example of a less well-character-
ized connectivity. Here a set of mutants in cytoskeletal
processes has a common toxin resistance phenotype
that correlates with mother cells showing abnormal wall
proliferation. This wall phenotype, which is not a gen-
eral one for all cytoskeletal defects, has been reported
for individual genes (see PRUYNE and BRETSCHER 2000).
This functional cluster of genes, which may function in
limiting wall growth to daughter cells, offers insight into
a new facet of morphogenesis.

FIGURE 3.—Schematic summary of signal transduction path-
ways involved in osmoadaptive responses and cell wall synthesis
inyeast. (A) Exposure to high extracellular osmolarity triggers
an adaptive response mediated by two pathways that converge
at Pbs2p. One arm of the pathway involves the binding of
Pbs2p to plasma membrane protein Sholp. Pbs2p is phosphor-
ylated by the Stellp MAPKKK, through a process requiring
Cdc42p, Ste50p, and Ste20p (DESMOND et al. 2000). A second
pathway involves the two-component osmosensor module
SIn1p-Ypdlp-Ssklp, which activates Pbs2p via a pair of related
MAPKKK proteins, Ssk2p and Ssk22p. Activation of this MAPK
cascade culminates at Hoglp with Hoglp-dependent activa-
tion of the Rck2p protein kinase and activation and inactiva-
tion of transcription factors. The model also outlines the ac-
tion of some negative regulators of the pathway (Posas et al.
1998; REP et al. 1999, 2000; BILSLAND-MARCHESAN et al. 2000;
and references therein). (B) Environmental stresses cause
changes in cell wall state, which are detected by the Wsc
proteins and Mid2p and Mtllp. The information is transmitted
to Rholp by the guanine nucleotide exchange factors Romlp
and Rom2p. Tor2p is also an activator of Rholp, whereas
Sac7p and Bem2p are GTPase-activating proteins for Rholp.
Activated, GTP-bound Rholp interacts with a transcription
factor (Skn7p) and regulates the activity of proteins involved
in cytoskeleton assembly (Bnilp), cell wall synthesis (Fkslp),
and signal transduction (Pkclp). Pkclp in turn activates the
cell integrity MAP kinase pathway and independently on “an-
other arm” effects Raplp-dependent transcriptional repres-
sion of ribosomal protein genes (L1 et al. 2000; PaILip and
LeviN 2001; and references therein). For the color-coding
scheme, see Figure 2.
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The HOG pathway buffers toxin action: Mutants in
hogl are close to being maximally sensitive to the toxin,
dying at ~~1 molecule/cell, while in a HOGI strain, four
orders of magnitude more toxin is needed to kill a cell.
How is this HOGI-dependent resistance achieved? One
possibility is that the HOG pathway is stress induced as
the toxin causes ion loss. Activation of this signaling
pathway may result in changes in membrane conduc-
tance, intracellular osmotic pressure, or some other
stress response, which can act to reduce the efficiency
of the toxin in promoting loss of cellular ions. Although
the toxin sensitivity of a gpdl gpd2 double mutant is
similar to wild-type cells, the possible involvement of
Hoglp-dependent osmoadaptation cannot be excluded.
Consistent with this scenario, GARCIA-RODRIGUEZ et al.
(2000) observed increased intracellular glycerol levels
after treatment with the cell-wall-perturbing agent cal-
cofluor white, independent of the action of GPDI and
GPD2. An alternative explanation that there is some
constitutive HOGI-dependent effect on cell wall synthe-
sis seems less likely on the basis of the following observa-
tions. Epistatic tests using krel hogl and kre2 hogl mu-
tants are consistent with the HOG pathway acting at the
membrane or intracellularly, as cell wall mutants are
epistatic to the hogl defect and remain toxin resistant
in double mutants. Deficiencies in the HOG pathway
result in extreme toxin sensitivity, and we reasoned that
mutations in genes regulated by this pathway might also
cause hypersensitivity. In looking for candidates, it is
striking that some components specific to the RNA poly-
merase II complex (e.g., Galllp, Med2p, Rpb4p, Rpb3p,
Rpb7p, Srb5p, and Srb2p) or components shared be-
tween RNA polymerases I, II, and III (e.g., Rpb8p,
RpclOp, and Rpo26p) all display a strong toxin hyper-
sensitivity, similar to that of HOG pathway mutants (Ta-
bles 3 and 4). Is this response specific to the HOG
pathway? Among the MAPK pathways in yeast (HUNTER
and PLowMAN 1997; GUSTIN et al. 1998), only the HOG
pathway exhibits toxin hypersensitivity. Mutants in
SMKI, MPKI, and YKL161c, which encode, respectively,
the MAP kinase of the sporulation pathway, the cell
integrity pathway, and a putative uncharacterized path-
way, are not toxin hypersensitive. Similarly, a null muta-
tion in the MAP kinase kinase encoding gene STE7,
which is involved in both the haploid mating and inva-
sive pathways, has no effect on toxin sensitivity. These
observations suggest a possible connection between the
signaling elements of the HOG pathway and the activity
of the RNA polymerase II complex. To investigate which
potential target genes of Hoglp are responsible for the
hypersensitivity, we looked for toxin phenotypes re-
sulting from mutations in genes known to be induced
by osmotic shock (REP et al. 2000). None of these genes
have an effect comparable to a /hogl mutant. Similar
results were obtained for genes whose mRNA level is
affected by a mutation of HOGI. However, among the
genes whose mRNA level is diminished after a shift to

high osmolarity (ReP et al. 2000), ASCI had a significant
hypersensitivity (Table 3). ASCI encodes a 40S small
subunit ribosomal protein, one of many small ribosomal
protein encoding genes that, when mutated, show toxin
hypersensitivity (see Table 3 and below). Together,
these observations suggest that, if the phenotype ob-
served in a hogl mutant results from a defect in expres-
sion, it is not through a single gene but may originate
from a combined deficiency in more than one gene.

Signaling components involved in toxin sensitivity:
Although the HOG pathway is the only MAP kinase
cascade showing a toxin phenotype, two upstream acti-
vators of MAPK pathways were identified in the screen:
SSK1 and PKCI. The toxin hypersensitivity of an sskl
mutant is consistent with its place upstream of the HOG
signal transduction cascade. However, no toxin pheno-
type is found for the components of the cell integrity
MAPK pathway signaling downstream of PKCI, namely,
the sequentially acting kinases Bcklp, the redundant
pair Mkklp and Mkk2p, and the Mpklp MAP kinase
(Figure 3B). This raises the question of how Pkclp sig-
nals in producing a normal response to the toxin. Previ-
ous genetic analysis suggested a bifurcation of the signal-
ing downstream of PKCI (ERREDE and LeviN 1993;
HELLIWELL ef al. 1998). Our data are consistent with
such a model since some “other arm” of the PKC path-
way, distinct from the Bcklp-dependentarm, is responsi-
ble for the toxin phenotype. Additional evidence for an
alternative pathway comes from studies on the coordina-
tion of cell growth and ribosome synthesis, where a
block in protein secretion reduces ribosomal protein
gene transcription (M1zuta and WARNER 1994; NIER-
RAS and WARNER 1999). This mechanism is: (i) depen-
dent on Pkclp activity; (ii) not mediated by the cell
integrity pathway MAPK cascade (BCKI or MPKI); and
(iii) blocked by rapl-17, a silencing-defective allele of
RAPI (L1 et al. 2000). We found that a heterozygous rap1
mutant exhibits haploinsufficient toxin hypersensitivity
(Figure 3B), providing additional support for Raplp
being an effector of Pkclp.

Ribosomal subunit mutants show toxin sensitivity:
The coupling of protein secretion to ribosome synthesis
through the PKC pathway (NIERRAS and WARNER 1999;
L1 et al. 2000) raises the possibility of regulation op-
erating in the reverse direction: that is, defects in pro-
tein synthesis mediated predominantly through 40S ri-
bosomal subunit proteins might affect protein secretion
and cell wall synthesis. The binding of the rough ER
ribosomes to Sec61p of the signal recognition particle
is through the 60S ribosomal subunit (BECKMANN ef al.
1997), and fewer mutants in 60S ribosomal proteins
have toxin phenotypes, arguing that the coupling step
in itself is unlikely to be the primary site of any such
effect. A more mundane alternative explanation is that
nonessential defects in protein synthesis through loss
of redundant ribosomal proteins have nonspecific
knock-on effects on protein secretion/cell wall synthesis
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through failure to make enough of a component re-
quired for protein secretion.

Strength and limitations of comprehensive phenotyp-
ing with the collection: In addition to phenotypic cluster-
ing of genes, the simple discovery of biological roles for
genes through phenotype remains an important part
of this screen. For example, a number of mutants in
poorly characterized genes have B-glucan phenotypes
that warrant investigation. The yeast disruption mutant
collection has limitations. Duplicated genes and gene
families having synthetic phenotypes but no phenotype
when individually deleted will be overlooked. Also, the
1105 essential genes representing 18.7% of the yeast
genome (GIAVER et al. 2002) cannot be screened di-
rectly. Haploinsufficiency phenotypes in heterozygotes
disrupted in one copy of an essential gene provide a
partial solution, as in the case of BIGI. In our screen
such haploinsufficiency was found in the heterozygous
mutants of 42 genes, but we still do not know the full
extent of the involvement of essential genes in cell sur-
face biology. A set of conditional lethal mutants in all
essential genes would improve the value of the collec-
tion for screening these genes.
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