A Saccharomyces cerevisiae Genome-Wide Mutant Screen for Altered Sensitivity to K1 Killer Toxin

Nicolas Pagé,¹ Manon Gérard-Vincent, Patrice Ménard, Maude Beaulieu, Masayuki Azuma,² Gerrit J. P. Dijkgraaf, Huijuan Li, José Marcoux, Thuy Nguyen, Tim Dowse, Anne-Marie Sdicu and Howard Bussey³

Biology Department, McGill University, Montreal, Quebec H3A 1B1, Canada

Manuscript received November 5, 2002 Accepted for publication December 12, 2002

ABSTRACT

Using the set of *Saccharomyces cerevisiae* mutants individually deleted for 5718 yeast genes, we screened for altered sensitivity to the antifungal protein, K1 killer toxin, that binds to a cell wall β -glucan receptor and subsequently forms lethal pores in the plasma membrane. Mutations in 268 genes, including 42 in genes of unknown function, had a phenotype, often mild, with 186 showing resistance and 82 hypersensitivity compared to wild type. Only 15 of these genes were previously known to cause a toxin phenotype when mutated. Mutants for 144 genes were analyzed for alkali-soluble β -glucan levels; 63 showed alterations. Further, mutants for 118 genes with altered toxin sensitivity were screened for SDS, hygromycin B, and calcofluor white sensitivity as indicators of cell surface defects; 88 showed some additional defect. There is a markedly nonrandom functional distribution of the mutants. Many genes affect specific areas of cellular activity, including cell wall glucan and mannoprotein synthesis, secretory pathway trafficking, lipid and sterol biosynthesis, and cell surface signal transduction, and offer new insights into these processes and their integration.

THE sequenced and analyzed Saccharomyces cerevisiae genome has enabled a program of precise targeted gene disruption, resulting in a collection of mutant strains deficient in each gene (WINZELER et al. 1999; GIAVER et al. 2002; see also: http://sequence-www.stanford.edu/ group/yeast/yeast_deletion_project/deletions3.html). Such a collection promotes the discovery of cellular roles for genes by facilitating the characterization of mutant phenotypes and allows a comprehensive examination of the genetic complexity of a phenotype. We have used the S. cerevisiae gene disruption set to screen for K1 killer toxin phenotypes. Toxin resistance has been extensively studied by classical genetics, and many genes have been identified. This toxin is encoded on the M1 satellite virion of the L dsRNA virus of S. cerevisiae (WICKNER 1996). Toxin sensitivity results from binding of the protein to the cell surface and its subsequent action at the plasma membrane promoting a lethal loss of cellular ions (reviewed in BUSSEY 1991; BREINIG et al. 2002). Defects in the genes involved in these processes may change cellular sensitivity to this toxin, and known resistant mutants define genes whose products

³Corresponding author: Department of Biology, McGill University, 1205 Ave. Docteur Penfield, Montreal, Quebec H3A 1B1, Canada. E-mail: howard.bussey@mcgill.ca

are involved in cell wall synthesis and regulation (SHAHI-NIAN and BUSSEY 2000). Here we describe the results of global screens of haploids and homozygous and heterozygous diploid mutants for altered K1 toxin sensitivity.

MATERIALS AND METHODS

Strains and media: Wild-type strains were BY4742 (*MAT* α) and BY4743 (MATa/MATa; BRACHMANN et al. 1998), except where noted in Figure 1B, which also presents some results from strain SEY6210 (ROBINSON et al. 1988). Deletant strains were from the Saccharomyces Genome Deletion Consortium (GIAVER et al. 2002) and are available at Research Genetics (http://www.resgen.com/products/YEASTD.php3; see Table 1 for complete genotype descriptions). Haploid *big1* and *pkc1* mutants were obtained by dissection of the heterozygous diploid strains on media supplemented with 0.6 м and 1.0 м sorbitol, respectively. To improve spore viability of *pkc1* tetrads, 1.0 M sorbitol was added during the zymolyase treatment of asci. Yeast were grown in standard YPD medium (SHERMAN 1991), unless otherwise stated. YPD/G418 medium, used to pregrow the mutants for 18 hr on 2% agar plates, is made of YPD supplemented with 200 mg/liter geneticin (GIBCO-BRL, Grand Island, NY). To test for drug sensitivity, YPD plates contained 25 or 50 µg/ml of calcofluor white, 30 or 80 µg/ ml of hygromycin B, or 0.05% SDS.

K1 killer toxin assay: K1 toxin sensitivity was measured as follows (for details see BROWN *et al.* 1994). Yeast mutant strains (haploid *MAT* α as well as the homozygous and heterozygous diploids) were pregrown for 18 hr at 30° on YPD/G418 in parallel with corresponding wild types pregrown on YPD. To control for variation in toxin activity between experiments, three wild-type controls were incorporated into every batch

¹Present address: Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich CH-8093, Switzerland.

²Present address: Department of Bioapplied Chemistry, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku Osaka, 558-8585, Japan.

N. Pagé et al.

TABLE 1

Yeast strains

Strain	Genotype	Source
BY4742	MAT α his3 $\Delta 1$ leu2 $\Delta 0$ lys2 $\Delta 0$ ura3 $\Delta 0$	BRACHMANN et al. (1998)
BY4743	MAT a /MAT α his3 Δ 1/his3 Δ 1 leu2 Δ 0/leu2 Δ 0	BRACHMANN et al. (1998)
	LYS2/lys2 $\Delta 0$ MET15/met15 $\Delta 0$ ura3 $\Delta 0$ /ura3 $\Delta 0$	
Haploid ^a	As BY4742, $orf\Delta$::kanMX4	WINZELER et al. (1999)
Heterozygous ^a	As BY4743, $orf\Delta$::kanMX4/ORF	WINZELER et al. (1999)
Homozygous ^a	As BY4743, $orf\Delta$::kanMX4/orf Δ ::kanMX4	WINZELER et al. (1999)
SEY6210	MATα leu2-3,112 ura3-52 his3-Δ200	ROBINSON et al. (1988)
	$trp1-\Delta 901$ lys2-801 $suc2-\Delta 9$	
HAB880	As SEY6210 except mnn9::kanMX2	Shahinian et al. (1998)
$HAB900^{b}$	As SEY6210 except <i>fks1::GFP-HIS3</i>	Ketela et al. (1999)

^a Indicates mutants obtained from the Saccharomyces Genome Deletion Consortium.

^b Haploid derived from TK103 strain.

of mutants tested (100-600 mutants/batch). Approximately 1×10^{6} cells were resuspended in 100 µl of sterile water, of which 5 µl was used to inoculate 5 ml of molten YPD agar medium (1% agar, 0.001% methylene blue, and 1× Halvorson buffered at pH 4.7) held at 45°. Sorbitol was supplemented for *big1* and *pkc1* mutants, and for a wild-type control, as described above. This medium was quickly poured into 60- \times 15-mm petri dishes and allowed to cool for 1 hr at room temperature. Then 5 μl K1 killer toxin (1000× stock diluted 1:10; BROWN et al. 1994) was spotted on the surface of the solidified medium. The plates were incubated overnight at 18° followed by 24 hr at 30° (48 hr for slow growth mutants). For each mutant showing a "killing" or "death" zone different from wild type, a picture comparing the mutant and appropriate control was taken with the IS-500 Digital Imaging System, version 2.02 (Alpha-Innotech). Two measurements of the killing zone were made with PhotoShop 4.0 and the average was saved in a database (FileMaker Pro 5.0) together with the picture. Mutants with a killing zone <90% or >110% were retested up to four times to confirm the observed phenotype. These percentages were determined as [(mutant killing zone diameter)/(wild-type killing zone diameter) \times 100]. A subset of mutants showing killing zones <75% or >115% was selected for further characterization.

K1 toxin survival assay: To determine cell survival after toxin treatment, 200 μ l of a cell culture grown to log phase in YPD pH 4.7 and adjusted to OD₆₀₀ 0.5 was incubated with 50 μ l toxin (1000× stock diluted up to 1:25) for 3 hr at 18° on a labquake. Percentage of surviving cells was calculated following plating onto YPD agar after incubation with toxin and counting colonies after 2 days at 30°.

Drug phenotype assay: Drug sensitivity was determined by spotting diluted cultures on plates containing various drugs as described (RAM et al. 1994; LUSSIER et al. 1997). Briefly, 5 ml of liquid YPD medium, inoculated with freshly grown cells on YPD/G418, was incubated overnight at 30°. The cell density of these exponentially growing cultures was standardized with water at an OD_{600} of between 0.485 and 0.515, and 2 µl of a set of 10-fold serial dilutions were spotted on YPD supplemented with calcofluor white, hygromycin B, or SDS (see Strains and media for drug concentrations). Hypersensitivity or resistance was monitored for each drug after 48 and 72 hr growth at 30°. The cells were also spotted on a control plate (YPD without drug), which allowed a comparison with the growth rate of the mutants after 24 hr growth at 30°. Pictures of all conditions tested were downloaded into a FileMaker 5.0 database (see above for details).

Cell wall composition analysis: Total β -glucan analysis: Haploid strains used for alkali-insoluble β -glucan determinations were *MAT* α sla1 Δ and big1 Δ , respectively, obtained or derived from the Saccharomyces Genome Deletion Consortium (see *Strains and media* above) and compared to wild-type strain BY4742, while mnn9 Δ (HAB880) and fks1 Δ (HAB900) were compared to parental strain SEY6210. Crude cell walls were isolated and the levels of alkali-insoluble β -1,3-glucan and β -1,6-glucan quantified as previously described (DIJKGRAAF *et al.* 2002). The big1 Δ mutant and the corresponding wild type were grown in medium containing 0.6 M sorbitol to provide osmotic support.

Alkali-soluble β -1,6- and β -1,3-glucan analysis: Alkali-soluble β -1,6- and β -1,3-glucan immunodetection was performed as described by LUSSIER et al. (1998) and summarized here. Yeast were pregrown on YPD/G418 for 18 hr at 30°, grown for 24 hr at 30° in 10 ml YPD liquid, and harvested by a 10-min centrifugation at 1860 \times g. Cell pellets were washed with 5 ml of water and resuspended in 100 µl of water plus 100 µl of glass beads. The cells were then subjected to five cycles of vortexing for 30 sec, interspersed with 30-sec incubations on ice. Total cellular protein of the lysate was determined with the Bradford assay (BRADFORD 1976; Bio-Rad, Mississauga, ON, Canada) prior to alkali extraction (1.5 N NaOH, 1 hr, 75°). A set of 1:2 serial dilutions of the alkali-soluble fractions were then spotted on Hybond-C nitrocellulose membrane (Amersham, Oakville, ON, Canada). The immunoblotting was performed in Tris-buffered saline Tween containing 5% nonfat dried milk powder using either a 2000-fold dilution of affinity-purified rabbit anti-\beta-1,6-glucan primary antibody (LUSSIER et al. 1998) or a 1000-fold dilution of anti-β-1,3glucan primary antibody (Biosupplies Australia Pty, Victoria, Australia), both with a 2000-fold dilution of horseradish peroxidase goat anti-rabbit secondary antibody (Amersham). The membranes were developed with a chemiluminescence detection kit (Amersham). Dot blots were scanned with a UMAX Astra 1220s scanner and signals were quantitated with Adobe Photoshop software, using the histogram function. The level of β -1,6- and β -1,3-glucan for each mutant was estimated by a comparison with a wild-type dilution series, with mutants classified by ranges of 20-35% (see footnote in Table 5).

RESULTS

K1 toxin sensitivity of deletion mutants: The toxin sensitivities of deletion mutants for 5718 genes were

compared to those of the parental strain. The screen was performed on haploid ($MAT\alpha$) and homozygous diploid mutants, with toxin sensitivity being almost identical in both backgrounds. The heterozygous diploid collection was also tested, with the finding that 42 genes have a haploinsufficient toxin phenotype. The individual deletion of most genes has no effect on toxin sensitivity. These aphenotypic mutations include genes with a wide range of other phenotypes, such as slow growth and respiratory deficiency, and provide an important control for trivial cellular alterations that might affect the killing zone phenotype. For mutants in almost all genes, despite some affliction, the killer phenotype is wild type. Mutants in 268 genes (4.7%) have a phenotype distinct from wild-type toxin sensitivity, with 15 of these genes previously known to have such a phenotype (SHAHINIAN and BUSSEY 2000; DE GROOT et al. 2001). Tables 2–4 list these mutants in functional groupings. A given gene is listed just once although some could be included in more than one category. Although the phenotypes are significant and reproducible, most null mutants have partial phenotypes. For example, among 155 haploid-resistant mutants, only 30 are fully resistant at the toxin concentration used (Table 2). Toxin sensitivity can be suppressed or enhanced in mutants, leading to resistance or hypersensitivity. Toxin resistance, which was always found as a recessive phenotype, is likely caused by a loss of function of some component needed for toxin action. In hypersensitive mutants the mutation synthetically enhances toxin lethality and can be functionally informative. Among the mutations resulting in a toxin phenotype, 42 were in uncharacterized open reading frames (ORFs) of unknown function. Of these, 3 were given a KRE (killer toxin resistant) number, and 8 genes with hypersensitive mutants were called FYV (function required for yeast viability upon toxin exposure) and given a number (Tables 2-4).

Mutants for 118 genes with toxin phenotypes were examined for altered sensitivity to SDS, calcofluor white, and hygromycin B as hypersensitivity or resistance to these compounds is indicative of cell surface defects (LUSSIER et al. 1997; ROSS-MACDONALD et al. 1999). Mutants in 88 of these genes showed some additional phenotype (Tables 2–4), independently suggesting that they have some cell surface perturbation. As β -1,6-glucan is the primary component of the cell wall receptor for the toxin, mutants in 144 genes with toxin phenotypes were examined for alkali-soluble β -1,6- and β -1,3-glucan levels (Table 5) with 63 showing an altered level of one or both polymers. Genes previously identified as killer resistant provide positive controls for this global screen (Tables 2 and 4). A number of characterized genes not known to have altered toxin sensitivity were found, suggesting that they have roles in cell wall or surface organization. Most mutants fall into a limited set of functional classes and define specific areas of cellular biology, some of which are described below (see also Tables 2 and 3).

Glucan synthesis: The yeast cell wall is made principally of four components: mannoproteins, chitin, β -1,3glucan, and β -1,6-glucan (ORLEAN 1997; LIPKE and OVALLE 1998). Protein mannosylation and β-1,6-glucan synthesis defects are known to lead to toxin resistance by altering the cell wall receptor for the toxin (see SHAH-INIAN and BUSSEY 2000 for a review; BREINIG et al. 2002). Many mutations resulting in resistance to the K1 toxin have a reduced amount of β -1,6-glucan in the cell wall and show slow growth or inviability depending on the severity of the defect, and we anticipated finding new genes affecting these processes. A complex pattern of glucan phenotypes was found among the mutants examined for alkali-extractable β -1,6- and β -1,3-glucan levels, with reduced or elevated amounts of one or both polymers found (Table 5). Of mutants in 63 genes with glucan phenotypes, 55 had effects on β -1,6-glucan levels, with the remaining 8 having β -1,3-glucan-specific alterations. Of the 55 with β -1,6-glucan phenotypes, 40 also had some β -1,3-glucan phenotype, with 15 showing a β-1,6-glucan-specific phenotype. Principal findings are outlined below.

β-1,6-Glucan reduced: Mutants for five genes showing partial toxin resistance had specific but partial alkalisoluble β-1,6-glucan reductions. Among these was the β-1,3-glucan synthesis-associated gene *FKS1*, and this mutant also had reduced levels of alkali-insoluble β-1,3-glucan (Figure 1B; Table 5). The involvement of Fks1p in both β-1,3- and β-1,6-glucan biogenesis has been studied further (DIJKGRAAF *et al.* 2002). Mutants in *CNE1* encoding yeast calnexin have less β-1,6-glucan (SHAHI-NIAN *et al.* 1998), and this is also a mutant phenotype of the uncharacterized gene *YKL037W* encoding a small integral membrane protein.

 β -1,6-Glucan reduced with altered β -1,3-glucan: *big1* mutants had greatly reduced levels of β -1,6-glucan and an increase in β -1,3-glucan. *BIG1* is a conditional essential gene retaining partial viability on medium with osmotic support (BICKLE et al. 1998). Heterozygous big1/ BIG1 diploids showed haploinsufficient toxin resistance (Table 4), and haploid mutant cells grew very slowly on medium containing 0.6 M sorbitol and were toxin resistant (Figure 1A). Determination of the amount of alkali-insoluble glucan in the cell wall of a *big1* mutant showed that the β -1,6-glucan was 5% of wild-type levels (Figure 1B). The amount of β -1,3-glucan in *big1* mutants increased, possibly through some wall compensatory mechanism. Elsewhere, we have extended work on the role of Big1p in β -1,6-glucan biogenesis (Azuma *et al.* 2002).

Mutants for 13 genes had reductions in both alkalisoluble β -1,6- and β -1,3-glucan (Table 5), and three are described briefly below. *smi1/knr4* mutants are resistant both to the K1 toxin and to the K9 toxin from *Hansenula mrakii* and have wall glucan defects and a reduced *in vitro* glucan synthase activity (Hong *et al.* 1994a,b). Smi1p localized to cytoplasmic patches near the presumptive

Gate nume ORF Description of gate product Itaploid Heterorygous Homogynes white Hyporwrein B 3DS <i>H100</i> Y110 Synther Hundle protein intase: 66 67 78 5 8 <i>H100</i> Y110 Synther Hundle protein intase: 66 67 83 8				Kl killer toxin de	ath zone (%)	Calcofluor		
PHO00T. Linusce, phophataec, signal transluction (16 gene)PHO00YCJ010Cyclin diperdent profit $1.$ Linusce, phophataec, signal transluction (16 gene) $3.$ <td< th=""><th>Gene name</th><th>ORF</th><th>Description of gene product</th><th>Haploid Heterozygo</th><th>us Homozygous</th><th>white</th><th>Hygromycin H</th><th>SDS</th></td<>	Gene name	ORF	Description of gene product	Haploid Heterozygo	us Homozygous	white	Hygromycin H	SDS
PR0000 $V010000$ $Ceilin thein teacts with Phosisp protein kinase56$			1. Kinases, phosphatases, signal tran-	duction (16 genes)				
H1003 W1031C Cyclin dependent potent later 55 with 37 R 37 8 with 37 8 35 with 36 with 36 with 36 with 36 36 with 36 <	PHO80	YOL001W	Cyclin that interacts with Pho85p protein kinase	48 85	63	S	s	wt
TIP3REDGRContain visual propertion from the propertion from the propertion for RholpContained to the chainContained to the chain	PH085	YPL031C	Cyclin-dependent protein kinase	56 wt	37	Я	S	S
CAL2CORRelianceCalabra	PTP3	YER075C	Protein tyrosine phosphatase	65 wt	63	Я	wt	wt
$MC7^ MC8^ MC8^-$ <	CKA2	YOR061W	Casein kinase II α' chain	65 wt	63	Я	wt	wt
 IZMA PROSING SerVirt Protein Enhance FLO MARKS SerVirt Protein Enhance FLO MARKS SerVirt Protein Enhance FLO MARKS SerVirt Protein Enhance SKP790 NERORS SerVirt Protein SKP790 NERORS SerVirt Protein SKP700 NERORS SerVirt Protein FLI TAW Reprotein Enhance SKR MARII C Repart Endancy Protein FLI TAW Repristion Protein SKR MARII C Servirt Protein FLI TAW Reprotein Protein SKR MARII C Servirt Enhance SKR MARII C Servirt Enhance SKR MARII C Servirt Enhance SKR MARII C Servirt Protein SKR MARII C TARRES PROPERCIPATION NERO DE SERVIRATION NERO DE SERVIR	$SAC7^a$	YDR389W	GTPase-activating protein for Rho1p	67 wt	85	S	wt	wt
 <i>PTC1</i> <i>TC1</i> <i>TC1</i> <i>TC1</i> <i>TC1</i> <i>TC1</i> <i>TC1</i> <i>TC1</i> <i>TC1</i> <i>TC2</i> <i>TC2</i>	ELMI	YKL048C	ser/thr-specific kinase	69 wt	58	S	wt	S
 KN35 KN040M KN940M KNP40M KNP40M<	PTCI	YDL006W	Protein serine/threonine phosphatase 2c	71 wt	64			
 <i>XNP155</i> <i>XNP155</i> <i>XNP035</i> <i>XN</i>	KIN3	YAR018C	ser/thr protein kinase	72 wt	70			
 XIP 190 XKR05W Site regulatory protein ZRP 190 XKR05W Gamine medice/abinding regulatory protein ZRP 100 XKR05W Gamine medice/abinding regulatory protein ZRD 1113W Phosphotyrosyl phosphates activator ZRD 1113W Phosphotyrosyl phosphates activator ZLD 113W Phosphotyrosin phosphate transporter ZLD 113W Phosphotyrosin phosphate activator ZLD 113W Phosphotyrosin phosphates activator ZLD 113W Phosphotyrosin phosphates activator ZLD 113W Phosphotyrosin phosphates activator ZLD 113W Phosphotyrosin phosphate transcription activator complex ZLD 113W Phosphotyrosin phosphates activator ZLD 113W Phosphotyrosin phosphotyrosin activator complex ZLD 113W Phosphotyrosin activator activator ZLD 113W Phosphotyrosin activato	SAP155	YFR040W	Sit4p-associated protein	73 wt	62			
CMA2: TRROW Guine neclocibe induing regulatory protein 74 wit 83 wit	SAP190	YKR028W	Sit4p-associated protein	74 wt	75			
RBUMLD15MPhosphares effication55with69RLCSNMR0166W11076MRegularoy suburi for set/fur phosphares CLe7p82with70RLO6W1117MInogratic phosphares CLe7p83with70RLO6W1117MInogratic phosphares CLe7p83with70RLO6W1117MInogratic phosphares CLe7p83with70RLO6W1117MInogratic phosphares CLe7p83with70SMCXR041CCeneral transcription08100SMCXR0412GCeneral transcription08300SMCXR023CCeneral transcription08300SMCCTD kinase, gamma subuit; RNA Pol II regulation084708withSMC2XM1281CCeneral transcription repressor08300withSMC3XM1031CTranscription repressor084708withSMC3XM1031CTranscription repressor084708with70SM22XM023CRequired or quices complex08with 758withwithSM23XM1281CRequired or quices complex08with 758withwithSM24XM1031CTranscriptional regulation08with 758withwithSM24XM1031CTranscriptional regulation08 </td <td>$GPA2^a$</td> <td>YER020W</td> <td>Guanine nucleotide-binding regulatory protein</td> <td>74 wt</td> <td>83</td> <td>wt</td> <td>wt</td> <td>wt</td>	$GPA2^a$	YER020W	Guanine nucleotide-binding regulatory protein	74 wt	83	wt	wt	wt
MKSI YNL076W Negritive regulator of Base-AMP pathway 82 wt 83 wt 70 RLGS YNL17R Regulatory submit for servither phosphatase Glorp 83 wt 70 RHOS YLL17W Inosphoprotein phosphatase Glorp 83 wt 70 RLG WR113C General repressor of transcription 2. Transcription (21 gens) 0 81 0 XZMS YRL17W Inosphoprotein phosphatase 2. Transcription 0 83 0 XIVE XMR21A General repressor of transcription 0 81 0 wt wt XVR12N Component of SNLSNF global transcription activator complex 0 81 0 wt MA XVR21A XMR02M Component of SNLSNF global transcription activator 0 wt MA MA XVR12N NNR02M Component of SNLSNF global transcription activator 0 wt MA XVR02M Component of SNLSNF global transcription activator 0 wt MA XVR02M Component of SNLSNF global transcription activator 0 wt MA XVR02M Submit of RNA Pol II regulation 1 wt 76 wt XVR02M Submit of	RRD1	YIL153W	Phosphotyrosyl phosphatase activator	75 wt	69			
GLOB YMR31IC Regulatory subunit for ser/thr phosphates GLC7p 83 wt 70 RHO66 YLL17W Prosphoprotein phosphates 2. Transcription (21 gens) 83 wt 70 RLA PRL17W Phosphoprotein phosphates 2. Transcription (21 gens) 0 81 0 SW6 YRL17W Phosphoprotein phosphates 2. Transcription (21 gens) 0 83 0 SW6 YRL12W Central transcription repressor 0 83 0 0 SW12 YML12W CTD kinase, gamma suburit; RNA Pol II regulation 0 83 0 0 SW12 YML12W Component of SWL/SNF global transcription activator complex 0 wt 77 N wt wt STM YML12W Component of SWL/SNF global transcription activator complex 0 wt 77 N wt wt STM YML12W General transcriptional regulator 0 wt 76 N wt Wt STM YML12W General transcriptional regulator 0 wt 75 N wt 7	MKSI	WID76W	Negative regulator of Ras-cAMP pathway	82 wt	83			
 WH046 YIL1TW Inorganic phosphataer ansporter WH046 YIL1TW Inorganic phosphataer ansporter WH126 YEL179W Phosphoprotein phosphataer S. Transcription (21 gens) S. Tran	GLC8	YMR311C	Regulatory subunit for ser/thr phosphatase Glc7p	83 wt	69			
SML6 \vec{Y} TL179WPhosphoprotetin phosphatase2. Transcription (21 genes)55wt67SWL7WR112CCeneral represor of transcription2. Transcription (21 genes)0830TUP1YCR084GGeneral transcription08300TUP1YCR084GGeneral transcription08300CTX33YML112WCTD binase, gamma submit; RNA Pol II regulation08300CTM3YML112WCTD binase, gamma submit; RNA Pol II regulation0wt70WtWtSV12YR8052CRequited for glucose derepression0wt70Wt70WtSV12YNR052CRequined for glucose derepression0wt70Wt70WtWtSV12YNR052CRequined for glucose derepression10wt70wt75WtWtSV12YNR052CRequined for glucose derepression70wt75NtWt76SwtWtSV12YNR0527WSilencing regulatory and DNA-repair70wt75WtWtWtWtSV2YNR0527WSilencing regulatory protein73wt75WtWtWtWtWtWtSV12YNR05127Silencing regulatory protein73wt75wtWtWtWtWtWtWtWtWtWtWtWtWtWtWt <t< td=""><td>PHO86</td><td>YIL117W</td><td>Inorganic phosphate transporter</td><td>83 wt</td><td>70</td><td></td><td></td><td></td></t<>	PHO86	YIL117W	Inorganic phosphate transporter	83 wt	70			
SXV6 YBR112C General represor of transcription 2. Transcription (21 genes) TTZP1 VCR036C General transcription represon 0 81 0 TTZP1 VCR037C Ceneral transcription represon 0 81 0 SN712 YNR032K General transcription represon 0 83 0 SN712 YNR032K General transcription activator 0 84 M M SN712 YNR032K Required for transcription activator 0 84 M M M SN712 YNR032K Required for transcriptional regenor 0 W M	SAL6	YPL179W	Phosphoprotein phosphatase	85 wt	67			
 SN6 YBR112C General repressor of transcription SV723 YML112W CTRABSHC General repressor CTV21 YCR0894C General repressor of transcription activator complex CZMA YML112W CTRABSHC General transcription activator complex YML021C Transcriptional regulator SV723 YML021C Transcriptional regulator SV1202 YMR052M Component of SWA Pol II fegulation SV12012 YML011C Transcriptional regulator SV12012 YML011 Submit of RNA Pol II fegulation SV1212 YML011 Submit of RNA Pol II fegulation SV1212 YML011 Submit of RNA Pol II fegulation SUM448W General transcriptional adaptor context SV2 SV1313 YML139W CTD kinase, apha submit; RNA Pol II regulation ACZ2 YML131C Metallohiotein expression activator ACZ2 MUL131C Metallohiotein expression activator ACZ3 YML132C Metallohiotein expression activator <l< td=""><td></td><td></td><td>2. Transcription (21 gr</td><td>nes)</td><td></td><td></td><td></td><td></td></l<>			2. Transcription (21 gr	nes)				
TUPI YCR084.C General repression 0 83 0 CT/S YML112W CTD kinase, gamma submit; RNA Pol II regulation 0 wr NA CT/S YML112W CTD kinase, gamma submit; RNA Pol II regulation 0 wr NA CT/S YML020; CTD kinase, gamma submit; RNA Pol II regulation 0 wr NA P072 YNR023W Component of SWL/SYF global transcription activator complex 0 wr NA P072 YNR032W General transcriptional regulator 60 wr 70 wr wr DA12 YPL10W Submit of RNA Pol II regulation 69 wr 76 Nr wr ACZZ YIR130W CTD kinase, apha submit; RNA Pol II regulation 70 wr 75 R wr wr ACZZ YIR131C Metalothonein expression activator 70 wr 75 wr wr wr ACZZ YIR131SW General transcription adaptor or coactivator 70 wr 75 wr wr wr wr wr ACZZ YIR13	SIND	VRP119C	Canami ranressor of transcription	0 81	0			
 <i>TUT:</i> MALLING: Component of SWL/SNF global transcription activator complex <i>NML112W</i> Thu Component of SWL/SNF global transcription activator <i>SNP12</i> YPL101W <i>SUP12</i> Submit of NNA POI II elongator complex <i>ADA2</i> VB448W <i>General transcriptional adaptor or coactivator</i> <i>GTK1</i> YRL139W <i>CID kinase, alpha submit;</i> RNA POI II regulation <i>CTK1</i> YRL139W <i>General transcriptional adaptor or coactivator</i> <i>GTK1</i> YRL139W <i>General transcriptional adaptor or coactivator</i> <i>GTK1</i> YRL139W <i>General transcriptional adaptor or coactivator</i> <i>GTK1</i> YRL139W <i>GIR KR101W</i> Silencing regulatory and DNA-repair protein <i>KR13</i> YLR894C <i>Elongator complex,</i> RNA POI II regulation <i>KR13</i> YRL01W <i>KR101W</i> Member of the Snf2p family of ATP-dependent DNA helicases <i>KR13</i> YRL01W <i>KR101W</i> Member of the Snf2p family of ATP-dependent DNA helicases <i>KR13</i> YRL01W <i>KR101W</i> Member of the Snf2p family of ATP-dependent DNA helicases <i>KN26X</i> YRL01W <i>KR101W</i> Member of the Snf2p family of ATP-dependent DNA helicases <i>KN26X</i> YRL01W <i>KR101W</i> Member of the Snf2p family of ATP-dependent DNA helicases <i>KN26X</i> YRL01W <i>KR101W</i> Member of the Snf2p family of ATP-dependent DNA helicases <i>KN26X</i> YRL01W <i>KR101W</i> Member of the Snf2p family of ATP-dependent DNA helicases <i>KN26X</i> YRL01W <i>KR101W</i> Member of the Snf2p family of ATP-dependent DNA helicases <i>KN26X</i> YRL01W <i>KR101W</i>		VCD084C	Concern repressor of transcription	0 01				
CLAS YML112X VML112X 0 wt 0 wt 0 wt 0 wt 0 wt		ICKU04C		0 00				
 <i>XMP2</i> YNN023M Component of SWL2W component of SWP2 Munic STM Component of SWP2 Munic STM Component of SWP2 Munic STM STM STM STM STM STM STM STM STM STM	CI KS	YML112W	CID kinase, gamma subunit; KNA Pol II regulation	0 wt	0 ; 0			
CCR4YAL021CTranscriptional regulator42wt57RwtwtPOP2YNL0321CFranscriptional regulatorELP4WIL0101W55RwtWt70POP2YNL0101WSubmit of RNA Pol I elongator complex66wt76SwtwtWtADA2YNL0101WSubmit of RNA Pol I elongator complex69wt63SwtwtWtADA2YNL0139WCTD kinase, alpha submit; RNA Pol II regulation70wt75RwtwtwtAGE2YNL139WCTD kinase, alpha submit; RNA Pol II regulation70wt75RwtwtwtwtwtSR4YDR27WSilencing regulatory and DNA-repair protein73wt75wt </td <td>SNF12</td> <td>YNR023W</td> <td>Component of SWI/SNF global transcription activator complex</td> <td>0 wt</td> <td>NA</td> <td></td> <td></td> <td></td>	SNF12	YNR023W	Component of SWI/SNF global transcription activator complex	0 wt	NA			
POP2YNR052CRequired for glucose derepression60wt70ELP4YPL101WSubmit of RNA Pol II clongator complex68wt76SwtwtADA2YPR101WSubmit of RNA Pol II clongator complex68wt75RRwtwtADA2YRL139WCTD kinase, alpha submit; RNA Pol II regulation70wt58wt </td <td>CCR4</td> <td>YAL021C</td> <td>Transcriptional regulator</td> <td>42 wt</td> <td>57</td> <td>R</td> <td>wt</td> <td>wt</td>	CCR4	YAL021C	Transcriptional regulator	42 wt	57	R	wt	wt
 ELP4 YPL101W Submit of RNA Pol II elongator complex ADA2 YPL101W Submit of RNA Pol II elongator complex ADA2 YDR45W General transcriptional adaptor or coactivator CTXK1 YKL139W CTD kinase, alpha submit; RNA Pol II regulation TXK1131W CTD kinase, alpha submit; RNA Pol II regulation T1 wt 75 Wt 75 R R W Wt 75 MtR131V Silencing regulatory and DNA-repair protein XIR3 YLR36L Elongator complex; RNA Pol II-associated protein XIR3 YLR36L Elongator complex; RNA Pol II-associated protein XIR3 YLR31C Cyclin-dependent CTD kinase XPL042C Cyclin-dependent CTD kinase XPL042C Cyclin-dependent CTD kinase XPL032V Silencing regulatory protein XR101W Member of the Snf2p family of ATP-dependent DNA helicases XPL032 WtR312W Submit of RNA Pol II elongator complex XPL032 WtR312W Submit of RNA Pol II elongator complex XPL032 WtR312W Submit of RNA Pol II elongator complex XPL032 WtR312W Submit of RNA Pol II elongator complex XPL032 WtR312W Submit of RNA Pol II elongator complex XPL032 WtR312W Submit of RNA Pol II elongator complex XPL032 WtR312W Submit of RNA Pol II elongator complex XPL032 WtR312W Submit of RNA Pol II elongator complex XPL032 WtR312W Submit of RNA Pol II elongator complex XPL032 WtR312W TIARSEN XPL036 Histone and other protein accyltransferase XPL036 Histone and other protein accyltransferase XPL036 WtR326W Transcription regulatory protein XPL037 WtR36W Transcription regulatory protein XPR08 Transcription regulatory protein XPT00 Y1L29C Transcription initiation factor), 30 kD XPL036 Wtransferase XPL036 Wtransferase	POP2	YNR052C	Required for glucose derepression	60 wt	70			
ADA2YDR448WGeneral transcriptional adaptor or coactivator69wt63CTK1YKL139WCTD kinase, alpha submit; RNA Pol II regulation70wt58AGE2YLR131CMetallothionein expression activator71wt75RwtwtAGE2YLR131CMetallothionein expression activator72wt75Rwt <td>ELP4</td> <td>YPL101W</td> <td>Subunit of RNA Pol II elongator complex</td> <td>68 wt</td> <td>76</td> <td>s</td> <td>wt</td> <td>wt</td>	ELP4	YPL101W	Subunit of RNA Pol II elongator complex	68 wt	76	s	wt	wt
CTK1YKL139WCTD kinase, alpha subunit; RNA Pol II regulation70wt58%AGE2YIL139WCTD kinase, alpha subunit; RNA Pol II regulation71wt75RRwtwtSIR4YDR227WSilencing regulatory and DNA-repair protein72wt75RWtwt<	ADA2	YDR448W	General transcriptional adaptor or coactivator	69 wt	63			
ACE2YLR131CMetallothionein expression activator71wt75RwtwtSIR4YDR27WSilencing regulatory and DNA-repair protein72wt75RwtwtwtIK13YLR384CElongator complex; RNA Pol II-associated protein73wt75wt<	CTKI	YKL139W	CTD kinase, alpha subunit; RNA Pol II regulation	70 wt	58			
SIR4YDR227WSilencing regulatory and DNA-repair protein72wtNAwtwtwtwtIK13YL1834CElongator complex; RNA Pol II-associated protein73wt75wtwtmtwtwtSSN3YPL042CCyclin-dependent CTD kinase73wt7878wt78SSN3YPL042CCyclin-dependent CTD kinase73wt7878wt78SIR1YRR101WSilencing regulatory protein73wt72wt72FU/30YL1019WMember of the Snf2p family of ATP-dependent DNA helicases76wt72EPL6YRR101WSilencing regulatory protein80wt76wt72SN1312WSubunit of RNA Pol II elongator complex80wt76wt76SP710YL127CTranscription regulatory protein80wt76SSSSP710YMR263WComponent of the Rpd3p-Sin3p histone deacetylase complex82wt56SSSSSAP30YMR263WTranscriptional represor83wt32SS <td< td=""><td>ACE2</td><td>YLR131C</td><td>Metallothionein expression activator</td><td>71 wt</td><td>75</td><td>R</td><td>R</td><td>wt</td></td<>	ACE2	YLR131C	Metallothionein expression activator	71 wt	75	R	R	wt
IK13YLR384CElongator complex; RNA Pol II-associated protein73wt75SN3YPL042CCyclin-dependent CTD kinase73wt78SIR1YKR101WSilencing regulatory protein73wt78SIR1YKR101WSilencing regulatory protein73wt72FUN30YAL019WMember of the SnP2p family of ATP-dependent DNA helicases76wt72FUN30YAL019WMember of the SnP2p family of ATP-dependent DNA helicases76wt72FUN30YMR312WSubunit of RNA Pol II elongator complex80wt76SPL6YMR312WSubunit of RNA Pol II elongator complex80wt76SIT10YJL127CTranscription regulatory protein80wt70SAP30YMR263WComponent of the Rpd3p-Sin3p histone deacetylase complex82wt56SSSIG1YEIIR subunit (transcription initiation factor), 30 kD85wt56SSS	SIR4	YDR227W	Silencing regulatory and DNA-repair protein	72 wt	NA	wt	wt	wt
SSN3YPL042CCyclindependent CTD kinase73wt78SIR1YKR101WSilencing regulatory protein73wt73FUN30YAL019WMember of the Snf2p family of ATP-dependent DNA helicases76wt72FUN30YAL019WMember of the Snf2p family of ATP-dependent DNA helicases76wt72FUN30YAL019WMember of the Snf2p family of ATP-dependent DNA helicases79wt72EPL6YMR312WSubunit of RNA Pol II elongator complex80wt76SP10YJL127CTranscription regulatory protein80wt70SAP30YMR263WComponent of the Rpd3p-Sin3p histone deacetylase complex82wt70SAP30YMR263WTranscription lepresor83wt56SSSIG1YFL129WTHIF subunit (transcription initiation factor), 30 kD85wt56SS	IKI3	YLR384C	Elongator complex; RNA Pol II-associated protein	73 wt	75			
SIR1YKR101WSilencing regulatory protein73wt80FUN30YAL019WMember of the Sn2p family of ATP-dependent DNA helicases76wt72FUN30YAL019WMember of the Sn2p family of ATP-dependent DNA helicases76wt72EPL6YMR312WSubunit of RNA Pol II elongator complex79wt76SPL03YPL086CHistone and other protein acetyltransferase80wt65SPT10YJL127CTranscription regulatory protein80wt70SAP30YMR263WComponent of the Rpd3p-Sin3p histone deacetylase complex82wt65SSSIG1YFL129WTHIF subunit (transcription initiation factor), 30 kD85wt56SSS	ENSS	YPL042C	Cyclin-dependent CTD kinase	73 wt	78			
FUN30YAL019WMember of the Snt2p family of ATP-dependent DNA helicases76wt72EPL6YMR312WSubunit of RNA Pol II elongator complex79wt58ELP3YPL086CHistone and other protein acetyltransferase80wt65SPT10YJL127CTranscription regulatory protein80wt70SAP30YMR263WComponent of the Rpd3p-Sin3p histone deacetylase complex82wt70SIG1YFL129WTranscriptional repressor83wt56SSAF14YPL129WTHIF subunit (transcription initiation factor), 30 kD85wt56SS	SIRI	YKR101W	Silencing regulatory protein	73 wt	80			
EPL6YMR312WSubunit of RNA Pol II elongator complex79wt58ELP3YPL086CHistone and other protein acetyltransferase80wt65SPT10YJL127CTranscription regulatory protein80wt70SAP30YMR263WComponent of the Rpd3p-Sin3p histone deacetylase complex82wt65SIG1YER068WTranscriptional repressor83wt56SSTAF14YPL129WTFIIF subunit (transcription initiation factor), 30 kD85wt56SSS	FUN30	YAL019W	Member of the Snf2p family of ATP-dependent DNA helicases	76 wt	72			
ELP3YPL086CHistone and other protein acetyltransferase80wt65SPT10YJL127CTranscription regulatory protein80wt70SAP30YMR263WComponent of the Rpd3p-Sin3p histone deacetylase complex82wt65SIG1YER068WTranscriptional repressor83wt56SSAF14YPL129WTFIIF subunit (transcription initiation factor), 30 kD85wt56SSS	EPL6	YMR312W	Subunit of RNA Pol II elongator complex	79 wt	58			
SPT10 YJL127C Transcription regulatory protein 80 wt 70 SAP30 YMR263W Component of the Rpd3p-Sin3p histone deacetylase complex 82 wt 65 SIG1 YER068W Transcriptional repressor 83 wt 56 S S TAF14 YPL129W TFIIF subunit (transcription initiation factor), 30 kD 85 wt 56 S S S	ELP3	YPL086C	Histone and other protein acetyltransferase	80 wt	65			
SAP30 YMR263W Component of the Rpd3p-Sin3p histone deacetylase complex 82 wt 65 SIG1 YER068W Transcriptional repressor 83 wt 32 S S TAF14 YPL129W TFIIF subunit (transcription initiation factor), 30 kD 85 wt 56 S S S	SPT10	YJL127C	Transcription regulatory protein	80 wt	70			
SIG1 YER068W Transcriptional repressor S	SAP30	YMR263W	Component of the Rpd3p-Sin3p histone deacetylase complex	82 wt	65			
TAF14 YPL129W TFIF subunit (transcription initiation factor), 30 kD 85 wt 56 S S	SIGI	YER068W	Transcriptional repressor	83 wt	32	S	S	S
	TAF14	YPL129W	TFIIF subunit (transcription initiation factor), 30 kD	85 wt	56	S	S	S

TABLE 2

Genes whose deletion causes resistance to the K1 killer toxin (haploid or homozygous diploid death zone <75% of the wild type)

878

N. Pagé et al.

TABLE 2	Continued)
	S

			Kl kil	ler toxin death	zone (%)	Calcofluor		
ne name	ORF	Description of gene product	Haploid	Heterozygous	Homozygous	white	Hygromycin B	SDS
		3. Actin organization (7 ger	nes)					
RC18	YLR370C	Subunit of the Arp2/3 complex	0	wt	0			
PI^a	YLR337C	Verprolin, involved in cytoskeletal organization	0	WL	0	R	S	S
$SI7^a$	YOR181W	Component of actin cortical patches	0	wt	NA	ŝ	ŝ	ŝ
C6	YDR129C	Actin filament bundling protein. fimbrin	49	WL	57	S	S	wt
D1	VI DALOW	Involved in control octin fination	69		19	2)	1
11	WD169C		7 0	۵۴ M	101			
372	XDK10ZC	Nap1P-binding protein	10	80	61			
A2	YNL243W	Cytoskeleton assembly control protein	71	wt	NA	S	S	S
		4. Lipid/sterol synthesis (9 g	renes)					
1.0.1	101020101	I hild fatter and atomal matchalian and almust terrardised		+	0			
	ILLZ00W	Lipia, iauy-acia, and sterol inetabolism and signal transduction \widetilde{c}	ה נ	١M	0;	¢	c	(
3G2	YMR202W	C-8 sterol isomerase	55	wt	51	S	s	S
RG28	YER044C	Protein involved in synthesis of ergosterol	57	wt	52	S	S	S
KI^a	YDR315C	IP5 kinase	66	wt	79			
$RG4^{a}$	YGL012W	Sterol C-24 reductase	73	wt	70	S	S	S
IDI	YAL013W	Regulator of phospholipid metabolism	73	wt	72			
SHI^a	YAR044W	Similarity to human oxysterol binding protein (OSBP)	77	wt	72			
$R4^{a}$	YLR372W	Sterol isomerase, fatty acid elongase	83	wt	74			
CB83	YJL134W	Sphingoid base-phosphate phosphatase, putative regulator	84	wt	84			
		5. Secretion/endocytosis (23 g	genes)					
$V41^{a}$	YMI .067C	COPII F.R-Goløi vesicle nrotein	0	wt	0			
10	VGR167W	Clathrin light chain	0	wf	~ C	y.	X	U.
26114	VCD166W	TDADDI Colri vasioular transnort nrotain		WT	~	o u	o 1	v
	VDR097C	Involved in protein sorting in the late Colgi		WL MT		C	WL	מ
C1a	We16 13V	Pole in Colmi function and actin strateleton organization		art M		J	J	U
IE Aa	VOD09EC	Dominod for mother coll models cons commission and for and outsain		wr		o u	o u	
1E4" X/A 0	VDD290C	Required for mouner-cen-specific gene expression and for endocytosis		ML ML		0 0	0 0	N S
	DU25AU			WL		ימ	0	20
11	YJLZU4C	f-box protein involved in endocytic membrane trainc	0	M	0	n	^	n
C2	YDR484W	Suppressor of actin mutation, involved in vesicular transport	0	wt	NA			
8V46	YAL042W	Vesicular transport between Golgi and ER	38	wt	42	wt	wt	wt
574	YDR372C	Vacuolar protein sorting	53	wt	70	S	S	S
$C8^{a}$	YEL013W	Required for vacuole inheritance and vacuole targeting	55	79	65	wt	wt	wt
ICI	YGL206C	Clathrin heavy chain	59	wt	0			
$DD3^a$	YGL223C	Complex with Sec34p-Sec35p involved in vesicle transport to the Golgi	59	wt	69	S	S	S
$_{9Lc}$	YLR262C	GTP-binding protein of the rab family	69	wt	73			
$2VI4^{a}$	YGL054C	Strong similarity to D. melanogaster cni protein	71	wt	76			
002	YNL041C	Complex with Sec34p-Sec35p involved in vesicle transport to the Golgi	73	wt	73			
RL3	YPL051W	Required for transport from ER to Golgi and Golgi to vacuoles	73	wt	80			
		· ·						

K1 Toxin Phenotypes of Yeast Genes

879

			Kl kille	rr toxin death	zone (%)	Calcoffmer		
Gene name	ORF	Description of gene product	Haploid F	Ieterozygous	Homozygous	white	Hygromycin B	SDS
VPS61ª	YDR136C VKP090W	Vacuolar protein sorting Vacuolar motein sorting	78 78	wt	67 68			
ISTU US	YKR001C	Member of the dynamin family of GTPases: vacuolar sorting protein	64	wt	89			
$PEP3^a$	YLR148W	Vacuolar protein sorting	84	wt	57	s	S	S
$END3^{a}$	YNL084C	Required for endocytosis and cytoskeletal organization	85	wt	70			
		6. Protein glycosylation (13 g	genes)					
CWH41	YGL027C	ER glucosidase I	0	wt	0	S	S	wt
GDAI	YEL042W	Guanosine diphosphatase	0	wt	0	s	S	S
$ROT2^a$	YBR229C	ER glucosidase II, catalytic subunit	0	wt	0	s	S	S
$YUR1^a$	YJL139C	Mannosyltransferase	0	wt	0			
ELSO	YOR085W	Oligosaccharyltransferase gamma subunit	0	92	33	S	S	S
PMTI	YDL095W	Mannosyltransferase	0	wt	68			
KRE2	YDR483W	α -1,2-Mannosyltransferase	0	wt	NA			
CWH8	YGR036C	Dolichol-P-phosphatase	0	wt	75	s	S	S
ALG6	YOR002W	Glucosyltransferase	53	wt	72	S	wt	S
ALG8	YOR067C	Glucosyltransferase	61	wt	79	S	wt	S
MNN5 ^a	YJL186W	Putative mannosyltransferase	64	wt	81			
ALG5	YPL227C	Dolichol-P-glucose synthetase	70	wt	79	S	wt	S
$PMT2^a$	YAL023C	Mannosyltransferase	77	wt	56	S	wt	S
		7. Protein modification or degradati	ion (6 genes)					
MAK10	YEL053C	Subunit of Mak3p-10p-31p N-terminal acetyltransferase	56	wt	73	R	wt	S
$K\!EXI^a$	YGL203C	Carboxypeptidase (YSC- α)	57	wt	70	s	R	S
DOCI	YGL240W	Component of the anaphase-promoting complex	67	wt	80			
$BTSI^{a}$	YPL069C	Geranylgeranyl diphosphate synthase	72	wt	65			
$VPS27^a$	YNR006W	Vacuolar protein sorting-associated protein	80	wt	67			
YPS7	YDR349C	GPI-anchored aspartic protease	83	wt	58	S	S	S
		8. Cell wall organization (8 g	genes)					
$KRE1^a$	YNL322C	GPI-anchored plasma membrane protein	0	62	0	S	S	S
$KRE6^a$	YPR159W	<i>ais</i> -Golgi glucanase-like protein	0	72	0	S	S	S
$FKSI^{a}$	YLR342W	1,3-β-D-Glucan synthase-associated protein	0	85	0	S	S	wt
$CNE1^a$	YAL058W	Calnexin, regulation of secretion and cell wall organization	0	wt	0	s	S	S
$SMI1^{a}$	YGR229C	β-1,3-Glucan synthesis protein	0	wt	0	s	S	S
$SBE22^{a}$	YHR103W	Similarity to budding protein Sbe2p	77	91	80			
SCW4	YGR279C	Glucanase gene family member	84	wt	72			
ECM30	YLR436C	Involved in cell wall biogenesis and architecture	84	wt	73			

880

N. Pagé et al.

 $(\ continued)$

			Kl k	iller toxin death	1 zone (%)	Calcofinor		
Gene name	ORF	Description of gene product	Haploid	Heterozygous	Homozygous	white	Hygromycin B	SDS
		9. Mitochondrial, respiratory, and ATP met	tabolism (17 genes)				
IITWI	YIR118C	Possibly involved in mitochondrial DNA maintenance	0	wt	0			
ATP2	YJR121W	F1F0-ATPase complex, F ₁ β-subunit	0	wt	65			
IMG2	YCR071C	Required for integrity of mitochodrial genome	0	wt	75			
NAM2	YLR382C	Leucine-tRNA ligase precursor, mitochondrial	54	78	79			
OCTI	YKL134C	Mitochondrial intermediate peptidase	09	wt	79			
OXAI	YER154W	Cytochrome oxidase biogenesis protein	65	wt	83			
DIA4	YHR011W	May be involved in mitochondrial function	70	wt	60			
MRPL8	YJL063C	Ribosomal protein L17, mitochondrial	70	wt	73			
MGM101	YJR144W	Mitochondrial genome maintenance protein	70	wt	76			
MRPL38	YKL170W	Ribosomal protein of the large subunit, mitochondrial	71	wt	81			
MRPL33	YMR286W	Ribosomal protein of the large subunit, mitochondrial	72	wt	77			
IMMMI	YLL006W	Required for mitochondrial shape and structure	73	wt	66			
ISA2	YPR067W	Mitochondrial protein required for iron metabolism	73	wt	72			
MRPL27	YBR282W	Ribosomal protein YmL27 precursor, mitochondrial	74	wt	74			
IMGI	YCR046C	Ribosomal protein, mitochondrial	81	wt	73			•
ATP15	YPL271W	F1F0-ATPase complex, F ₁ epsilon subunit	84	wt	55	wt	S	S
BCSI	YDR375C	Mitochondrial protein, involved in the assembly of cyth cl complex	85	wt	81			
		10. Ungrouped genes (16 gen	enes)					
SODI	YIR104C	Copper-zinc superoxide dismutase	0	wt	0			
$UTHI^a$	YKR042W	Involved in the aging process	0	wt	0	wt	wt	wt
DRS2	YAL026C	P-type calcium-ATPase	0	wt	56	wt	S	S
NPL3	YDR432W	Nucleolar protein	31	wt	0	S	S	S
LEM3	YNL323W	Protein with similarity to Ycx1p, mutant is sensitive to brefeldin A	44	wt	45	S	wt	S
$GLYI^a$	YEL046C	L-threonine aldolase, low specificity	45	wt	55	S	S	S
ATSI	YAL020C	α-Tubulin suppressor	11	wt	78			
YTA7	YGR270W	26S proteasome subunit	74	wt	80			
DFG5	YMR238W	Required for filamentous growth, cell polarity, and cellular elongation	74	wt	80			
$THPI^{a}$	YOL072W	Hypothetical protein	76	70	0	s	S	S
CDC50	YCR094W	Cell division cycle mutant	77	wt	62			
NEWI	YPL226W	Member of the nontransporter group of the ABC superfamily	77	wt	66			
LYS7	YMR038C	Copper chaperone for superoxide dismutase Sod1p	78	wt	62			
$FPSI^{a}$	YLL043W	Glycerol channel protein	79	wt	65	S	S	S
UTRI	YJR049C	Associated with ferric reductase activity	84	wt	70			
PEX12	YMR026C	Required for biogenesis of peroxisomes—peroxin	84	wt	72			
							(contin	(pən

TABLE 2 (Continued) 881

			Kl kille	r toxin death	zone (%)	Calcofluor		
Gene name	ORF	Description of gene product	Haploid H	eterozygous	Homozygous	white	Hygromycin B	SDS
		11. Genes of currently unknown function or poc	orly characteriz	ed (19 genes	(
BUD14	YAR014C	Protein of unknown function	54	wt	47	S	S	S
	YFR043C	Hypothetical protein	55	wt	70	wt	wt	wt
a	YKL037W	Weak similarity to Caenorhabditis elegans ubc-2 protein	59	wt	67	S	s	S
a	YGL007W	Questionable ORF	63	wt	70			
a	YNL213C	Hypothetical protein	67	wt	NA	R	S	wt
$PIN4^{a}$	YBL051C	Similarity to Schizosaccharomyces pombe Z66568_C protein	70	wt	70			
	YOR154W	Similarity to hypothetical Arabidopsis thaliana proteins	71	wt	84			
	YLR270W	Strong similarity to YOR173w	71	wt	NA	R	wt	wt
	YNL063W	Similarity to S-adenosyl methionine-dependent methyl-transferase	73	wt	76			
MON2	YNL297C	Unknown function, sensitive to monensin and brefeldin A	80	wt	70			
ISOT	YBR162C	Protein with similarity to Agalp	81	wt	66			
	YER140W	Hypothetical protein	82	wt	66			
SYSIa	YJL004C	Multicopy suppressor of ypt6	82	wt	74			
	YLL007C	Hypothetical protein	83	wt	67			
$EAF6^{a}$	YJR082C	Hypothetical protein	83	wt	76			
	YDR126W	Similarity to hypothetical protein YLR246w and YOL003c	84	wt	66			
	YGR263C	Weak similarity to Eschenichia coli lipase like enzyme	84	wt	68			
KRE27	YIL027C	K1 toxin resistance phenotype; has a hydrophobic domain	85	80	54			
	YBR284W	Similarity to AMP deaminase	85	wt	70			
Mutants n [.] (Table 4). R, ^{<i>a</i>} Indicates	ot listed are , resistant; S, mutants wit	those with a wild-type phenotype in haploid or homozygous diploid b , hypersensitive; wt, wild type to Calcofluor white, Hygromycin B, and h a β-glucan phenotype (see Table 5).	ackground and SDS. NA, not a	l those that a vailable.	re hypersensiti	ve (Table 3) or haploinsuffi	ient

TABLE 2 (Continued) N. Pagé et al.

			K1 ki	ller toxin death	zone (%)	Calcofinor		
Gene name	ORF	Description of gene product	Haploid	Heterozygous	Homozygous	white	Hygromycin B	SDS
		1. Kinases, phosphatases, signal tran	nsduction (8	genes)				
HOGI	YLR113W	ser/thr protein kinase of MAPK family	196	wt	160	wt	wt	S
PBS2	YJL128C	Tyrosine protein kinase of the MAP kinase kinase family	193	wt	179			
ISdS	YDR523C	ser/thr protein kinase	152	wt	NA			
STEII	YLR362W	ser/thr protein kinase of the MEKK family	139	wt	NA	wt	wt	S
SSKI	YLR006C	Two-component signal transducer	135	wt	111	Я	wt	S
SSK2	YNR031C	MAP kinase kinase of the HOG pathway	130	wt	114			
TPD3	YAL016W	ser/thr protein phosphatase 2A, regulatory chain A	122	wt	NA			
DIGI	YPL049C	Downregulator of invasive growth and mating	113	wt	118	R	wt	wt
		2. Transcription (7 ge	enes)					
MED2	YDL005C	Transcriptional regulation mediator	166	wt	NA			
GAL11	YOL051W	RNA Pol II holoenzyme (SRB) subcomplex subunit	158	wt	162	S	S	S
SRB5	YGR104C	RNA Pol II holoenzyme (SRB) subcomplex subunit	131	wt	124	S	S	S
SRB2	YHR041C	RNA Pol II holoenzyme (SRB) subcomplex subunit	124	wt	128			
ITCI	YGL133W	Subunit of Isw2 chromatin remodeling complex	121	wt	125			
UME6	YDR207C	Negative transcriptional regulator	118	wt	139	S	wt	S
SW16	YLR182W	Transcription factor	118	wt	119	S	S	S
		3. RNA processing (6 g	genes)					
PRP18	YGR006W	U5 snRNA-associated protein	148	wt	103	wt	wt	wt
CBC2	YPL178W	Small subunit of the nuclear cap-binding protein complex CBC	139	wt	119	R	wt	wt
CDC40	YDR364C	Required for mRNA splicing	137	wt	NA	S	S	S
NSRI	YGR159C	Nuclear localization sequence binding protein	122	wt	116	S	wt	wt
BRRI	YPR057W	Involved in snRNP biogenesis	120	wt	116	wt	wt	wt
STOI	YMR125W	Large subunit of the nuclear cap-binding protein complex CBC	119	wt	124			

$\widehat{\mathbf{a}}$
ype
ld t
W
the
\mathbf{of}
%
11
ره ده
one
thz
leat
id
plo
dij
sno
zyg
mo
hoi
or
oid
apl
h (h
xin
r tc
ille
1 k
e K
th
y to
ivit
nsit
rsei
pe
s hy
ise
cal
ion
elet
e de
lose
wh
nes
Ge

TABLE 3

K1 Toxin Phenotypes of Yeast Genes wt wt 883

(continued)

¥ ¥

Wt Wt

z z

116 NA 144 142 118 118 130 128 139 128 128

wt wt 112

 $\begin{array}{c} 157 \\ 149 \\ 149 \\ 129 \\ 128 \\ 127 \\ 127 \\ 126 \\ 126 \\ 126 \\ 126 \end{array}$

40S small subunit ribosomal protein S24.e 40S small subunit ribosomal protein S24.e 40S small subunit ribosomal protein S19.e

Ribosomal protein S16.e

YDL083C VNL302C

VIL069C

RPS19B RPS16B

Wť

Wt wt

Wt

Μ

4. Ribosomal and translation initiation proteins (18 + 2 genes)

Large subunit of the nuclear cap-binding protein complex CBC

wt

¥

₩

YML024W YOR293W YDR025W YMR116C YER074W YPR132W RPS24B RPS24A **RPS10A** RPS23B RPS17A RPS11A ASCI

Ribosomal protein S11.e 40S small subunit ribosomal protein S23.e

40S small subunit ribosomal protein

Ribosomal protein S10.e

Ribosomal protein S17.e.A

			K1 kil	ller toxin death	zone (%)			
Gene name	ORF	Description of gene product	Haploid	Heterozygous	Homozygous	white	Hygromycin B	SDS
RPL13B	YMR142C	60S large subunit ribosomal protein	124	wt	130			
RPS16A	YMR143W	Ribosomal protein S16.e	121	wt	135	wt	wt	wt
RPS0B	YLR048W	40S ribosomal protein p40 homolog B	120	wt	125			
RPS30B	YOR182C	Similarity to human ubiquitin-like protein/ribosomal protein S30	120	wt	120			
RPL2B	YIL018W	60S large subunit ribosomal protein L8.e	118	111	136			
RPS4B	YHR203C	Ribosomal protein S4.e.c8	117	wt	114			
RPS30A	YLR287C-A	40S small subunit ribosomal protein	116	wt	114			
RPL14A	YKL006W	Ribosomal protein	115	wt	145	wt	wt	wt
RPS6B	YBR181C	Ribosomal protein S6.e	114	115	126			
TH3	VPR163C	Translation initiation factor eIF4B	154	wf	130	wt	WŤ	¢.
YIF2	YAL035W	General translation factor eIF2 homolog	122	wt	NA			2
		5. Protein modification or Melycos	sylation (5;	zenes)				
$_{p}6NNM$	YPL050C	Required for complex N-glycosylation	152	wt	146	S	S	S
$ANPI^a$	YEL036C	Required for protein glycosylation in the Golgi	135	wt	129	S	s	S
$MAPI^{a}$	YLR244C	Methionine aminopeptidase, isoform 1	134	wt	130	ŝ	ŝ	ŝ
$MNN10^{a}$	YDR245W	Subunit of α -1.6-mannosyl transferase complex	133	wt	136	S	S	S
$LAS21^{a}$	YIL062W	Required for side-chain addition to GPI	114	wt	119)))
	5		,					
		b. Cellular polarity (5 g	genes)					
$BUD30^a$	YDL151C	K1 toxin hypersensitivity phenotype	134	wt	107			
BUD22	YMR014W	Protein with possible role in bud site polarity	128	wt	144	S	S	wt
BUD25	YER014C-A	Protein involved in bipolar budding	123	wt	115	S	S	s
BEMI	YBR200W	Bud emergence mediator	121	wt	114	S	S	S
$BUD27^a$	YFL023W	K1 toxin hypersensitivity phenotype	115	wt	157			
		7. New FYV genes (8 ge	enes)					
$FYVI^a$	YDR024W	K1 toxin hypersensitivity phenotype	141	wt	138			
FYV4	YHR059W	K1 toxin hypersensitivity phenotype	127	wt	116			
$FYV5^a$	YCL058C	K1 toxin hypersensitivity phenotype	125	wt	119			
$FYV6^a$	YNL133C	K1 toxin hypersensitivity phenotype	123	wt	112			
$FYV7^a$	YLR068W	K1 toxin hypersensitivity phenotype	120	wt	116	wt	wt	wt
FYV8	YGR196C	K1 toxin hypersensitivity phenotype; similarity to Arp1p	119	wt	121	S	S	S
$FYV10^a$	M_{1}^{0}	K1 toxin hypersensitivity phenotype	116	wt	115	wt	S	S
$FYV12^{a}$	YOR183W	K1 toxin hypersensitivity phenotype	114	wt	123	wt	S	wt
							(contin	(pən

TABLE 3 (Continued)

3	g
Ξ	ň
H	.E.
7	Π
È.	<u>,</u> 9
•	9

			K1 kille	r toxin death	zone (%)	Calcofinor		
Gene name	ORF	Description of gene product	Haploid E	leterozygous	Homozygous	white	Hygromycin B	SDS
		8. Ungrouped or poorly characterized	d genes (12 g	genes)				
$CSFI^a$	YLR087C	Required for normal growth rate and resistance to NaCl and H ₂ O ₂	140	wt	125	S	S	S
$VID2I^{a}$	YDR359C	Mutant impaired in fructose-1,6-bisphosphatase degradation	139	wt	136	S	S	S
$ARVI^a$	YLR242C	Lipid and sterol metabolism	137	wt	123	S	S	S
$SEC66^{a}$	YBR171W	ER protein-translocation complex subunit	133	wt	144			
PFDI	YJL179W	Prefoldin subunit 1	133	wt	117	S	S	S
CTF4	YPR135W	DNA-directed polymerase α -binding protein	127	wt	112	wt	wt	wt
ISYGI	YIL047C	Member of the major facilitator superfamily	126	wt	145			
IWRI	YDL115C	Hypothetical protein	126	wt	110			
IlaX	YNL064C	Mitochondrial and ER import protein	121	wt	130			
APL4	YPR029C	Gamma-adaptin of clathrin-associated AP-1 complex	116	wt	117	wt	S	wt
IOMH	YDR174W	Nonhistone protein	115	wt	109			
ADKI	YDR226W	Adenylate kinase, cytosolic	112	wt	127	\mathbf{S}	S	S
Mutants w. ^a Mutants y	ith a wild-type with a β-gluca	phenotype in haploid or homozygous diploid background and those wi un phenotype (see Table 5).	ith a resistant	phenotype in	these backgrou	nds are not li	isted. NA, not avail	able.

bud site in unbudded cells and at the site of bud emergence (MARTIN et al. 1999) and may act in the polarization of glucan synthetic components. CSF1 (YLR087C) encodes an integral membrane protein that may be a plasma membrane carrier. The null mutant is hypersensitive to K1 toxin, calcofluor white, SDS, and hygromycin; TOKAI et al. (2000) showed the mutant to be salt and hydrogen peroxide sensitive with low temperature defects in growth and the uptake of glucose and leucine. LAS21 (YJL062W) participates in glycosylphosphatidylinositol (GPI) synthesis, adding an ethanolamine phosphate to the α-1,6-linked mannose of the GPI mannose core (BENACHOUR et al. 1999). As this mannose core is the site of attachment of the β -1,6-glucan moiety to GPIlinked cell wall proteins, altered levels of β-1,6-glucan might be expected, although the basis of neither the β -1,3-glucan defect nor the mutant hypersensitivity to K1 toxin is evident, indicating a need for further work.

β-1,6-Glucan elevated: Killer mutants in 33 genes had elevated levels of β -1,6-glucan (Table 5). A group of β-1,6-glucan overproducers are mutant in genes involved in assembly of the outer fungal-specific α -1,6glucan chain of N-glycosyl chains (mnn9, mnn10, and anp1; see Table 5 and Figure 2). Mutants in these genes are hypersensitive to killer toxin and are described further in N-glycosylation below. A contrasting group of resistant mutants overproducing β -1,6-glucan (and to a lesser extent, β -1,3-glucan) are in a subgroup of genes involved in cortical actin assembly and endocytosis (Table 2 and *sla1* mutant in Figure 1). Our results are consistent with work reporting thickened cell walls in some of these mutants (for a review see PRUYNE and BRETSCHER 2000). Cell wall synthesis is normally restricted to the growing bud, but in these mutants new material is added inappropriately to the mother cell, resulting in a thickened wall (LI et al. 2002). It is surprising that cells with thickened cell walls and more β -1,6glucan can be killer toxin resistant, since resistance typically arises through loss of cell wall β -1,6-glucan and less binding of the toxin. One explanation is that more toxin is bound to the walls, reducing its effective concentration, a resistance mechanism proposed for the SMKT toxin of Pichia farinosa (SUZUKI and SHIMMA 1999). A second explanation is that the thickened cell wall blocks toxin access to the plasma membrane.

Mutants for other genes that specifically overproduce alkali-soluble β-1,6-glucan have broadly acting gene products, with mutants expected to be pleiotropic and their effects indirect. These include MAP1 encoding one of an essential pair of methionine aminopeptidases; this mutant is killer toxin, calcofluor white, hygromycin, and SDS hypersensitive (Table 3) and has a random budding pattern (NI and SNYDER 2001). ERG4 encodes an oxidoreductase required for ergosterol synthesis. This mutant is partially toxin resistant, hypersensitive to calcofluor white, hygromycin, and SDS (Table 2),

(panu)	(<i>con</i>					
			76 83	Two-hybrid interaction with Ym1023p and Lys14p Unknown function, Amp1p-interaction complex (20 members)	YER038C YNL132W	KRE29 KRE33ª
						101
wt	wť	wt		Cell division control protein	YLR314C	DC3
wt	Wť	Wť	89	3-Keto sterol reductase, required for ergosterol biosynthesis	YLR100W	RG27
			89	Required for normal growth, morphology, mating, sporulation	YGL099W	SGI
wt	wt	wt	88	Factor for nuclear mRNA export	YPL169C	AEX67
			88	mRNA guanylyltransferase (mRNA capping enzyme, α -subunit)	YGL130W	EGI
wt	wt	wt	87	Weak similarity to Myo1p	YDR407C	TRS120
			87	Required for ER-to-Golgi transport	YGL145W	rIP20
wt	wt	wt	87	Component of the TBP-associated protein complex	YPL011C	TAF3
wt	wt	wt	87	Required for attachment of GPI anchor onto proteins	YLR088W	3AA1
wt	wt	wt	87	GDP/GTP exchange factor for Ras1p and Ras2p	YLR310C	$DC25^a$
			87	Acetyl-CoA carboxylase	YNR016C	$ICCI^{a}$
			86	DNA helicase	YIL143C	SL2
			86	Phosphomannomutase	YFL045C	EC53
wt	wt	wt	85	Translation initiation factor eIF2b, 43-kD subunit	YLR291C	GCD7
S	wt	wt	85	Big cells phenotype	YHR101C	$3IG1^a$
			85^{b}	Subunit of iRNA-specific adenosine-34 deaminase	YLR316C	rAD3
			84	T-complex protein 1, epsilon subunit	YJR064W	CCT5
			84	Chaperonin of the TCP1 ring complex, cytosolic	YIL142W	CT2
wt	wt	wt	83	Subunit of the RSC complex	YLR321C	THI
			83	Subunit of the Arp2/3 complex	YIL062C	ARC15
			82	Actin-related protein	YJR065C	ARP3
			81	K1 toxin resistance phenotype; nuclear protein	YER126C	VSA2
wt	wt	wt	80	Strong similarity to small nuclear ribonucleoprotein D3	YLR147C	SMD3
			78	Component of chaperonin-containing T-complex	XJL111W	CT7
			73	Subunit of the Arp2/3 complex	YNR035C	ARC35
			72	Component of chaperonin-containing T-complex	YDL143W	CCT4
			70	20S proteasome subunit (α 5)	YGR253C	DD2
			69	ser/thr phosphoprotein phosphatase 1, catalytic chain	YER133W	3LC7
			59	Ubiquitin-protein ligase	YER125W	3SP5
			(8 + 3 genes)	1. Resistant (death zone $<90\%$ of the wild type; 2		
SDS	Hygromycin B	white	heterozygous	Description of gene product	ORF	Jene name
		Calcofluor	death zone %			
			-;;II;1 L21			

Genes whose deletion results in a K1 killer toxin haploinsufficiency phenotype

TABLE 4

886

4	g
r-1	- Fe
3	E
2	·B
۳.	Ξ
2	ō
	Ú

			Kl killer toxin death zone %	Calcofluor		
Gene name	ORF	Description of gene product	heterozygous	white	Hygromycin B	SDS
		2. Hypersensitive (death zone $>110\%$ of the wild type;	11 genes)			
TUBI	YML085C	α-1 tubulin (1)	135			
RPB8	YOR224C	DNA-directed RNA polymerase I, II, III 16 kD subunit	128	S	wt	wt
RPS13	YDR064W	Ribosomal protein	122	wt	wt	wt
RPS15	YOL040C	40S small subunit ribosomal protein	121	wt	wt	wt
RPB3	YIL021W	DNA-directed RNA-polymerase II, 45 kD	118	wt	wt	wt
RPS3	YNL178W	Ribosomal protein Ŝ3.e	118	wt	wt	wt
RPB7	YDR404C	DNA-directed RNA polymerase II, 19-kD subunit	117	wt	wt	wt
AUT2	YNL223W	Essential for autophagy	116	S	wt	S
RPO26	YPR187W	DNA-directed RNA polymerase I, II, III 18-kD subunit	116	wt	wt	wt
TSC10	YBR265W	3-ketosphinganine reductase	115	S	wt	S
PKCI	YBL105C	Regulates MAP kinase cascade involved in regulating cell wall metabolism	wt^c			
These gene ^a Mutants w	deletion mutal ith a β-glucan μ	nts are available only as heterozygotes and are usually essential. phenotype (see Table 5).				

and has a random budding pattern (NI and SNYDER 2001). ERV14 (YGL054C) and ERV41 (YNL067C) encode COPII vesicle coat proteins involved in endoplasmic reticulum (ER)-to-Golgi trafficking (OTTE et al. 2001), and both show toxin resistance. Mutants in four genes of unknown function also overproduce alkali-soluble β -1,6-glucan (Table 5). Two of these genes, BUD27 (YFL023W) and BUD30 (YDL151C), have random budding patterns when mutated (NI and SNYDER 2001), and both are hypersensitive to killer toxin. FYV5 (YCL058C) encodes a predicted small integral membrane protein, with the mutant sensitive to sorbitol and low temperature (BIANCHI et al. 1999) and K1 toxin hypersensitive. Finally, the null mutant of YGL007C has partial killer toxin resistance (Table 2).

N-glycosylation: Defects in N-glucosylation and its processing can lead to partial toxin resistance and reduced levels of β -1,6-glucan (Romero *et al.* 1997; Shahinian et al. 1998). Our results extend this finding to many other genes whose products are involved in the biosynthesis and elaboration of the Glc₃Man₉GlcNAc₉ oligosaccharide precursor of N-glycoproteins (Tables 2 and 3; Figure 2). If Golgi synthesis of the fungal-specific α -1,6mannose outer arm of the N-chain is blocked by mutation in OCH1 or in MNN9, MNN10, or ANP1 of the mannan polymerase complex, toxin hypersensitivity results, concomitant with higher levels of β -1,6-glucan in the cell wall (Tables 3 and 5; Figures 1 and 2; and see MAGNELLI et al. 2002 for mnn9). The glucan levels observed in an och1 mutant were similar to those obtained in a *mnn9* mutant (not shown). To explore this further we determined the alkali-soluble glucan levels for other mutants in the mannan polymerase complex and the outer chain α -mannosyltransferases (Figure 2), irrespective of toxin phenotype. A mutant in *mnn11*, part of the α-1,6-mannose-synthesizing mannan polymerase complex, also showed elevated glucan levels, as did mn2 encoding the major α -1,2-mannosyltransferase that initiates mannose branching from the α -1,6-glucan backbone. However, a mutant in mnn5, whose gene product extends the α -1,2-mannose branches from the α-1,6-glucan backbone, had reduced levels of both β -glucans. Previous work showed that a small amount of glucan is attached to the N-chain structure (TKACZ 1984; VAN RINSUM et al. 1991; KOLLAR et al. 1997), and a genetic study by SHAHINIAN et al. (1998) also suggested this possibility. Our results show that core N-chain processing is required for wild-type β-1,6-glucan levels, while absence of the outer α -1,6-linked mannose side chain or its first α -1,2-mannose branch can result in an increase in cell wall β -1,6-glucan. However, mutants in later mannosylation steps in elaborating branches from the outer α-1,6-linked mannose side chain have no effect or lead to reduced β -glucan levels.

Lipid and sterol synthesis and ion homeostasis: Mutants for 10 genes involved in the biosynthesis or regulation of lipids or sterols show partial toxin resistance

are toxin hypersensitive.

grow on sorbitol and are toxin resistant. grow on sorbitol and are toxin hypersen.

Under normal conditions this géne is essential, but haploid mutants can Under normal conditions this gene is essential, but haploid mutants can

Under

TABLE 5

Genes whose deletion results in an altered alkali-soluble β-glucan phenotype

Gene name	ORF	β-1,6-Glucan	β-1,3-Glucan
	β-1,6-Glucar	n only affected	
Elevated			
MAP1	YLR244C	++	wt
ANP1	YEL036C	+	wt
ERG4	YGL012W	+	wt
ERV14	YGL054C	+	wt
ERV41	YML067C	+	wt
KEX1	YGL240W	+	wt
FYV5	YCL058C	+	wt
BUD30	YDL151C	+	wt
BUD27	YFL023W	+	wt
	YGL007W	+	wt
Reduced			
	YKL037W		wt
CNE1	YAL058W	_	wt
FKS1	YLR342W	_	wt
KRE11	YGR166W	_	wt
PEP3	YLR148W	(-)	wt
	β-1,3-Glucar	n only affected	
Elevated			
THP1	YOL072W	wt	+
	YNL213C	wt	+
BTS1	YPL069C	wt	(+)
GPA2	YER020W	wt	(+)
FYV7	YLR068C	wt	(+)
Reduced			
SEC66	YBR171W	wt	_
ACC1	YNR016C	wt	(-)
SYS1	YJL004C	wt	(-)
β-1	,6-Glucan and	β-1,3-glucan affe	cted
Both elevated		-	
END3	YNL084C	+++	++
VRP1	YLR337C	+++	++
SAC7	YDR389W	+++	+
LAS17	YOR181W	+++	(+)
VAC8	YEL013W	++	+
FYV1	YDR024W	++	+
IPK1	YDR315C	++	(+)
FPS1	YLL043W	+	+
SAC1	YKL212W	+	+
VID21	YDR359C	+	+
EAF6	YJR082C	+	+
CDC25	YLR310C	+	(+)
GLY1	YEL046C	+	(+)
SUR4	YLR372W	+	(+)
VPS61	YDR136C	+	(+)
UTH1	YKR042W	(+)	+
VPS27	YNR006W	(+)	+
VPS67	YKR020W	(+)	+
FYV12	YOR183W	(++)	(++)

(continued)

(Table 2). These mutants have defects in membrane structure, possibly affecting the efficiency of insertion of the toxin into the plasma membrane or altering the

TABLE 5

(Continued)

Gene name	ORF	β-1,6-Glucan	β-1,3-Glucan
Both reduced			
SMI1	YGR229C		
PIN4	YBL051C		
CSF1	YLR087C	—	—
LAS21	YJL062W	_	_
COD3	YGL223C	(-)	
PMT2	YAL023C	(-)	_
ARV1	YLR242C	(-)	(-)
MNN5	YJL186W	(-)	(-)
FYV10	YIL097W	(-)	(-)
KRE33	YNL132W	(-)	(-)
OSH1	YAR044W	(-)	()
SBE22	YHR103W	(-)	()
FYV6	YNL133C	()	()
β-1,6-Gl	ucan elevated a	and β-1,3-glucan	reduced
MNN10	YDR245W	+	
MNN9	YPL050C	+	—
YUR1	YJL139C	(+)	(-)
SHE4	YOR035C	(+)	()
β-1,6-Gl	ucan reduced a	and β-1,3-glucan	elevated
BIG1	YHR101C		(+)
KRE1	YNL322C		(++)
KRE6	YPR159W		(++)
ROT2	YBR229C	(-)	(++)

 $\begin{array}{l} \mbox{Increase (I): +++, } I > 100\%; ++, 65 < I < 100; +, 45 < \\ I < 65; (+), 25 < I < 45; (++), I < 25\%. \mbox{ Decrease (D): } \\ ---, 85 < D < 100; --, 65 < D < 85; -, 45 < D < 65; \\ (-), 25 < D < 45; (--), D < 25\%. \end{array}$

cellular membrane potential leading to reduced toxininduced ion permeability. Pertinently, defects in the ATP-dependent Drs2p and Atp2p membrane channels involved in cation and proton pumping confer toxin resistance. The altered membrane composition in lipid or sterol mutants could also affect secretory pathway function, possibly linking their partial toxin resistance phenotypes to those found in protein trafficking and secretion (Table 2). For example, *KES1* is implicated in ergosterol biology and can partially suppress the toxin resistance of a *kre11-1* mutant, with Kre11p being involved in Golgi vesicular transport as a subunit of the TRAPP II complex (JIANG *et al.* 1994; SACHER *et al.* 2001).

High-osmolarity and stress response pathways: To survive hyperosmotic conditions, *S. cerevisiae* increases cellular glycerol levels by activation of the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway. Such activation leads to elevated transcription of genes required to cope with stress conditions, including the synthesis of glycerol with a resultant increase in internal osmolarity (PosAs *et al.* 1998; REP *et al.* 2000). Mutants with an inactive HOG pathway are toxin hypersensitive, while deletion of protein phosphatases, such as *PTP3, PTC1*, or *PTC3*, which act negatively on the

FIGURE 1.-Killer toxin sensitivity and quantification of major cell wall polymers of different strains. (A) A total of 5 µl of toxin was spotted onto agar seeded with a fresh culture of each strain (see MATERIALS AND METHODS). The mutant "killing zone" diameter was compared to the corresponding wild type and expressed as a percentage (see MATERIALS AND METH-ODS). (B) Measurement of cell wall β -1,6- and β -1,3-glucan levels was performed by extraction and fractionation of these polymers from cell wall preparations, followed by quantification of the alkali-insoluble fractions. The haploid mutants were from the Saccharomyces Genome Deletion Consortium $(sla1\Delta \text{ and } big1\Delta)$ or from strains HAB880 and HAB900, respectively, for $mnn9\Delta$ and $fks1\Delta$ mutants (see Table 4). To facilitate comparison, the values of alkali-insoluble glucans were expressed as percentages of the corresponding wild-type level. The data represent averages of at least three independent experiments with standard deviations not exceeding 10%.

pathway, lead to resistance (Tables 3 and 2, respectively; Figure 3B). Deletion of *HOG1* resulted in a killing zone diameter almost twice that of the wild type. For such large killing zones, the diameter is limited by the diffusion rate of the protein toxin and greatly underestimates increased mutant sensitivity. To quantify sensitivity in a *hog1* mutant, toxin-induced cell mortality was measured using a cell survival assay (see MATERIALS AND METHODS).

A 10,000-fold reduction in cell viability was found when compared to the wild type. Previous estimates indicate that $\sim 3 \times 10^4$ molecules of toxin are required to kill a wild-type cell (BUSSEY *et al.* 1979). We compared the sensitivity of the *hog1* parental wild type from the deletion collection (strain BY4742) with strain S14a, on which the original lethal dose estimate was made, and found the strains to be of similar sensitivity (data not shown). Thus, just a few toxin molecules per cell are required to kill a *hog1* mutant, indicating that a functional HOG pathway provides cells with a powerful way to ameliorate the effects of this toxin.

The sequence of action of the K1 toxin begins with its binding to β -1,6-glucan cell wall receptors (SHAHI-NIAN and BUSSEY 2000). In a second step, the toxin inserts into the plasma membrane in a receptor-dependent process (BREINIG et al. 2002) and forms pores causing the leakage of ions and cellular metabolites, leading to cell death (MARTINAC et al. 1990; AHMED et al. 1999). To explore the defect in a *hog1* mutant we asked where it occurred in the path of action of the toxin, by examining its epistasis in double-mutant combinations of hog1 with the toxin-resistant cell wall mutants kre1 and kre2, both of which block synthesis of the cell wall receptor. A *kre1 hog1* mutant was as fully resistant as a *kre1* single mutant, and a kre2 hog1 mutant was nearly so. Thus, defects in the cell wall receptor preventing binding of the toxin are dominant over the hypersensitivity of the hog1 mutant. This result is consistent with hypersensitivity occurring through some downstream effect such as ion homeostasis and/or lethal pore formation. One consequence of the activation of the HOG pathway is the induced expression of the glycerol-3-phosphate dehydrogenase Gpd1p, required in glycerol biosynthesis (ALBERTYN et al. 1994). To test whether impaired glycerol production was the basis of the hog1 mutant hypersensitivity, a gpd1 gpd2 double deletion mutant was made to reduce glycerol synthesis (GARCÍA-RODRIGUEZ et al. 2000). This mutant had wild-type toxin sensitivity (data not shown). In further efforts to identify the downstream effectors of Hog1p responsible for the basal toxin resistance, we examined deletion mutants in the known transcription factors of the pathway, namely Msn1p, Msn2p, Msn4p, Hotlp, Skolp, and Rck2p (Proft and Serrano 1999; REP et al. 1999, 2000; BILSLAND-MARCHESAN et al. 2000). All were wild type in sensitivity, as was the msn2 msn4 double mutant.

Cell integrity signaling: In response to cell wall alterations, *S. cerevisiae* stimulates the Mpk1/Slt2p MAP kinase by activation of a cell integrity signaling pathway under the control of *PKC1* (Figure 3B). Loss of function of this pathway results in deficiencies in cell wall construction and cell lysis phenotypes, which can be partially suppressed by osmotic stabilizers (LEVIN and BARTLETT-HEUBUSCH 1992; PARAVICINI *et al.* 1992; ROE-MER *et al.* 1994). Consistent with playing a key role in cell surface integrity, a *pkc1* haploid mutant kept alive by osmotic support is extremely sensitive to the toxin.

2.—Schematic FIGURE summary of N-glycan biosynthesis in yeast. N-glycosyl precursor assembly is initiated in the endoplasmic reticulum. At the stage of GlcNAc₂Man₉, three glucose residues are serially transferred from the Dol-P-Glc donor to the N-glycan by the glucosyltransferases Alg6p, Alg8p, and Alg10p. Glucosylation is required for efficient transfer of the N-glycan to target proteins by a complex that includes Ost3p. The glucose residues are subsequently trimmed by the sequential action of glucosidases I and II, Cwh41p and Rot2p, respectively. N-linked oligosaccharides undergo further maturation in the Golgi, where addition of the fungal-specific "outer-chain" is initiated by Och1p and elabo-

rated by various enzymes, including the mannan polymerase complex (adapted from ORLEAN 1997; SHAHINIAN and BUSSEY 2000). Arrows indicate activation and bars indicate negative effects. (*) indicates essential genes; *i.e.*, only heterozygous mutants were tested. Genes whose deletion causes toxin hypersensitivity, red; resistance, blue; no phenotype, yellow; not tested, white. β -Glucans are shown as follows: β -1,6-glucan and β -1,3-glucan both reduced; β -1,6-glucan reduced and β -1,3-glucan wild type; β -1,6-glucan and β -1,3-glucan both wild type; β -1,6-glucan and β -1,3-glucan both wild type; β -1,6-glucan and β -1,3-glucan both wild type; β -1,6-glucan and β -1,3-glucan televated and β -1,3-glucan wild type; β -1,6-glucan reduced. Mnn2p, Alg10p, and Hoc1p are not listed in Tables 2 or 3; they are resistant or hypersensitive to K1 toxin, but fall outside of the chosen ranges.

However, most of the upstream activators of Pkc1p and all known downstream MAPK signaling components of the cell integrity pathway show no toxin phenotype (see Figure 3B). The absence of phenotype for the upstream integral plasma membrane activators of the pathway may be explained by the functional redundancy of the components (VERNA et al. 1997; KETELA et al. 1999; PHILIP and LEVIN 2001). Rho1p, the GTP-binding protein involved in relaying the signal from the plasma membrane to Pkc1p, is essential and the heterozygote has a wild-type phenotype. However, in the MAP kinase cascade downstream of Pkc1p, the kinase Bck1p and the MAP kinase Mpk1p are unique and nonessential (LEVIN and ERREDE 1995). The absence of a toxin phenotype upon mutation of these components indicates that hypersensitivity of a *pkc1* mutant is not caused by the absence of activation of the MPK1 MAP kinase pathway, but in some other way (Figure 3B).

Ribosomal subunit proteins: Defects in many ribosomal subunit proteins lead to toxin hypersensitivity. Of the 32 small ribosomal subunit genes, 8 are found as single copy and 24 are duplicated, for a total of 56 ORFs (PLANTA and MAGER 1998). Toxin hypersensitivity is observed for mutants for 21 of the duplicated genes (Tables 3 and 4). A single deletion of either copy often shows hypersensitivity. In some cases only one of the duplicated gene mutants shows the phenotype (*RPS0B*, 4B, 10A, 17A, 19B, 23B), suggesting that they have distinct functions. Since some phenotypes were relatively weak (killing zone diameters <115% of the wild type), not all mutants are listed in Table 3. Of the 8 singlecopy genes of the small ribosomal subunit, heterozygous deletions in just 2 essential genes, *RPS13* and *RPS15*, gave toxin hypersensitivity (Table 4). The toxin hypersensitivity phenotype was more prevalent among mutants in the small subunit (43%) than among those in the large (16%). A total of 46 genes encode the large ribosomal subunit proteins, among which 35 are duplicated (PLANTA and MAGER 1998); 12 of the duplicated genes show toxin hypersensitivity when mutated (Tables 3 and 4).

DISCUSSION

The ability to directly establish a phenotype-to-gene relationship is a great enabling strength of the mutant collection. Moreover, since each gene can be examined simply by testing a mutant, partial or weak phenotypes can be readily analyzed (BENNETT *et al.* 2001; NI and SNYDER 2001). The collection allows comprehensive screening and a knowledge of which genes have been examined, overcoming many of the limitations of a clas-

sical random mutant screen. Despite the extensive use of random screens for toxin resistance these failed to saturate the genome, as we have found mutants in many new genes. In addition, the mutant collection allows one to know which genes remain to be tested and, importantly, which genes do not have phenotypes. Such comprehensive testing can turn up the unexpected, as illustrated by a few examples. The extent of the relationships between cell wall polymers was unanticipated. Wall glucan work normally focuses on one or the other glucan synthetic pathway, and these are implicitly seen to be specific. Yet *fks1* mutants, defective for a component of the β -1.3-glucan synthase, are affected for both β -1.3and β -1,6-glucan (Figure 1A), as are a large number of other mutants (Table 5). These interactions likely indicate synthetic or regulatory links between these polymers. The mnn9 mutation, which blocks synthesis of the outer α -1,6-mannose arm of *N*-glycans, was assumed specific and has been used to simplify structural analyses of glucomannoproteins in the cell wall (VAN RINSUM et al. 1991; MONTIJN et al. 1994). The fact that a mnn9 mutation has other secondary effects that increase the amount of glucan in the wall is an unexpected complication, with the possibility that previous work analyzed structures absent from wild-type cells. Electrophysiological work links the Tok1p potassium channel with toxin action (AHMED et al. 1999). In the deletion mutant col-

lection used here neither the haploid MATa or MATa nor the diploid heterozygous or homozygous deletion of this gene had a phenotype. Thus, in this strain background Tok1p has no detectable role in toxin action, indicating that despite the ability of the toxin to activate conductance of Tok1p, this channel protein cannot be the only target for the K1 toxin and is not a significant *in vivo* target in this sensitive strain. Having mutants in all cellular pathways allows the pursuit of phenotype through functional modules and has value in making such connections. Some specific examples are discussed below.

Functional clustering: The screen identified several examples of interactions that connect biological functions into larger cellular processes, sometimes already known in detail. For example, toxin phenotypes trace the relationship between almost every biosynthetic step of the N-glycosyl moiety of glycoproteins. The cytoskeletal mutants provide an example of a less well-characterized connectivity. Here a set of mutants in cytoskeletal processes has a common toxin resistance phenotype that correlates with mother cells showing abnormal wall proliferation. This wall phenotype, which is not a general one for all cytoskeletal defects, has been reported for individual genes (see PRUYNE and BRETSCHER 2000). This functional cluster of genes, which may function in limiting wall growth to daughter cells, offers insight into a new facet of morphogenesis.

FIGURE 3.—Schematic summary of signal transduction pathways involved in osmoadaptive responses and cell wall synthesis in yeast. (A) Exposure to high extracellular osmolarity triggers an adaptive response mediated by two pathways that converge at Pbs2p. One arm of the pathway involves the binding of Pbs2p to plasma membrane protein Sho1p. Pbs2p is phosphorylated by the Stellp MAPKKK, through a process requiring Cdc42p, Ste50p, and Ste20p (DESMOND et al. 2000). A second pathway involves the two-component osmosensor module Sln1p-Ypd1p-Ssk1p, which activates Pbs2p via a pair of related MAPKKK proteins, Ssk2p and Ssk22p. Activation of this MAPK cascade culminates at Hog1p with Hog1p-dependent activation of the Rck2p protein kinase and activation and inactivation of transcription factors. The model also outlines the action of some negative regulators of the pathway (PosAs et al. 1998; REP et al. 1999, 2000; BILSLAND-MARCHESAN et al. 2000; and references therein). (B) Environmental stresses cause changes in cell wall state, which are detected by the Wsc proteins and Mid2p and Mtl1p. The information is transmitted to Rho1p by the guanine nucleotide exchange factors Rom1p and Rom2p. Tor2p is also an activator of Rho1p, whereas Sac7p and Bem2p are GTPase-activating proteins for Rho1p. Activated, GTP-bound Rho1p interacts with a transcription factor (Skn7p) and regulates the activity of proteins involved in cytoskeleton assembly (Bni1p), cell wall synthesis (Fks1p), and signal transduction (Pkc1p). Pkc1p in turn activates the cell integrity MAP kinase pathway and independently on "another arm" effects Rap1p-dependent transcriptional repression of ribosomal protein genes (LI et al. 2000; PHILIP and LEVIN 2001; and references therein). For the color-coding scheme, see Figure 2.

The HOG pathway buffers toxin action: Mutants in hog1 are close to being maximally sensitive to the toxin, dying at ~1 molecule/cell, while in a HOG1 strain, four orders of magnitude more toxin is needed to kill a cell. How is this HOG1-dependent resistance achieved? One possibility is that the HOG pathway is stress induced as the toxin causes ion loss. Activation of this signaling pathway may result in changes in membrane conductance, intracellular osmotic pressure, or some other stress response, which can act to reduce the efficiency of the toxin in promoting loss of cellular ions. Although the toxin sensitivity of a gpd1 gpd2 double mutant is similar to wild-type cells, the possible involvement of Hog1p-dependent osmoadaptation cannot be excluded. Consistent with this scenario, GARCÍA-RODRIGUEZ et al. (2000) observed increased intracellular glycerol levels after treatment with the cell-wall-perturbing agent calcofluor white, independent of the action of GPD1 and GPD2. An alternative explanation that there is some constitutive HOG1-dependent effect on cell wall synthesis seems less likely on the basis of the following observations. Epistatic tests using kre1 hog1 and kre2 hog1 mutants are consistent with the HOG pathway acting at the membrane or intracellularly, as cell wall mutants are epistatic to the *hog1* defect and remain toxin resistant in double mutants. Deficiencies in the HOG pathway result in extreme toxin sensitivity, and we reasoned that mutations in genes regulated by this pathway might also cause hypersensitivity. In looking for candidates, it is striking that some components specific to the RNA polymerase II complex (e.g., Gal11p, Med2p, Rpb4p, Rpb3p, Rpb7p, Srb5p, and Srb2p) or components shared between RNA polymerases I, II, and III (e.g., Rpb8p, Rpc10p, and Rpo26p) all display a strong toxin hypersensitivity, similar to that of HOG pathway mutants (Tables 3 and 4). Is this response specific to the HOG pathway? Among the MAPK pathways in yeast (HUNTER and PLOWMAN 1997; GUSTIN et al. 1998), only the HOG pathway exhibits toxin hypersensitivity. Mutants in SMK1, MPK1, and YKL161c, which encode, respectively, the MAP kinase of the sporulation pathway, the cell integrity pathway, and a putative uncharacterized pathway, are not toxin hypersensitive. Similarly, a null mutation in the MAP kinase kinase encoding gene STE7, which is involved in both the haploid mating and invasive pathways, has no effect on toxin sensitivity. These observations suggest a possible connection between the signaling elements of the HOG pathway and the activity of the RNA polymerase II complex. To investigate which potential target genes of Hog1p are responsible for the hypersensitivity, we looked for toxin phenotypes resulting from mutations in genes known to be induced by osmotic shock (REP et al. 2000). None of these genes have an effect comparable to a *hog1* mutant. Similar results were obtained for genes whose mRNA level is affected by a mutation of HOG1. However, among the genes whose mRNA level is diminished after a shift to

high osmolarity (REP *et al.* 2000), *ASC1* had a significant hypersensitivity (Table 3). *ASC1* encodes a 40S small subunit ribosomal protein, one of many small ribosomal protein encoding genes that, when mutated, show toxin hypersensitivity (see Table 3 and below). Together, these observations suggest that, if the phenotype observed in a *hog1* mutant results from a defect in expression, it is not through a single gene but may originate from a combined deficiency in more than one gene.

Signaling components involved in toxin sensitivity: Although the HOG pathway is the only MAP kinase cascade showing a toxin phenotype, two upstream activators of MAPK pathways were identified in the screen: SSK1 and PKC1. The toxin hypersensitivity of an ssk1 mutant is consistent with its place upstream of the HOG signal transduction cascade. However, no toxin phenotype is found for the components of the cell integrity MAPK pathway signaling downstream of *PKC1*, namely, the sequentially acting kinases Bck1p, the redundant pair Mkk1p and Mkk2p, and the Mpk1p MAP kinase (Figure 3B). This raises the question of how Pkc1p signals in producing a normal response to the toxin. Previous genetic analysis suggested a bifurcation of the signaling downstream of PKC1 (ERREDE and LEVIN 1993; HELLIWELL et al. 1998). Our data are consistent with such a model since some "other arm" of the PKC pathway, distinct from the Bck1p-dependent arm, is responsible for the toxin phenotype. Additional evidence for an alternative pathway comes from studies on the coordination of cell growth and ribosome synthesis, where a block in protein secretion reduces ribosomal protein gene transcription (MIZUTA and WARNER 1994; NIER-RAS and WARNER 1999). This mechanism is: (i) dependent on Pkc1p activity; (ii) not mediated by the cell integrity pathway MAPK cascade (BCK1 or MPK1); and (iii) blocked by rap1-17, a silencing-defective allele of RAP1 (LI et al. 2000). We found that a heterozygous rap1 mutant exhibits haploinsufficient toxin hypersensitivity (Figure 3B), providing additional support for Rap1p being an effector of Pkc1p.

Ribosomal subunit mutants show toxin sensitivity: The coupling of protein secretion to ribosome synthesis through the PKC pathway (NIERRAS and WARNER 1999; LI et al. 2000) raises the possibility of regulation operating in the reverse direction: that is, defects in protein synthesis mediated predominantly through 40S ribosomal subunit proteins might affect protein secretion and cell wall synthesis. The binding of the rough ER ribosomes to Sec61p of the signal recognition particle is through the 60S ribosomal subunit (BECKMANN et al. 1997), and fewer mutants in 60S ribosomal proteins have toxin phenotypes, arguing that the coupling step in itself is unlikely to be the primary site of any such effect. A more mundane alternative explanation is that nonessential defects in protein synthesis through loss of redundant ribosomal proteins have nonspecific knock-on effects on protein secretion/cell wall synthesis through failure to make enough of a component required for protein secretion.

Strength and limitations of comprehensive phenotyping with the collection: In addition to phenotypic clustering of genes, the simple discovery of biological roles for genes through phenotype remains an important part of this screen. For example, a number of mutants in poorly characterized genes have β -glucan phenotypes that warrant investigation. The yeast disruption mutant collection has limitations. Duplicated genes and gene families having synthetic phenotypes but no phenotype when individually deleted will be overlooked. Also, the 1105 essential genes representing 18.7% of the yeast genome (GIAVER et al. 2002) cannot be screened directly. Haploinsufficiency phenotypes in heterozygotes disrupted in one copy of an essential gene provide a partial solution, as in the case of BIG1. In our screen such haploinsufficiency was found in the heterozygous mutants of 42 genes, but we still do not know the full extent of the involvement of essential genes in cell surface biology. A set of conditional lethal mutants in all essential genes would improve the value of the collection for screening these genes.

We thank Angela Chu and Ron Davis (Stanford University) and Sally Dow (Rosetta Inpharmatics) for providing strains and assistance. We also thank Ashley Coughlin, Steeve Veronneau, Marc Lussier, and Terry Roemer for discussions and contributions and Robin Green and Federico Angioni for comments on the manuscript. Supported by operating and CRD grants from the Natural Sciences and Engineering Research Council of Canada. N.P. was a predoctoral fellow of the Fonds pour la Formation de Chercheurs et l'Aide à la Recherche (Quebec).

LITERATURE CITED

- AHMED, A., F. SESTI, N. ILAN, T. M. SHIH, S. L. STURLEY *et al.*, 1999 A molecular target for viral killer toxin: *TOK1* potassium channels. Cell **99**: 283–291.
- ALBERTYN, J., S. HOHMANN, J. M. THEVELEIN and B. A. PRIOR, 1994 GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 14: 4135–4144.
- AZUMA, M., N. PAGE, J. LEVINSON and H. BUSSEY, 2002 Saccharomyces cerevisiae Big1p, a putative endoplasmic reticulum membrane protein required for normal levels of cell wall β-1,6-glucan. Yeast **19**: 783–793.
- BECKMANN, R., D. BUBECK, R. GRASSUCCI, P. PENCZEK, A. VERSCHOOR et al., 1997 Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 278: 2123–2126.
- BENACHOUR, A., G. SPIROS, I. FLURY, F. REGGIORI, E. CANIVENE-GANSEL *et al.*, 1999 Deletion of GPI7, a yeast gene required for addition of a side chain to the glycosylphosphatidylinositol (GPI) core structure, affects GPI protein transport, remodelling, and cell wall integrity. J. Biol. Chem. **274**: 15251–15261.
- BENNETT, C. B., L. K. LEWIS, G. KARTHIKEYAN, K. S. LOBACHEV, Y. H. JIN *et al.*, 2001 Genes required for ionizing radiation resistance in yeast. Nat. Genet. **29**: 426–434.
- BIANCHI, M. M., G. SARTORI, M. VANDENBOL, A. KANIAK, D. UCCEL-LETTI *et al.*, 1999 How to bring orphan genes into functional families. Yeast 15: 513–526.
- BICKLE, M., P. A. DELLEY, A. SCHMIDT and M. N. HALL, 1998 Cell wall integrity modulates *RHO1* activity via the exchange factor *ROM2*. EMBO J. 17: 2235–2245.

BILSLAND-MARCHESAN, E., J. ARINO, H. SAITO, P. SUNNERHAGEN and

F. POSAS, 2000 Rck2 kinase is a substrate for the osmotic stressactivated mitogen-activated protein kinase Hog1. Mol. Cell. Biol. **20:** 3887–3895.

- BRACHMANN, C. B., A. DAVIES, G. J. COST, E. CAPUTO, J. LI et al., 1998 Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115–132.
- BRADFORD, M. M., 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. **72**: 248–254.
- BREINIG, F., D. J. TIPPER and M. J. SCHMITT, 2002 Krelp, the plasma membrane receptor for the yeast Kl viral toxin. Cell **108:** 395–405.
- BROWN, J. L., T. ROEMER, M. LUSSIER, A. M. SDICU and H. BUSSEY, 1994 The K1 killer toxin: molecular and genetic applications to secretion and cell surface assembly, pp. 217–231 in *Molecular Genetics of Yeast: A Practical Approach*, edited by J. R. JOHNSTON. IRL Press/Oxford University Press, Oxford.
- BUSSEY, H., 1991 K1 killer toxin, a pore-forming protein from yeast. Mol. Microbiol. 5: 2339–2343.
- BUSSEY, H., D. SAVILLE, K. HUTCHINS and R. G. PALFREE, 1979 Binding of yeast killer toxin to a cell wall receptor on sensitive Saccharomyces cerevisiae. J. Bacteriol. 140: 888–892.
- DE GROOT, P. W. J., C. RUIZ, C. R. VÁZQUEZ DE ALDANA, E. DUEAS, V. J. CID *et al.*, 2001 A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in *Saccharomyces cerevisiae*. Comp. Funct. Genom. **2**: 124–142.
- DESMOND, C., D. C. RAITT, F. POSAS and H. SAITO, 2000 Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. EMBO J. 19: 4623–4631.
- DIJKGRAAF, G. J. P., M. ABE, Y. OHYA and H. BUSSEY, 2002 Mutations in Fks1p affect the cell wall content of β -1,3- and β -1,6-glucan in *Saccharomyces cerevisiae*. Yeast **19:** 671–690.
- ERREDE, B., and D. E. LEVIN, 1993 A conserved kinase cascade for MAP kinase activation in yeast. Curr. Opin. Cell Biol. 5: 254–260.
- GARCÍA-RODRIGUEZ, L. J., A. DURÁN and C. RONCERO, 2000 Calcofluor antifungal action depends on chitin and a functional high-osmolarity glycerol response (HOG) pathway: evidence for a physiological role of the Saccharomyces cerevisiae HOG pathway under noninducing conditions. J. Bacteriol. 182: 2428–2437.
- GIAVER, G., A. M. CHU, L. NI, C. CONNELLY, L. RILES et al., 2002 Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387–391.
- GUSTIN, M. C., J. ALBERTYN, M. ALEXANDER and K. DAVENPORT, 1998 MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62: 1264–1300.
- HELLIWELL, S. B., A. SCHMIDT, Y. OHYA and M. N. HALL, 1998 The Rhol effector of Pkcl, but not Bnil, mediates signaling from Tor2 to the actin cytoskeleton. Curr. Biol. 8: 1211–1214.
- HONG, Z., P. MANN, N. H. BROWN, L. E. TRAN, K. J. SHAW *et al.*, 1994a Cloning and characterization of KNR4, a yeast gene involved in (1,3)-β-glucan synthesis. Mol. Cell. Biol. **14:** 1017–1025.
- HONG, Z., P. MANN, K. J. SHAW and B. DIDOMENICO, 1994b Analysis of β-glucans and chitin in a Saccharomyces cerevisiae cell wall mutant using high-performance liquid chromatography. Yeast 10: 1083– 1092.
- HUNTER, T., and G. D. PLOWMAN, 1997 The protein kinases of budding yeast: six score and more. Trends Biochem. Sci. 22: 18–22.
- JIANG, B., J. L. BROWN, J. SHERATON, N. FORTIN and H. BUSSEY, 1994 A new family of yeast genes implicated in ergosterol synthesis is related to the human oxysterol binding protein. Yeast 10: 341– 353.
- KETELA, T., R. GREEN and H. BUSSEY, 1999 Saccharomyces cerevisiae Mid2p is a potential cell wall stress sensor and upstream activator of the *PKC1-MPK1* cell integrity pathway. J. Bacteriol. 181: 3330– 3340.
- Kollar, R., B. B. Reinhold, E. Petrakova, H. J. Yeh, G. Ashwell *et al.*, 1997 Architecture of the yeast cell wall. Beta $(1\rightarrow 6)$ -glucan interconnects mannoprotein, beta $(1\rightarrow 3)$ -glucan, and chitin. J. Biol. Chem. **272:** 17762–17775.
- LEVIN, D. E., and E. BARTLETT-HEUBUSCH, 1992 Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J. Cell Biol. 116: 1221–1229.
- LEVIN, D. E., and B. ERREDE, 1995 The proliferation of MAP kinase signaling pathways in yeast. Curr. Opin. Cell Biol. **7:** 197–202.
- LI, H., N. PAGE and H. BUSSEY, 2002 Actin patch assembly proteins

Las17p and Sla1p restrict cell wall growth to daughter cells, and interact with the cis Golgi protein Kre6p. Yeast **19**: 1097–1112.

- LI, Y., R. D. MOIR, I. K. SETHY-CORACI, J. R. WARNER and I. M. WILLIS, 2000 Repression of ribosome and tRNA synthesis in secretiondefective cells is signaled by a novel branch of the cell integrity pathway. Mol. Cell. Biol. 20: 3843–3851.
- LIPKE, P. N., and R. OVALLE, 1998 Cell wall architecture in yeast: new structure and new challenges. J. Bacteriol. **180:** 3735–3740.
- LUSSIER, M., A. M. WHITE, J. SHERATON, T. DI PAOLO, J. TREADWELL et al., 1997 Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 147: 435–450.
- LUSSIER, M., A. M. SDICU, S. SHAHINIAN and H. BUSSEY, 1998 The *Candida albicans KRE9* gene is required for cell wall β-1, 6-glucan synthesis and is essential for growth on glucose. Proc. Natl. Acad. Sci. USA **95:** 9825–9830.
- MAGNELLI, P., J. F. CIPOLLO and C. ABEIJON, 2002 A refined method for the determination of *Saccharomyces cerevisiae* cell wall composition and β -1,6-glucan fine structure. Anal. Biochem. **301:** 136– 150.
- MARTIN, H., A. DAGKESSAMANSKIA, G. SATCHANSKA, N. DALLIES and J. FRANCOIS, 1999 KNR4, a suppressor of Saccharomyces cerevisiae cwh mutants, is involved in the transcriptional control of chitin synthase genes. Microbiology 145: 249–258.
- MARTINAC, B., H. ZHU, A. KUBALSKI, X. ZHOU, M. CULBERTSON *et al.*, 1990 Yeast K1 killer toxin forms ion channels in sensitive yeast spheroplasts and in artificial liposomes. Proc. Natl. Acad. Sci. USA 87: 6228–6232.
- MIZUTA, K., and J. R. WARNER, 1994 Continued functioning of the secretory pathway is essential for ribosome synthesis. Mol. Cell. Biol. 14: 2493–2502.
- MONTIJN, R. C., J. VAN RINSUM, F. A. VAN SCHAGEN and F. M. KLIS, 1994 Glucomannoproteins in the cell wall of *Saccharomyces cere*visiae contain a novel type of carbohydrate side chain. J. Biol. Chem. **269**: 19338–19342.
- NI, L., and M. SNYDER, 2001 A genomic study of the bipolar bud site selection pattern in *Saccharomyces cerevisiae*. Mol. Biol. Cell 12: 2147–2170.
- NIERRAS, C. R., and J. R. WARNER, 1999 Protein kinase C enables the regulatory circuit that connects membrane synthesis to ribosome synthesis in *Saccharomyces cerevisiae*. J. Biol. Chem. 274: 13235– 13241.
- ORLEAN, P., 1997 Biogenesis of yeast wall and surface components, pp. 229–362 in *Molecular and Cellular Biology of the Yeast Saccharomyces, Vol. 3: Cell Cycle and Cell Biology*, edited by J. R. PRINGLE, J. R. BROACH and E. W. JONES. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- OTTE, S., W. J. BELDEN, M. HEIDTMAN, J. LIU, O. N. JENSEN *et al.*, 2001 Erv41p and Erv46p: new components of COP II vesicles involved in transport between the ER and Golgi complex. J. Cell Biol. **152**: 503–518.
- PARAVICINI, G., M. COOPER, L. FRIEDLI, D. J. SMITH, J. L. CARPENTIER et al., 1992 The osmotic integrity of the yeast cell requires a functional *PKC1* gene product. Mol. Cell. Biol. 12: 4896–4905.
 PHILIP, B., and D. E. LEVIN, 2001 Wsc1 and Mid2 are cell surface
- PHILIP, B., and D. E. LEVIN, 2001 Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol. Cell. Biol. 21: 271–280.
- PLANTA, R. J., and W. H. MAGER, 1998 The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Yeast 14: 471–477.
- POSAS, F., M. TAKEKAWA and H. SAITO, 1998 Signal transduction by MAP kinase cascades in budding yeast. Curr. Opin. Microbiol. 1: 175–182.
- PROFT, M., and R. SERRANO, 1999 Repressors and upstream repressing sequences of the stress-regulated *ENA1* gene in S. cerevisiae:

bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol. Cell. Biol. **19:** 537–546.

- PRUYNE, D., and A. BRETSCHER, 2000 Polarization of cell growth in yeast. J. Cell Sci. 113: 571–585.
- RAM, A. F., A. WOLTERS, R. TEN HOOPEN and F. M. KLIS, 1994 A new approach for isolating cell wall mutants in *Saccharomyces cerevisiae* by screening for hypersensitivity to calcofluor white. Yeast **10**: 1019–1030.
- REP, M., V. REISER, U. GARTNER, J. M. THEVELEIN, S. HOHMANN et al., 1999 Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol. Cell. Biol. 19: 5474–5485.
- REP, M., M. KRANTZ, J. M. THEVELEIN and S. HOHMANN, 2000 The transcriptional response of *Saccharomyces cerevisiae* to osmotic shock: Hot1p and Msn2p/Msn4p are required for the induction of subsets of HOG-dependent genes. J. Biol. Chem. 275: 8290– 8300.
- ROBINSON, J. S., D. J. KLIONSKY, L. M. BANTA and S. D. EMR, 1988 Protein sorting in *Saccharomyces cerevisiae*: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol. Cell. Biol. 8: 4936–4948.
- ROEMER, T., G. PARAVICINI, M. A. PAYTON and H. BUSSEY, 1994 Characterization of the yeast (1→6)-β-glucan biosynthetic components, Kre6p and Skn1p, and genetic interactions between the *PKC1* pathway and extracellular matrix assembly. J. Cell Biol. 127: 567–579.
- ROMERO, P. A., G. J. P. DIJKGRAAF, S. SHAHINIAN, A. HERSCOVICS and H. BUSSEY, 1997 The yeast *CWH41* gene encodes glucosidase I. Glycobiology 7: 997–1004.
- ROSS-MACDONALD, P., P. S. R. COELHO, T. ROEMER, S. AGARWAL, A. KUMAR *et al.*, 1999 Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature **402**: 413–418.
- SACHER, M., J. BARROWMAN, W. WANG, J. HORECKA, Y. ZHANG *et al.*, 2001 TRAPP I implicated in the specificity of tethering in ERto-Golgi transport. Mol. Cell **7**: 433–442.
- SHAHINIAN, S., and H. BUSSEY, 2000 β-1,6-glucan synthesis in Saccharomyces cerevisiae. Mol. Microbiol. 35: 477–489.
- SHAHINIAN, S., G. J. DIJKGRAAF, A. M. SDICU, D. Y. THOMAS, C. A. JAKOB *et al.*, 1998 Involvement of protein N-glycosyl chain glucosylation and processing in the biosynthesis of cell wall β-1,6-glucan of Saccharomyces cerevisiae. Genetics 149: 843–856.
- SHERMAN, F., 1991 Getting started with yeast. Methods Enzymol. 194: 3–21.
- SUZUKI, C., and Y. SHIMMA, 1999 P-type ATPase *spf1* mutants show a novel resistance mechanism for the killer toxin SMKT. Mol. Microbiol. **32:** 813–823.
- TKACZ, J. S., 1984 In vivo synthesis of β-1,6-glucan in Saccharomyces cerevisiae, pp. 287–295 in Microbial Cell Wall Synthesis and Autolysis, edited by C. NOMBELA. Elsevier, Amsterdam.
- TOKAI, M., H. KAWASAKI, Y. KIKUCHI and K. OUCHI, 2000 Cloning and characterization of the *CSF1* gene of *Saccharomyces cerevisiae*, which is required for nutrient uptake at low temperature. J. Bacteriol. **182**: 2865–2868.
- VAN RINSUM, J., F. M. KLIS and H. VAN DEN ENDE, 1991 Cell wall glucomannoproteins of *Saccharomyces cerevisiae mnn9*. Yeast 7: 717– 726.
- VERNA, J., A. LODDER, K. LEE, A. VAGTS and R. BALLESTER, 1997 A family of genes required for maintenance of cell wall integrity and for the stress response in *Saccharomyces cerevisiae*. Proc. Natl. Acad. Sci. USA 94: 13804–13809.
- WICKNER, R. B., 1996 Microbiol. Rev. 60: 250-265.
- WINZELER, E. A., D. D. SHOEMAKER, A. ASTROMOFF, H. LIANG, K. ANDERSON et al., 1999 Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901–906.

Communicating editor: M. JOHNSTON