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ABSTRACT
Susceptibility to Theiler’s murine encephalomyelitis virus-induced demyelination (TMEVD), a mouse

model for multiple sclerosis (MS), is genetically controlled. Through a mouse-human comparative mapping
approach, identification of candidate susceptibility loci for MS based on the location of TMEVD susceptibil-
ity loci may be possible. Composite interval mapping (CIM) identified quantitative trait loci (QTL)
controlling TMEVD severity in male and female backcross populations derived from susceptible DBA/2J
and resistant BALBc/ByJ mice. We report QTL on chromosomes 1, 5, 15, and 16 affecting male mice. In
addition, we identified two QTL in female mice located on chromosome 1. Our results support the
existence of three linked sex-specific QTL on chromosome 1 with opposing effects on the severity of the
clinical signs of TMEV-induced disease in male and female mice.

MULTIPLE sclerosis (MS) is the major demyelinat- virus, and measles virus have been detected in the brains
of MS patients, but no single virus has been associateding disease of the central nervous system (CNS)
with all cases (Challoner et al. 1995; Dalgleish 1997).in humans, affecting 0.1% of the North American popu-
Theiler’s murine encephalomyelitis virus-induced de-lation, and involves both genetic and environmental
myelination (TMEVD) is a model for virally triggeredfactors (Sadovnick and Ebers 1993; Ebers and Sadov-
MS. TMEV is a murine picornavirus spread in naturalnick 1994; Ewing and Bernard 1998; Compston 1999;
and laboratory populations by the fecal/oral routeKalman and Lublin 1999; Sadovnick 2002). Concor-
(Miller et al. 1994). Following intracerebral inocula-dance rates among monozygotic twins are 20–30% while
tion, the virus establishes a persistent infection of CNSdizygotic twins, full siblings, and nonbiological siblings
white matter in susceptible strains. CD4� T cells initiatehave concordance rates of �4% (Ebers et al. 1995;
the disease by infiltrating the CNS and subsequentlySadovnick et al. 1996). Although a genetic component
recruit additional lymphocytes, leading to inflammationto susceptibility has been demonstrated, little is known
and progressive demyelination. Clinical signs becomeabout the genes that modulate MS. Evidence of an envi-
apparent 35–40 days postinoculation and show a pro-ronmental etiology for MS comes primarily from migra-
gressive course characterized by gait abnormalities, limbtion studies and geographic distribution data (Ebers
spasms, and incontinence (Miller et al. 1994).and Sadovnick 1994). Migration studies indicate that

H2D and two loci on chromosome 10 have been asso-individuals moving from high-risk areas tend to adopt
ciated with viral persistence (Clatch et al. 1985; Bureauthe low risk of native populations (Ebers and Sadov-
et al. 1993; Lipton et al. 1995; Bihl et al. 1999). Othernick 1994; Compston 1999). Susceptibility to MS is
loci controlling susceptibility to TMEVD have been iden-likely the result of complex interactions of environmen-
tified on chromosomes 3, 6, 11, and 14 (Melvold et al.tal triggers on a susceptible genetic background.
1987, 1990; Brahic and Bureau 1998; Bureau et al.Viruses have long been purported to play a role in
1998; Aubagnac et al. 1999). Recently, we examinedthe etiology of MS. Human herpes virus-6, Epstein-Barr
the most severely affected animals in a (BALB/cByJ �
DBA/2J) � BALB/cByJ backcross by qualitative assess-
ment (Teuscher et al. 1997). We reported that suscepti-1These authors contributed equally to this work.
bility to TMEVD was linked to a locus on chromosome2Present address: Department of Physiology, Johns Hopkins University

School of Medicine, Baltimore, MD 21205. 3 between D3Mit29 and D3Mit10 near eae3, a locus asso-
3Present address: Centers for Disease Control and Prevention, Atlanta, ciated with susceptibility to experimental allergic en-

GA 30333. cephalomyelitis (EAE), suggesting that a shared suscep-
4Corresponding author: Department of Medicine, C317 Given Medical

tibility gene or a cluster of tightly linked genes controlBldg., University of Vermont, Burlington, VT 05405.
E-mail: cteusche@zoo.uvm.edu susceptibility to both of these demyelinating diseases.
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from liver tissue. PCR-based genotyping using 199 polymor-The shared gene hypothesis for non-MHC-linked genes
phic microsatellite markers was performed as previously de-underlying immunopathologically based phenotypes,
scribed (Sudweeks et al. 1993; Meeker et al. 1995; Wardell

first proposed by this laboratory (Teuscher 1985; Sud- et al. 1995). Microsatellite primers were either purchased from
weeks et al. 1993; Meeker et al. 1995), was recently Research Genetics (Huntsville, AL) or synthesized according

to sequences obtained through the Whitehead Institute/MITvalidated with the identification of Bphs, an autoimmune
genome database (http://www.genome.wi.mit.edu/). Microsa-disease susceptibility gene linked to EAE and autoim-
tellite size variants were resolved by electrophoresis eithermune orchitis as histamine receptor H1 (Ma et al. 2002).
on agarose gels stained by ethidium bromide or on large

Interestingly, CD2, a known polymorphic cell surface denaturing polyacrylamide gels visualized with autoradiogra-
protein important in T-cell activation, colocalizes with phy. A linkage map was estimated using MAPMAKER/EXP

computer package (Lander et al. 1987; Lincoln et al. 1992)Tmevd2 and eae3 on chromosome 3 (Altevogt et al.
with the Kosambi map function. CIM was used for localization1989; Moseley and Seldin 1989).
of QTL governing severity of TMEVD using model 6 of theMales and females of the same strain can differ in
Zmapqtl program in QTL Cartographer software, version

susceptibility to TMEVD (Kappel et al. 1990; Hill et al. 1.13g (http://statgen.ncsu.edu/qtlcart/cartographer.html; Bas-
1998). In addition, a sex effect has been associated with ten et al. 1997). By combining classical interval mapping with

multiple regression, CIM allows for more precise QTL localiza-viral persistence in the CNS. Tmevp2 and Tmevp3 were
tion than does classical interval mapping. Additionally, CIMidentified on chromosome 10, with males exhibiting a
controls for spurious ghost loci (Zeng 1993, 1994; Doerge etgreater viral load than females (Bihl et al. 1999). In
al. 1997). Significant markers are first chosen using a linear

this work we used composite interval mapping (CIM; regression model with a forward/backward selection proce-
Zeng 1993, 1994) to identify sex-dependent quantitative dure in the SRmapqtl program of QTL Cartographer. Markers

flanking the test interval are added to the regression modeltrait loci (QTL) on chromosomes 1, 5, 15, and 16 in
to control for the presence of linked QTL. Additional markers,males and two QTL on chromosome 1 in females con-
unlinked to the test interval, but with significant effects ontrolling severity of TMEVD.
the trait, are added to the model to control for the genetic
background. In this study, background markers for CIM were
chosen using the SRmapqtl module of QTL Cartographer

MATERIALS AND METHODS in forward/backward selection with an accepting/rejecting
significance level of 0.10 using 198 markers (all markers exceptAnimals: Male and female BALB/cByJ and DBA/2J mice
D15Mit209, which was subsequently added to the analysis).were purchased from The Jackson Laboratory (Bar Harbor,
Composite interval mapping was performed using 2-cM incre-ME). (BALB/cByJ � DBA/2J) � BALB/cByJ backcross mice
ments with a window size of 10 cM, and the 10 most significant(BC1) were bred at Northwestern University School of Medi-
background markers selected via SRmapqtl as described abovecine (Chicago) and the University of North Dakota (Grand
were used in our CIM analyses. Tests of significant linkageForks, ND). All mice were maintained in polycarbonate cages
for QTL are reported as likelihood-ratio test (LRT) statistics.and received standard mouse chow and water ad libitum. Mice
Significance of the linkage between marker loci and putativeused in these studies were maintained according to the guide-
QTL was assessed by permutation-based threshold analysislines of the Animal Care and Use Committees of the University
(Churchill and Doerge 1994; Doerge et al. 1997). Signifi-of North Dakota and Northwestern University, fully accredited
cant (� � 0.05) and suggestive (� � 0.10) experimentwiseby the American Association of Animal Laboratory Care. Of
critical values were determined using the distribution of maxi-the 170 BC1 animals included in this study, 71 were male and
mum LRT statistics from 1000 permutations of our data.99 were female.

Induction of disease: The BeAn 8386 strain of TMEV was
used for disease induction in this study. After plaque purifica-

RESULTS AND DISCUSSIONtion and titer amplification by serial passage in BHK-21 cells,
a working stock was prepared with a titer of 9.7 � 108 PFU/

Gait abnormalities were seen in 120 of the 170 BC1ml. At 7 weeks of age, the mice were anesthetized with meth-
animals in the study. Significant differences in sex-spe-oxyflurane and inoculated in the right cerebral hemisphere

with 2.9 � 106 PFU of virus. Control mice were injected with cific susceptibility were not seen in parental BALB/cByJ,
media or were mock infected with BHK lysate in the same DBA/2J, or F1 hybrid mice using cohort sizes of 9 male
manner. Both the control and the experimental animals were and female mice (see Table 1). In our BC1 population,
housed in the same environment.

however, a greater number of males (56 of 71) thanEvaluation of phenotype: Following inoculation, the ani-
females were susceptible to TEMVD (64 of 99, �2 �mals were examined independently by two investigators for a

period of 13 weeks. Severity of clinical signs was scored on 4.03, P � 0.045). Kappel et al. (1990) have also shown
the following basis: 0 for asymptomatic, 1 for moderate (sway- an increase in susceptibility to TMEVD in male mice.
ing) gait abnormality, and 2 for severe (waddling) gait abnor- Sex-specific effects have also been observed in overall
mality. Clinical signs have been previously shown to provide

susceptibility to MS (Duquette et al. 1992) as well asa good correlation with demyelination when compared with
in disease subtypes (Runmarker and Anderson 1993).histological examination or testing of TMEV-specific delayed-

type hypersensitivity responsiveness (McGavern et al. 2000). As such, identification of the genes uniquely controlling
A quantitative trait value for estimating the overall severity of susceptibility to TMEVD in males and females may lead
the disease as a function of time postviral challenge, similar to a better understanding of the role of sex-specific QTL
to that used in studies on murine EAE (Butterfield et al.

in inflammatory diseases of the CNS.1998), was calculated by averaging the scores for each animal
Loci involved in TMEVD severity were identified us-over the course of the experiment.

Genotyping and linkage analysis: Genomic DNA was isolated ing CIM on subpopulations consisting of males and
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TABLE 1 to the centromere.) Interestingly, the negative additive
effect (�0.26; see Table 2) indicated that the susceptibil-Incidence of symptoms of TMEVD in DBA/2J, BALB/cByJ,
ity allele was derived from the TMEVD-resistant BALB/(BALB/cByJ � DBA/2J) F1 hybrid, and (BALB/cByJ �
cByJ. A QTL on chromosome 5 (Tmevd7) at 72 cM, nearDBA/2J) � BALB/cByJ backcross mice by sex
D5Mit30, accounted for 16.6% of the variation (Figure

Symptoms of TMEVD 1, Table 2) and increased severity at this locus was associ-
ated with the DBA/2J allele. On chromosome 15 atUnaffected Affecteda

4.7 cM near D15Mit12, a QTL (Tmevd8) accounted for(clinical (clinical
14.1% of the trait variation. Additionally, in male mice,Strain Sex Total score � 0) score � 1 or 2)
suggestive linkage (� � 0.10) was found on chromo-

DBA/2J M 9 0 9
somes 15 and 16. A QTL on chromosome 15, at 22.2DBA/2J F 9 0 9
cM near D15Mit5, accounted for 8.1% of the variationBALB/cByJ M 9 7 2
in the trait, while a locus on chromosome 16 nearBALB/cByJ F 9 8 1

F1 M 9 7 2 D16Mit50 at 53.5 cM accounted for 8.1% of the variation
F1 F 9 9 0 (Figure 1, Table 2). Interestingly, the QTL identified
BC1 M 71 15 56 on chromosome 16 in males colocalizes with eae11, a
BC1 F 99 35 64

locus controlling lesion severity and susceptibility to
a Animals were considered affected if they displayed either EAE in males (Butterfield et al. 1999). Linkage to this

mild (score � 1) or severe (score � 2) abnormalities in gait region of chromosome 16 may reflect a hormonally
for three consecutive weekly evaluations or for four out of regulated gene or gene complex controlling immuno-five consecutive weekly evaluations.

logically mediated demyelination. Independent verifi-
cation of the suggestive loci on chromosomes 15 and 16
will be required before these QTL will be given TMEVDfemales. In the male population (n � 71), CIM revealed
designations.significant loci (� � 0.05) on chromosomes 1, 5, and

Analysis of the female population (n � 99) revealed15. A QTL on chromosome 1 (Tmevd6) near D1Mit170
two QTL influencing the severity of disease symptoms.at 19.5 cM accounted for 9.5% of the variation in the
A significant QTL, Tmevd9, was found on chromosomeseverity of the clinical signs associated with TMEVD
1 at 32.8 cM, near D1Mit76, and accounted for 7.6% ofseverity (Figure 1, Table 2). (Mouse chromosomes are

acrocentric; thus all centimorgan distances are relative the variation (Table 2, Figure 2). This QTL colocalizes

Figure 1.—Composite interval map-
ping results for the male population.
Tick marks on the x-axis represent the
positions of microsatellite markers on
the genetic map. Permutation-derived
significance cutoffs were based on 1000
permutations. Significance cutoffs for
males are based on LRTs: LRTs � 15.6
(� � 0.05) and 13.7 (� � 0.10).
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TABLE 2

Location and effects of QTL controlling severity of symptoms in (BALB/cByJ �
DBA/2J) � BALB/cByJ backcross mice

Additive %
QTL

designation Chr. cMa Markerb LRTc Effectd Variancee

Males Tmevd6 1 19.5 D1Mit170 16.21 �0.26 9.5
Tmevd7 5 72 D5Mit30 26.45 0.37 16.6
Tmevd8 15 4.7 D15Mit12 18.34 �0.36 14.1

15 22.2 D15Mit5 14.10 0.29 8.1
16 53.5 D16Mit50 14.06 0.24 8.1

Females Tmevd6 1 19.5 D1Mit170 12.15 0.25 6.8
Tmevd9 1 32.8 D1Mit76 14.61 �0.33 7.6

a Location according to Mouse Genome Informatics (MGI; http://www.informatics.jax.org/).
b Marker at the peak linkage, determined by permutation threshold (Figures 1 and 2).
c Likelihood-ratio test statistic.
d Additive effect of the QTL relative to the BALB/cByJ homozygote. A positive value indicates that the mean

trait value for the BALB/cByJ homozygotes is greater than the mean trait value for the heterozygous animals.
e Percentage variance accounted for by a QTL at the specified location.

with Cd28 and Cd152 (Ctla4), important cell surface effects suggests that Tmevd6 may contain two closely
molecules in the control of T-cell activation. In contrast linked QTL with opposite effects in males and females.
to Tmevd6, the DBA2/J allele at this locus decreased Alternatively, sex hormones may differentially regulate
disease severity in females. the same QTL in males and females. Interference of

Additionally, suggestive linkage in females was seen the sex-specific QTL at Tmevd6 on chromosome 1 most
on chromosome 1 at 19.5 cM (D1Mit170), accounting likely prevented their identification by classical interval
for 6.8% of the experimental variation. This QTL is at mapping since they had effects in opposite directions
the same location as Tmevd6 identified in males. In (Zeng 1993, 1994). Further studies will be necessary to
contrast to males (additive effect � �0.26), the additive elucidate the position and effects of the Tmevd6 locus
effect of Tmevd6 in females was 0.25, indicating that in males and females.
the DBA/2J allele increased severity in females while In this study, we have shown that sex-specific QTL
a BALB/cByJ allele increased severity in males. The play a role in susceptibility to TMEVD with QTL on
presence of a QTL in the same interval of chromosome chromosomes 1, 5, 15, and 16 controlling disease sever-
1 in male and female populations with opposite additive ity in males, while two QTL on chromosome 1 influence

severity in females. These sex-specific QTL were identi-
fied only when the experimental population was strati-
fied by sex and analyzed using CIM. Similar sex-specific
QTL have been identified in the genetic control of
both clinical and histopathologic EAE, the other major
animal model for MS (Butterfield et al. 1999, 2000;
Blankenhorn et al. 2000). Additionally, this study dem-
onstrates, in a practical sense, the utility of CIM in de-
tecting multiple linked, sex-specific QTL and that resis-
tant strains of mice may harbor TMEVD susceptibility
loci that become relevant only as they interact with sus-
ceptibility loci from different strains. This may explain
why significantly greater numbers of BC1 males were
affected with TMEVD while parental DBA/2 and BALB/
cByJ mice did not show significant differences in sex-
biased susceptibility. A summary of both the sex-specific
and non-sex-specific TMEVD-modifying loci identified

Figure 2.—Composite interval mapping results for the fe- to date is found in Table 3.
male population. Tick marks on the x-axis represent the posi- The mechanisms underlying sex-specific QTL are un-
tions of microsatellite markers. Permutation-derived signifi- known but may arise as a result of sex hormone regula-cance cutoffs were based on 1000 permutations. Significance

tion of the polymorphic genes underlying these QTLcutoffs for females are based on LRTs: LRTs � 14.1 (� �
0.05) and 12.8 (� � 0.10). or interactions between mitochondrially or Y-chromo-
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