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ABSTRACT
We present a Bayesian method that combines linkage and linkage disequilibrium (LDL) information

for quantitative trait locus (QTL) mapping. This method uses jointly all marker information (haplotypes)
and all available pedigree information; i.e., it is not restricted to any specific experimental design and it
is not required that phases are known. Infinitesimal genetic effects or environmental noise (“fixed”) effects
can equally be fitted. A diallelic QTL is assumed and both additive and dominant effects can be estimated.
We have implemented a combined Gibbs/Metropolis-Hastings sampling to obtain the marginal posterior
distributions of the parameters of interest. We have also implemented a Bayesian variant of usual disequilib-
rium measures like D� and r 2 between QTL and markers. We illustrate the method with simulated data
in “simple” (two-generation full-sib families) and “complex” (four-generation) pedigrees. We compared
the estimates with and without using linkage disequilibrium information. In general, using LDL resulted
in estimates of QTL position that were much better than linkage-only estimates when there was complete
disequilibrium between the mutant QTL allele and the marker. This advantage, however, decreased when
the association was only partial. In all cases, additive and dominant effects were estimated accurately either
with or without disequilibrium information.

AN ultimate goal of quantitative trait loci (QTL) stud- liger and Weiss 1998). In fact, a pure LD analysis is
likely to result in a large number of false positives asies is to clone the gene(s) responsible for the ge-
illustrated recently, e.g., in Alzheimer’s disease (Ema-netic differences between individuals and, eventually,
hazion et al. 2001).identify the causal mutation(s). Certainly, this is a daunt-

A promising approach is thus to combine both link-ing task that will be accomplished only gradually. One
age and linkage disequilibrium (LDL) methods to addof the most severe limitations, at the moment, is that
their advantages in a single unified theoretical frame-the QTL position is estimated with too large an error
work. More specifically, there is an urgent need forto allow positional cloning when a classical linkage anal-
robust methods that provide accurate estimation of theysis is employed. The 95% confidence interval for the
QTL position. Consider for the sake of illustration aQTL position usually spans over 5–20 cM, at a minimum.
simple design where a number of nuclear families areThe wide confidence interval occurs because the num-
typed, i.e., parents and offspring. The theoretical advan-ber of meioses in the genotyped pedigree is usually
tages of combining linkage disequilibrium and pedigreevery small; only between two and three generations are
(linkage) information in QTL analysis are manifold: (i)generally employed. Linkage disequilibrium (LD)-based
A marker for which a parent is homozygous does notmethods, in contrast, capitalize on the number of gener-
contribute information in a linkage analysis, yet it doesations that occurred since the appearance of mutation
in LD analysis; (ii) conversely, two parents may shareand can produce extremely accurate estimates of the
the same haplotype but not necessarily the same QTLgene position, within kilobases in some instances (Hast-
genotypes, and a pure LD analysis would be misleadingbacka et al. 1994). Nevertheless, the chance of success
but the phenotype of offspring together with the ascer-of the LD strategy depends on a number of population
tainment of alleles transmitted can be used to determineparameters, such as the degree of admixture in the
which are the most likely QTL genotypes of the parents;sampled population, the actual level of association be-
(iii) an individual without relatives but with phenotypetween the causal mutation and the polymorphisms, or
records can be included in the LD analysis, in contrastthe correct ascertainment of phases and of genotypes
to a pure linkage study; and (iv) a comparison of theat the QTL. Of course these parameters are usually
analyses including or not the LD information can assessunknown but do dramatically affect the results (Terwil-
the validity of the LD model assumptions (i.e., one muta-
tion t generations ago).

Several authors have addressed the problem of com-
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al. 1999; Fulker et al. 1999; Wu and Zeng 2001; Farnir (2001), intended for natural populations, is also difficult
to apply to complex pedigrees.et al. 2002; Meuwissen et al. 2002), whereas Xiong and

Here we present a Bayesian method that combinesJin (2000) proposed a method suited to disease suscepti-
linkage and LD information for QTL mapping withinbility genes. Zhao et al. (1998) developed a semipara-
a unified theoretical framework. Our LDL method usesmetric procedure based on the score-estimating equa-
jointly all marker information, as well as all availabletion approach and that addressed the particular case of
pedigree information; i.e., it is not restricted to anysingle-nucleotide polymorphisms. This is one of the first
specific experimental design and it is not required thatarticles to provide a theoretical framework for LDL map-
phases be known. If desired, infinitesimal genetic effectsping but the estimating equation approaches are diffi-
or environmental noise (fixed) effects can also be fitted.cult to implement in practice; they require complex
A diallelic QTL is assumed and both additive and domi-computations adapted to each family structure. For in-
nant effects can be estimated. We have implemented astance, the method sums over all possible phases and
combined Gibbs/Metropolis-Hastings sampling to ob-computes their probabilities, which is extremely com-
tain the marginal posterior distributions of the parame-plex to do in practice beyond a few markers. The statisti-
ters of interest. We illustrate the method with simulatedcal properties of these estimators are also unknown.
data.Fulker et al. (1999) developed a sib-pair analysis in

a likelihood framework. The approach followed by Alli-
son et al. (1999) is a generalization of the transmission

THEORYdisequilibrium test (TDT) for quantitative traits (Alli-
son 1997), where a between- and within-family associa- We assume that the goal of the analysis is to fine map
tion parameter is modeled via a mixed model. Neither a QTL that has been previously located within a given
the Fulker et al. (1999) nor Allison et al. (1999) meth- genome region. The genetic model presupposes that a
ods are very suited to analyzing complex pedigrees as single mutation occurred t generations ago on a gene

affecting the trait studied. Thus, initially, a single ances-they consider sib pairs (Fulker et al. 1999) or parent-
tral (founder) haplotype harbored the mutation. Theoffspring trios (Allison et al. 1999) and their theoretical
number of haplotypes carrying the mutation increasesframework is difficult to generalize to more complex
in successive generations provided that the mutation issettings. TDT in particular is not an optimum choice to
not lost and, due to recombination, the initial alleledeal with very polymorphic markers like microsatellites
combination is eroded. The amount of disequilibriumand makes use of only a limited amount of the total
between markers and QTL decreases proportionally toinformation contained in a typical pedigree. Meuwis-
genetic distance and to the number of generationssen et al. (2002), in turn, proposed to model the QTL
elapsed since mutation. Here we use the populationalleles as a random variable, where the covariance be-
model for linkage disequilibrium decay described intween base population haplotypes allows the inclusion
Morris et al. (2000), with modifications described be-of the LD information (Meuwissen and Goddard
low. Briefly, a binary variable Ski is defined such that, at2000), and the covariance between non-base population
any kth marker locus and ith individual, the locus willhaplotypes was computed as in Fernando and Gross-
be either identical by descent (IBD) with the originalman (1989) and Goddard (1992). They estimated the
haplotype carrying the mutation (Ski � �) or not (Ski �position via maximum likelihood. The model followed
�), with minus and plus signs standing for the mutantby these authors is different from the usual LD, where
and wild haplotype alleles, respectively. By conventiona diallelic QTL is assumed. The key issue in their method
we denote the QTL by locus 0. A Markov chain Monteis to compute the identity-by-descent probabilities be-
Carlo (MCMC) method was provided by Morris et al.tween the base population haplotypes, and this was done
(2000) to obtain the transition probabilities of a locusby considering the number of identity-by-state alleles
being IBD or not at locus k � 1 conditional on beingshared by any two haplotypes, along the lines also sug-
IBD or not at locus k.gested by McPeek and Strahs (1999). They assumed

Now suppose that the QTL additive and dominancethat phases are known, which is a reasonable assumption
effects are a and d, respectively; i.e., the mean phenotypeonly if families are very large, e.g., as in dairy cattle.
of the individuals homozygous for the wild allele (�/�)Otherwise, QTL positioning can be dramatically af-
minus that of individuals homozygous for the mutantfected if a phase is incorrectly specified. Farnir et al.
allele (�/�) is 2a, whereas the mean phenotype of(2002) developed an analytical approach for combining
heterozygous individuals, (�/�) or (�/�), is d. Sup-

linkage and LD in half-sib families, where the disequilib-
pose further that a number m of individuals have been

rium information is incorporated via Terwilliger’s typed for DNA markers, contained in matrix M, and
(1995) approach. Their method would be very cumber- that phenotypic measurements (y) are available on a
some to generalize to more complex populations; in subset of n individuals. The linear explicative model is
addition, phases are assumed to be known and it is not
a true multipoint method. The method of Wu and Zeng y � X� � waa � wdd � Zu � e � X* �* � Zu � e, (1)
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TABLE 1

Main symbols used

n Number of phenotypic records
m Number of individuals in the pedigree
y Phenotypic records, dimension n
M Marker information, contains the alleles for each individual and marker; dimension m � no. of markers � 2
S0 Identity-by-descent status of the QTL allele of the base generation individuals with the causative mutation; it can take

values wild (�) or mutant (�) allele, dimension 2 � no. of base generation individuals
a Additive QTL effect; the average value of individuals with genotype (�/�) � (�/�) is 2a
d Dominance effect; phenotypic value of individuals with genotype (�/�) or (�/�)
u Infinitesimal genetic value; it contains all genetic effects except the QTL under study, dimension m
� Fixed (noise environmental) effects, dimension the sum of levels for each fixed effect
�2

u Infinitesimal genetic variance
�2

e Residual variance
� QTL position, in morgans
t Time (no. of generations) since mutation
T 2 � m matrix with QTL segregation indicators. The genotype of all individuals is unambiguously determined by T

and S0

H Marker phases; contains indicator variable to identify whether the allele in vector M is of paternal or maternal origin;
dimension m � no. of markers

where � is a fixed-effects (environmental/nongenetic p(�|y, M) � p(y, M|�)p(�) � p(y|�)p(M|�)p(�), (2)
effects) vector; wa is a vector with indicator variables

where p(y, M|�) is the likelihood (in the Bayesian sense),taking values 1 or �1 if the QTL genotype of each
and p(�) is the a priori distribution for the parameters.individual is �/� or �/�, respectively, and zero for
Note that phenotypes and markers are conditionally

heterozygous individuals; wd contains values 1 if individ-
independent. Ideally, inferences about each of the pa-

ual QTL genotype is �/� or �/�, zero otherwise;
rameters in �, say 	l, should be based on the marginal

and u and e contain the infinitesimal genetic values
posterior distribution, i.e.,

(polygenic effects) and residuals, respectively, whereas
X and Z are incidence matrices. The matrix X* contains p(	l |y, M) � �

	�l

p(	l, ��l |y, M)���l , (3)
X plus two additional columns for wa and wd; similarly
vector �* is � plus elements a and d. where ��l indicates the vector of parameters except the

The goal of the analysis is to obtain estimates of the set l th unknown. Typically this multidimensional integral
of parameters, � � {S0, a, d, u, �, �2

u, �2
e, �, t, T, H}, where is unfeasible and we need to resort to stochastic proce-

S0 is a matrix containing the IBD status of the two indi- dures like Gibbs or Metropolis-Hastings sampling
vidual QTL alleles with the causal mutation, taking val- schemes (Sorensen and Gianola 2002). In the follow-
ues � or �; �2

u is the infinitesimal genetic variance; ing, we describe all conditional distributions that we
�2

e, the residual variance; and � is the QTL position. T need to sample from. Unless otherwise stated, we make
is a QTL segregation indicator vector containing, for the usual assumptions of flat priors for all parameters,
each individual and haplotype, a binary variable speci- except for p(u) � Normal(0, A�2

u), where A is the addi-
fying whether the QTL allele is IBD with the paternal tive relationship matrix between individuals (Lynch and
or maternal parental allele (Thompson 1994). Note that Walsh 1998).
S0 needs to be specified only for the base population The rest of this section is devoted to presenting the
individuals (those without known parents) and that the main conditional distributions to sample from to obtain
QTL genotypes for the whole population are unambigu- the posterior distribution of the parameters of interest.
ously determined once S0 and T are specified. Finally, For the reader less interested in the mathematical de-
H is a vector containing the phases (paternal or mater- tails, this part can be summarized as follows. For the base
nal) for each of the markers. It can be seen that wa and population individuals (those without ancestors geno-
wd in (1) are completely determined by S0 and T and typed) we use their marker haplotypes and the pheno-
are not additional random variables; a redundant nota- typic information of their descendants, in addition to
tion was used solely for the sake of clarity in (1). The the prior allele frequencies, to ascertain the more likely
main symbols that are used throughout the article are QTL genotypes. The LD signal is incorporated into the
detailed in Table 1 for the reader’s convenience. model via the distribution p(M|�), which quantifies the

The Bayesian inference is based upon the posterior probability of an individual carrying a certain marker
haplotype conditional on its QTL genotype and otherdistribution of the parameters,
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information, the QTL IBD status of the ith base popula-
tion individual can be sampled from the fully condi-
tional distribution,

p(S0i1, S0i 2|y, M, ��) � p(y|�)p(Mi |�)p(�)

� � �
j�
i

p(yj|S0i1, S0i 2, S0�, a, d, ui, �, �2
e, T)�

� p(Mi |S0i1, S0i 2, t, Hi , �) � p(S0i1, S0i 2)
Figure 1.—Representation of a pedigree via the transmis-

� p(yj �
i|�) � p(Mi|�) � p(S0i1, S0i 2),sion coefficients T. Each small circle represents an allele of
the QTL, identical-by-descent alleles are connected with a

(4)

where yj is the phenotype of the jth individual havingsolid line, and individual genotypes, 1–8, are boxed with
received at least one allele from individual i, and S0�dashed lines.
denotes the rest of IBD status not sampled. We now
show which are the distributions involved in (4). The
first term is a product of Normal densities N(ej, �2

e), with
population parameters, like the age of the mutation.

ej � yj � x�j � � uj � waja � wdjd,We assume a star-shaped genealogy. We suppose that
base population individuals are genotyped for most of where, x�j is the column vector of X corresponding to
the markers but not that phases are known; they are the jth individual’s observation.
inferred from the offspring genotypes. LD or allele fre- The distribution p(Mi|�) in (4) is the probability of
quency priors do not contribute any information to having marker alleles linked in haplotype 1 or 2 (say
obtain the genotypes of the descendant individuals Mi1 or Mi 2) conditional on a given QTL genotype, its
(conditionally on the genotypes of the base population) position relative to DNA markers, and the parameter
and are sampled following the most likely recombinants governing the LD decay (t). Both haplotypes are condi-
as inferred from marker information. Once the QTL tionally independent; thus p(Mi|�) � p(Mi1, Mi 2|S0i1, S0i 2,
alleles are sampled, most of the remaining parameters t, Hi, �) � p(Mi1|S0i1, t, Hi, �)p(Mi 2|S0i 2, t, Hi, �), where
are obtained via a classical Gibbs sampling within the Mi1 contains the marker alleles received from the father
mixed-model context (Sorensen and Gianola 2002). and Mi 2, those of mother’s origin. Consider the marker
In contrast, Metropolis-Hastings is required for the QTL alleles of a given individual i at haplotype h (Mih); in
position; here we identify where recombinants have oc- our notation L markers are to the left and R markers
curred at two alternative positions and the resulting to the right of the current QTL position. Then,
likelihoods using available phenotypic information are

p(Mih|S0ih , t , Hi , �)compared (Uimari and Sillanpää 2001).
Base population QTL genotypes (S0): In the absence � p(Mih,�L , . . . , Mih,�2, Mih,�1 , Mih1 , Mih2 , . . . , MihR|S0ih , t , Hi , �)

of LD information, only the phenotypes of the individu-
� p(Mih,�L, . . . , Mih,�2, Mih,�1|S0ih, t, Hi, �)als that have received a given base population allele

provide information about the likely value of that allele. � p(Mih1, Mih2, . . . , MihR|S0ih, t, Hi, �) � Q ihLQ ihR,
This is illustrated in the simple pedigree of Figure 1;

where Mihk denotes the allele at marker k (starting fromthe solid lines represent the transmitted alleles, stored
the QTL) of haplotype h, ith individual. Note that kin T. Suppose that we are sampling the IBD status of
takes negative values for markers to the left of the QTL.first individual and first allele (S011), conditional on all
Dropping subscripts i and h and the conditioning on t,other parameters including the S0 of the remaining
H, and on � for clarity, we findindividuals (denoted by �_). The phenotypes of individ-

uals 1, 5, 6, and 7 influence the probability p(S011|�_, y, QR � p(M1, M2, . . . , MR|S0)
M). In contrast, p(S012|�_, y, M), corresponding to the

� �
S1

p(M2, . . . , MR|S1)p(M1|S1)p(S1|S0).second QTL allele, involves only the phenotype of indi-
vidual 1, as this allele was not transmitted. If that individ-

This process is repeated sequentially from the QTL posi-ual does not have phenotype recorded, p(S012|�_, y, M)
tion toward the extremes of the interval,is strictly proportional to the prior frequencies for each

QTL allele, when LD information is not being used. We
Q R ��

S1

�
S2

p(M3 , . . . , MR|S 2)p(M2|S 2)p(S 2|S1)p(M1|S1)p(S1|S 0)denote by �i the set of individuals that have received at
least one allele for individual i and have phenotypes,

� �
S1

�
S2

. . . �
SR

�
R

k�1

p(Mk|Sk)p(Sk|Sk�1), (5)i.e., �1 � {1, 5, 6, 7}, �2 � {5, 6}, and �3 � �4 � {3, 4, 8}.
Note that the set � may vary from iteration to iteration
as a new T is sampled. If LD information is being used, where Sk is the IBD state of marker allele k of individual
p(S0|�_, y, M) also depends on the marker alleles of i with the original mutant haplotype.

At any marker locus, k, the locus will be either IBD withthe base population individuals. Using all sources of
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the original haplotype carrying the mutation (Sk � �) or with the number of markers, especially for highly poly-
morphic markers like microsatellites. However, sincenot (Sk � �). The term p(Mk|Sk) contains the marker
the relevant statistic is the ratio Q(S0 � �)/Q(S0 � �),allele probabilities conditional on Sk; p(Mk|Sk � �) is
qR and qL can be initialized to a very large number.simply given by the population allele frequencies. In

Finally, p(S0i1, S0i 2) in Equation 4 is the a priori proba-contrast, p(Mk|Sk � �) will be 1 for the allele that carried
bility of the IBD state of the two QTL alleles with thethe mutant haplotype and 0 for the remaining alleles.
original mutant haplotype. When the individual is notThe vector p(M|SL � . . . S�1 � S1 � SR � �) is the
inbred, p(S0i1, S0i 2) � p(S0i1)p(S0i 2), where the prior prob-original haplotype that carried the mutation. Of course
abilities are the same for any base population allele. Ifthis haplotype is unknown but can be inferred as shown
the ith individual is known to be inbred from the avail-by Morris et al. (2000). Here we have preferred to con-
able pedigree with inbreeding coefficient fi, p(S0i1, S0i 2) �sider both Sk and p(Mk|Sk) as nuisance parameters; i.e., we
(1 � fi)p(S0i1)p(S0i 2) � fip(S0i 2)(S0i1|S0i 2), with  beingare not usually interested directly in them, and thus we
an indicator 1/0 function that makes S0i1 take the sameintegrate them out in (5). As a result, p(Mk|Sk � �) is no
value as S0i 2. The prior probability of an allele beinglonger 0’s and 1’s but can take any value between the two
identical by descent with the original mutant haplotypeextremes. The appendix shows how p(Mk|Sk) is updated.
is � if the base population individuals have been sam-The transition probabilities p(Sk|Sk�1) can be obtained
pled at random from the population, i.e., p(S0i � �) �as detailed in Morris et al. (2000) and depend on the
� and p(S0i � �) � 1 � � for every individual. Otherwise,effective size and time since mutation. Four transition
e.g., case/control study or selective genotyping, theprobabilities need to be specified, which are
probabilities have to be modified accordingly (Morris et

p(Sk � �|Sk�1 � �) � exp(�φt �k,k�1) � [1 � exp(�φt �k,k�1)]�, al. 2000).
In summary, to sample the IBD states at the QTL

p(Sk � �|Sk�1 � �) � [1 � exp(�φt �k,k�1)](1 � �),
position we evaluate Equation 4 at all four possible QTL

p(Sk � �|Sk�1 � �) � [1 � exp(�φt �k,k�1)]�, genotypes, i.e., (�/�), (�/�), (�/�), (�/�), for
each base population individual in turn, and we take a

and random number according to the genotype probabili-
ties. Both alleles are thus sampled simultaneously. Nev-

p(Sk � �|Sk�1 � �) � exp(�φt �k,k�1) � [1 � exp(�φt �k,k�1)](1 � �)
ertheless, this strategy can be ameliorated by sampling
larger blocks of base population IBD states. Suppose(Morris et al. 2000), where φ is the ratio of 1 M/1 Mb
IBD states of base population individuals 1 through cDNA (typically 1/100), �k,k�1 is the distance (morgans)
are sampled; thenbetween loci k and k � 1, and � is the probability of

recombining with a haplotype carrying the mutation. p(S0i1, S0i 2, . . . , S0c 2|y, M, ��) � �
j �


p(yj|S0, a, d, ui, �, �2
e, T)

This parameter is in fact highly confounded with t
(Kaplan et al. 1995) and we did not try to estimate it;

� �
c

i�1

p(Mi|S 0i1, S 0i 2, t, Hi, �)rather, we set � � 0.001. This had a negligible impact
on the results.

Expression (5) is extremely difficult to compute. How- � �
c

i�1

p(S 0i1, S 0i 2), (6a)
ever, we can rearrange as

where j � � means any individual having received at
Q R � �

S1

p(M1|S1)p(S1|S0) . . . �
SR�1

p(MR�1|SR�1)p(SR�1|SR�2) least one allele from any of individuals 1 through c. An
issue of interest is to determine which S0 elements are to

� �
SR

p(MR|SR)p(SR|SR�1). be sampled together to minimize the risk of reducibility.
Here we sampled jointly those origins that coincided in
the maximum number of individuals. For instance, ifThus, starting from the outermost marker, R, it is feasi-
only four origins were to be sampled together in theble to compute QR using the recursive formula
pedigree of Figure 1, two blocks with the IBD status of

qk � �
Sk

p(Mk|Sk)p(Sk|Sk�1)qk�1 individuals (1, 2) and (3, 4) rather than (1, 3) and (2,
4) would be chosen. Note that a pure linkage approach
can be easily implemented sampling fromwith initial values q�L � qR � 1; QR � �1

k�R qk, and simi-
larly QL � �1

k��L qk. Note that each coefficient qk is a
p(S0i1, S0i 2, . . . , S0c 2|y, M, ��) � �

j �


p(yk|S0, a, d, ui, �, �2
e, T)vector with two elements corresponding to states Sk � �

and Sk � �. At the end of the computations we obtain
� �

c

i�1

p(S 0i1, s 0i 2) (6b)the probabilities of individual haplotypes given S0 � �
and S0 � �. There can be numerical problems in ob-
taining QR or QL for a large number of markers as the instead of from (6a).

The rest of the sampling distributions required arenumber of possible haplotypes increases exponentially
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detailed in the appendix. Once all variables are initial- frequencies were 0.3 and 0.7, whereas there were six
alleles at equal frequencies for each microsatellite. Theized, the Markov chain Monte Carlo (MCMC) chain

consists of iterating successively via Equations 4 or 6 QTL was located in position 18 cM, its additive effect
was a � 1, there was no dominance (d � 0), and theand A2–A7a plus updating the phases (H), p(M|S), and

the transmission indicators (T). Obviously, in a linkage- residual variance was �2
e � 1. Phenotypic records were

simulated for generation 2 in the simple populationonly approach,(6b), the sampling is simplified by not
sampling p(M|S) and time since mutation (t). The pro- and for all individuals in the complex pedigree. All

individuals were genotyped. The mutant QTL allele fre-cedure is otherwise identical.
Two-marker disequilibrium measures: LD measure- quency in the population studied was 0.3. Two situations

were considered: The mutant QTL allele was eitherments like D� (Hedrick 1987; Lewontin 1988) rely on
the possibility of ascertaining the linkage phases and the completely associated with SNP allele “2” (frequency �

0.3) in position 18 cM or partially associated with thealleles themselves, which is not possible with quantitative
traits because the QTL genotypes are not known. Never- SNP allele “1” (frequency � 0.7). In the former case,

all haplotypes with the SNP allele 2 in position 18 cMtheless, phases and QTL alleles are generated each itera-
carried the mutant QTL allele; in the latter case, initiallytion so we can define a Bayesian estimate of D� between
�42% (0.3/0.7) of haplotypes with SNP allele 1 har-any marker and the QTL, computing D� at the current
bored the QTL mutant allele. The original haplotypeconfiguration using the formula D� � �n1

i�1 �2
j�1piqj|D�ij ,

carrying the mutation was 1111111111211111 with com-where i is the ith allele of the marker, with frequency
plete association and 1111111111111111 in the secondpi, the marker has n1 alleles, index j refers to the jth
case. It was assumed that the mutant allele appearedQTL allele, with frequency qj, and D�ij � Dij/DMAX is the
100 generations ago, and the decay in disequilibriumusual measure for diallelic markers. Here we provided
was simulated following the model in Morris et al.the mean of the posterior distribution, obtained as D�
(2000). We compared the results using the LDL methodaveraged over iterations. We also computed the recom-
(Equation 6a) with those when only linkage informationmended measure by Pritchard and Przeworski (2001)
was used (Equation 6b).denoted by r 2 (or �2 in Devlin and Risch 1995), which

Three replicates of each case were run, resulting inis defined as r 2 � �n1
i�1 �2

j�1D2
ij/piqj . One of the interesting

12 analyses in total. The only fixed effect included in theproperties of r 2 is that r 2 times the number of haplotypes
analyses was the general mean. The maximum change inis distributed as a chi square with n1 � 1 d.f. (Weir
QTL position was set to 0.5 cM in each direction. We1996), although this is an approximation and does not
ran 50,000 iterations of the MCMC chain, discardinghold for large r (Hudson 1985). Nevertheless that prop-
the first 4000 iterations. Eight origins were samplederty is not needed here as we are able to derive the full
jointly; thus p(S0i1, S0i 2, . . . , S0c 2|y, M, ��) can take 28 �posterior distribution of r 2 between any marker and the
256 values because the QTL is assumed to be diallelic.QTL and assess the relevant highest density region that
Phases were updated in blocks of six. Each completecovers the point 0 (no disequilibrium). Here we report
iteration took �3.5 sec on an alpha workstation withthat r � √r 2 to make it comparable with D�. Both D�
processor 21164A. The computing time per iteration isand r were calculated using only the base population
highly dependent on the number of paths and phasesindividuals.
updated simultaneously.

SIMULATION RESULTS

Two population types that can typically be found in Table 2 presents the mean and SD of the marginal
livestock, with “simple” and “complex” pedigrees, were posterior distributions for the main parameters in the
simulated. The simple population consisted of 40 unre- case of complete association. The posterior distributions
lated full-sib families, 10 offspring per family. The com- for the additive and dominant effects in the first repli-
plex population was a four-generation pedigree, with a cate are plotted in Figure 2a and provide a whole picture
base population of 80 unrelated parents that produced about the uncertainty regarding these parameters. Re-
40 full-sib families of size 5 (generation 2), whereas sults were very similar for all replicates so only one is
generations 3 and 4 consisted of 20 full-sib families (5 presented. The estimates of the genetic effects and the
offspring per family). Parents were chosen at random residual variance were quite accurate, and the SDs of
except in generation 1, where all parents had an equal their posterior distributions were small, indicating that
number of offspring. Both simple and complex pedi- there is enough information in the data to estimate
grees had a total of 480 individuals. The explored region these parameters. The 95% highest density region con-
spanned 25 cM and contained six microsatellites at posi- tained the true values of a, d, and �2

e in all cases. In
tions 0, 5, 10, 15, 20, and 25 cM, together with 10 single- particular, it was correctly detected that gene action was
nucleotide polymorphisms (SNPs) located at positions additive. A rigorous test of dominance, nevertheless,

would imply computing the Bayes factors between the11, 12, 13, 14, 16, 17, 18, 19, 21, and 22 cM. SNP allele
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TABLE 2

Posterior distribution statistics: complete association

Parametersc

Pedigreea Replicate Analysisb a/�e d/�e �2
e Position (M) t

Simple 1 LDL 1.06 (0.08) 0.02 (0.10) 0.96 (0.07) 0.169 (0.031) 73 (14)
L 1.00 (0.09) �0.05 (0.13) 1.00 (0.07) 0.148 (0.044) —

2 LDL 1.07 (0.08) 0.08 (0.13) 0.99 (0.07) 0.183 (0.027) 79 (20)
L 1.07 (0.10) 0.14 (0.15) 0.99 (0.08) 0.144 (0.062) —

3 LDL 1.08 (0.10) 0.08 (0.10) 0.88 (0.07) 0.180 (0.014) 90 (18)
L 1.02 (0.11) �0.01 (0.12) 0.92 (0.08) 0.192 (0.028) —

Complex 1 LDL 0.94 (0.08) �0.05 (0.09) 1.13 (0.08) 0.182 (0.024) 71 (16)
L 0.88 (0.09) 0.01 (0.10) 1.18 (0.09) 0.197 (0.033) —

2 LDL 0.99 (0.08) �0.01 (0.10) 1.03 (0.07) 0.187 (0.020) 101 (21)
L 0.95 (0.09) 0.01 (0.12) 1.07 (0.08) 0.168 (0.042) —

3 LDL 0.96 (0.08) 0.05 (0.09) 1.09 (0.08) 0.169 (0.017) 141 (15)
L 0.91 (0.09) 0.05 (0.10) 1.11 (0.08) 0.160 (0.031) —

All haplotypes with SNP allele 2 carried the QTL mutant allele.
a Simple pedigree populations consist of independent full-sib families; complex population is a four-genera-

tion pedigree with random mating.
b LDL analysis combines both linkage disequilibrium and pedigree information; L analysis uses only linkage.
c Mean of the marginal posterior distribution (SD of the marginal posterior distribution).

two competing models. Interestingly, there was little (note that the scales of the y-axes are different in Figures
3 and 4). It is also apparent that the mode of the poste-difference between using or not using the linkage dis-

equilibrium information. This means that most, if not rior distribution coincided with the true position only
all, information to estimate the QTL genetic effects
comes from classical linkage analysis. The effect of popu-
lation structure was also negligible. However, including
LD does affect the estimate of the QTL position (Table
2, Figure 3) with complete association between the SNP
and the QTL alleles: (1) The mode of the posterior
distribution always coincided with the true position and
this was not necessarily the case in the linkage-only ap-
proach; (2) LDL estimates were always less biased; and
(3) the SDs of the posterior distributions were always
smaller in the LDL than in the linkage-only method. In
general, the relative advantage of LDL over linkage-only
was larger in the two-generation than in the complex
pedigrees. This can occur because more meioses are
available for mapping in the four- than in the two-gener-
ation pedigree but also because in the complex pedigree
there were fewer offspring per family, making it less
accurate for estimating the QTL genotype and the
marker phases of the base population individuals, and
this has a much larger effect on LDL than in linkage-
only analysis.

Results concerning the incomplete association sce-
nario are presented in Table 3 and Figure 4. As ex-
pected, the estimates of the QTL effects were similar to
those in Table 2, albeit the SDs were somewhat larger Figure 2.—Marginal posterior probabilities of additive (a)

and dominant effects (d), expressed in residual standard devi-in particular for the dominance effect. Replicate 2 of
ation units. The thick line corresponds to the LDL estimatethe complex pedigree had unusually large SD of the
and the thin shaded line, to the linkage-only estimate. (a)

posterior distributions of a and d. But more importantly, First replicate of the simple pedigree, complete association;
the accuracy of the QTL position was generally much (b) first replicate of the simple pedigree, incomplete associa-

tion. The true values were a � 1 and d � 0.smaller with incomplete than with complete association
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Figure 3.—Marginal posterior proba-
bilities of QTL location with complete
association between QTL and SNP geno-
type. (Left) Simple population graphs;
(right) complex population graphs. The
three replicates are shown below each
other. The solid thick lines refer to esti-
mates obtained using linkage and link-
age disequilibrium, and the thin shaded
lines refer to estimates obtained using
linkage information only. The QTL was
located in position 18 cM (indicated by
the arrowhead).

once (replicate 1, complex pedigree) although it was affect the final results to a large extent, as we found
similar output when we fitted these parameters to aclose, positions 0.16–0.17 M, in the remaining replicates

with the LDL approach. In some instances (replicate 1, variety of values, in agreement with previous results
(Meuwissen and Goddard 2000).simple pedigree) the posterior density was very flat and

covered almost the whole region under study. In princi- Finally, Figure 5 draws a plot of the simple disequilib-
rium measures between each marker and the QTL, D�ple, linkage-only estimates should not be greatly affected

by either complete or incomplete association, because and r, for the three simple pedigrees. D� and r measures
obtained under both statistical methods LDL and link-the accuracy depends mainly on the informativity of

markers to identify recombinant haplotypes. This seems age-only are plotted. The two top and bottom plots
correspond to the complete and incomplete LD scenar-to be the case if we exclude the rather outlying replicate

1 (simple pedigree, Figure 4). The average SD of the QTL ios, respectively. The most striking feature is, perhaps,
the extreme differences in behavior between D� and r.position posterior density was 4 cM in the linkage-only

approach for both complete and incomplete association Under complete LD, the pattern of r was much more
stable behavior than that of D�, as there was very littlescenarios. In contrast, it was 2.2 and 3 cM using LDL in

the complete and incomplete scenarios, respectively. variation between replicates and r peaked clearly at the
QTL position (18 cM). In contrast, D� had a much largerContrary to the estimates of QTL genetic effects or

position, the LD decay parameter t was loosely estimated variability between replicates and was clearly multi-
modal in several instances. Nevertheless, these two mea-(Tables 2 and 3). This means that there is little informa-

tion in the data to estimate them. In fact, we observed sures showed clear maxima at or close to the true QTL
position under complete disequilibrium. The picturethat p(M|�) was quite flat for different values of t. A

positive reading is that the exact figures for t did not changes dramatically in the incomplete LD scenario.
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TABLE 3

Posterior distribution statistics: incomplete association

Parametersc

Pedigreea Replicate Analysisb a/�e d/�e �2
e Position (M) t

Simple 1 LDL 1.03 (0.10) �0.07 (0.17) 0.87 (0.07) 0.161 (0.053) 81 (12)
L 1.04 (0.10) 0.00 (0.15) 0.86 (0.07) 0.118 (0.073) —

2 LDL 1.03 (0.11) �0.08 (0.18) 0.87 (0.07) 0.172 (0.039) 82 (15)
L 1.04 (0.10) �0.01 (0.16) 0.86 (0.07) 0.143 (0.059) —

3 LDL 1.03 (0.11) �0.07 (0.18) 0.87 (0.07) 0.177 (0.030) 75 (17)
L 1.04 (0.10) �0.01 (0.11) 0.86 (0.07) 0.171 (0.048) —

Complex 1 LDL 0.78 (0.08) 0.09 (0.11) 1.10 (0.08) 0.182 (0.015) 93 (20)
L 0.78 (0.09) 0.10 (0.13) 1.10 (0.08) 0.188 (0.021) —

2 LDL 0.87 (0.15) 0.10 (0.23) 1.15 (0.10) 0.183 (0.034) 80 (13)
L 0.89 (0.16) 0.16 (0.22) 1.13 (0.10) 0.195 (0.035) —

3 LDL 0.99 (0.08) �0.01 (0.10) 1.02 (0.07) 0.192 (0.030) 130 (20)
L 1.01 (0.08) 0.03 (0.11) 1.01 (0.07) 0.156 (0.040) —

Initially, 43% of haplotypes with SNP allele 1 carried the QTL mutant allele.
a Simple pedigree population consists of independent full-sib families; complex population is a four-genera-

tion pedigree with random mating.
b LDL analysis combines both linkage disequilibrium and pedigree information; L analysis uses only linkage.
c Mean of the posterior distribution (SD of the posterior distribution).

Here r had maxima only at the nearest microsatellites P(M1|S0) � �
S1

p(M1|S1)p(S1|S0)
(15 and 20 cM) but a very flat curve was apparent in
clear contrast with the complete LD case. The pattern and
for D� was not as affected by incomplete LD (Figure 5,
bottom left) although the profile was somewhat flatter P(M2|S0) � �

S 2

�
S1

p(M2|S 2)p(S 2|S1)p(S1|S0)
than that with complete LD. Again, we observed a large
variability between replicates. It is apparent that the LD � �

S 2

p(M2|S 2) �
S1

p(S 2|S1)p(S1|S0) .
statistics D� and r were higher when using LDL than
when using linkage-only methods, although the general

In contrast, we used the actual joint distribution, whichpattern was comparable (compare thick solid lines vs.
isthin shaded lines in Figure 5).

P(M1, M2|S0) � �
S 2

�
S1

p(M2|S 2)p(S 2|S1)p(M1|S1)p(S1|S0)
DISCUSSION

� �
S 2

p(M2|S 2) �
S1

p(S 2|S1)p(M1|S 1)p(S1|S0) .
We have provided a coherent and unified theoretical

framework to combine linkage and LD information, as
(Equation 5). Unless complete independence existsexemplified in Equations 4, 6a, and 6b. The method
(which does not make sense in a haplotype analysis), aworked well with simulated data. Here we have used the
joint distribution is not equal to the product of theexponential growth model as described by Morris et
marginals, and our approach should provide moreal. (2000) but the Bayesian framework is flexible and
power, even in a LD-only analysis, than that of Morrisother population models can be incorporated by modi-

fying p(M|�) appropriately in Equation 4 or 6. An impor- et al. (2000).
tant feature of the method presented here is that it Our results show that it is indeed possible to go be-
provides the joint haplotype probability conditional on yond the 20-cM confidence interval to locate QTL in
the QTL genotype, i.e., p(M�L, . . . MR, | S0, ��), whereas populations of reasonable size with moderate family
Morris et al. (2000) wrote the likelihood as p(M|S0, sizes and without an extremely dense genotyping. But
�_) � �kp(Mk|	), which differs from that used here, they also point out that the advantages of combining
Equation 5. Take, without loss of generality, two mark- LD information into the usual linkage framework
ers. Morris et al. (2000, p. 162, bottom) used should not be overemphasized and that its impact may

vary dramatically depending on a number of factors.P(M1, M2|S0) � P(M1|S0)P(M2|S0),
First, the usefulness of LDL over linkage-only methods
is heavily dependent on the nature of the association,where
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Figure 4.—Marginal posterior proba-
bilities of QTL location with incomplete
association between QTL and SNP geno-
type. (Left) Simple population graphs;
(right) complex population graphs. The
three replicates are shown below each
other. The solid thick lines refer to esti-
mates obtained using linkage and link-
age disequilibrium, and the thin shaded
lines refer to estimates obtained using
linkage information only. The QTL was
located in position 18 cM (indicated by
the arrowhead).

e.g., on whether there is complete LD between the by the method of computing the posterior distribution
from the MCMC samples (Hoti et al. 2002). However,marker and the QTL allele. Second, in the population

structure, for accurate LD mapping it is extremely im- the dairy cattle population structure is ideally suited
for LD mapping; very large families and small effectiveportant to determine correctly the phases and the QTL

genotypes. Having a small number of base population population sizes make it possible to accurately estimate
phases and QTL genotypes and reduce genetic hetero-individuals with large families seems a better option

than having a complex pedigree spanning several gener- geneity. This is not the case for most livestock species
and certainly not the case in humans. Results from theations, although the optimum structure will depend on

the strength of LD; e.g., if LD is extreme, a large number group of M. Georges are very illustrative (Riquet et al.
1999; Farnir et al. 2002). Initially, Riquet et al. (1999)of base populations animals will be better because we

will have more “independent” haplotypes. Finally, located a QTL using only LD information, but that posi-
tion was shifted to a significantly different position inchance will affect the results: Mendelian transmission,

recombination, and environmental noise are stochastic a later analysis that combined LD and linkage. The
primary reason was that sires had different genotypesprocesses that may result in very different data sets start-

ing from identical initial conditions. A sample of this assigned in each analysis. The population sizes that we
used here prevented us from an accurate estimation ofvariability is in Figures 3 and 4, and very interesting

experimental results are presented, e.g., in Emahazion both the QTL genotypes of base populations and of
some of the phases; these two facts together make itet al. (2001).

Our relatively pessimistic conclusions contrast with that no one-to-one correspondence between haplotype
and QTL genotype can be established unequivocally.much more optimistic views of the advantages of LDL

mapping in livestock, more specifically in dairy cattle As a result, linkage-only methods do not compare too
badly with the LDL strategy. MCMC methods take care(Farnir et al. 2002; Meuwissen et al. 2002). Of course

parts of the discrepancies are due to the different meth- of the uncertainty but at the price of increasing the
variance of the posterior density and thus the accuracy.odological approaches. It should also be mentioned that

the accuracy of QTL estimates may also be affected In this work, we have also proposed Bayesian equiva-
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Figure 5.—Plots of disequilibrium
measures D� and r between each
marker and the QTL. The top (bot-
tom) row corresponds to the three
replicates with complete (incomplete)
association in the simple pedigree.
Estimates obtained with the LDL
method are shown as thick solid lines
and those with linkage only, as thin
shaded lines. The QTL was located
in position 18 cM (indicated by the
arrowhead).

tative trait loci mapping. In this case there will be alents for the classical LD measures D� and r � √r 2. In-
number nf of original haplotypes carrying a distinct orterestingly, r and D� exhibited distinct behaviors de-
the same mutation affecting the trait. In our model, thispending on whether there was a complete association
amounts to considering more than either � or � IBDbetween the QTL and the SNP (Figure 5); r decreased
states; an IBD indicator variable should be included andmore markedly than D� as we moved away from the QTL
probabilities p(M|S0 � k, k � 1, nf) should be estimated.with complete association, but the reverse was true with
In the likely case that nf is not known, a reversible-jumpincomplete association. Nordborg and Tavaré (2002)
MCMC strategy could be used. Liu et al. (2001) andhave shown that the D� measure fluctuates more widely
Morris et al. (2002) have recently presented an alterna-than r, which is in agreement with our results. It is
tive approach to allow for multiple mutations in a pureimportant to note that there may be a large variability
LD-mapping strategy. Missing markers are dealt with byin disequilibrium decay, as has been evidenced by simu-
using only available information for computing phaseslation (e.g., Nordborg and Tavaré 2002; Pritchard
and segregation indicators. This is a reasonable approxi-and Przeworski 2001) or with experimental data (Reich
mation if the percentage of missing genotypes and theet al. 2001). In particular, it is difficult to compare LD
pedigree’s complexity are not large; otherwise the trans-measures of SNPs with those of microsatellites. Disequi-
mission coefficients T are not properly calculated. Thislibrium measures depend necessarily on allele frequen-
should not be too much of a concern in the special casecies and, as argued (Nordborg and Tavaré 2002),
of fine mapping, where one is usually analyzing a fewthey should because gene history and frequency are
generations and very dense genotyping. However, thisinextricably linked. Here disequilibrium measures de-
is a much more important limitation in marker-assistedcreased much more rapidly with SNPs than with multial-
selection or in linkage analysis of complex populations.lelic markers. It is also important to bear in mind that
Here we have implicitly assumed a star-shaped geneal-the pattern in disequilibrium decay between QTL and
ogy, which is not realistic in many instances. The depen-marker does not necessarily parallel the posterior distri-
dence among sampled base population haplotypes, i.e.,bution of the QTL position, as is evident from compar-
the fact that recombination histories are correlated, caning the graphs in Figures 3 and 4 (simple pedigree)
be included in the model via, e.g., coalescent techniqueswith those in Figure 5.
assuming a given effective size (Meuwissen and God-Certainly, further extensions and testing of this ap-
dard 2001). A simple strategy is to consider that priorproach are warranted, particularly to overcome some
allele states in any two haplotypes are not independent,of the potential risks of using LD. First of all, stratifica-
i.e., p(S0i, S0i�) � p(S0i)p(S0i�), but rather use the additivetion may cause spurious disequilibrium. In principle, a
relationship coefficient (�i,i�), computed using all avail-LDL methodology should be more robust than a pure
able pedigrees as a measure of association; then p(S0i,LD strategy but this remains to be tested and it is uncer-
S0i�) � (1 � �ii�)p(S0i)p(S0i�) � �ii� p(S0i)(S0i|S0i�), as ex-tain whether stratification has such a large impact on
plained in the theory section. Much more complicatedquantitative traits mapping as it does with binary traits.

Genetic heterogeneity is also a major problem in quanti- is the issue of conditioning on the actual known pedi-
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APPENDIX: SAMPLING DISTRIBUTIONS
p(Mkj|Sk � �, �_) � �

F

i�1
�
2

h�1

p(Skih � �|S0ih)ihjk/(2F ),
Mixed-model effects (a, d, u, and �): The mixed-

model equations (Henderson 1984) are, conditional where F is the number of base population haplotypes,
on wa, wd, �2

u, and �2
e , ihjk is an indicator variable taking value � 1 if the individ-

ual i has allele j at marker k and haplotype h, and zero�X*�X*
Z�X*

X*�Z
Z�Z � A�1� � ��*

u � � �X*�y
Zy � , (A1) otherwise. Similarly, we compute

p(Mkj |Sk � �, �_) � �
F

i�1
�
2

h�1

p(Skih � �|S0ih)ihjk/(2F),
or Cb � d, where C is the left-hand-side matrix in (A1)
above, d is the right-hand-side vector, and b contains

which is the probability that the original mutant haplo-�* and u, with � � �2
e/�2

u . Wang et al. (1993) showed
type contains allele j at marker k. An alternative optionthat the fully conditional distribution of any element bi
is to sample the original mutant haplotype as in Morrisof b � [�*, u] is
et al. (2000). However, and unless we are interested in
reconstructing the original haplotype, we prefer thebi � Normal(di � �

N

j�1, j�i

cijdj , �2
e/cii), (A2)

approach here, whereby the founder haplotype, that
where QTL mutation occurred, is treated as a nuisancewhere di is the ith element of the right-hand-side vector,
parameter and integrated out.and cij is element (i, j) of C, which has dimension N.

Phase sampling (H): Phases that could not be deter-Variance components (�2
u and �2

e): The fully condi-
mined unambiguously were sampled using a blocktional distributions are
Gibbs sampling algorithm. A parameterizable number
of marker phases were sampled jointly for each individ-p(�2

u|S0, a, d, u, �, �2
e, y) � (u� A�1 u)��2

m (A3)
ual in turn. The algorithm works as follows. First, un-
known phases for a given individual are identified, sayand
nh unknown phases. Second, an indicator variable is
constructed taking all possible values (2nh). For instance,p(�2

e|S0, a, d, u, �, �2
u , y) � (y � X* �* � Zu)�

suppose that there are four markers and that the phases
� (y � X*�* � Zu)��2

n (A4) of first and last markers are known or not sampled (i.e.,
missing marker), then the indicator variable may take(Wang et al. 1993), where ��2

q stands for an inverted
values �00�, �01�, �10�, and �11�, where “�”chi-square distribution with q d.f. Equations A3 and A4
stands for not sampled, “0” for paternal, and “1” forassume a naı̈ve ignorance prior. Conjugate informative
maternal origin. Finally, the probability associated withpriors with prior varianceO 2 and � d.f., respectively, re-
each value is calculated using all available marker infor-sult in posteriori conditional distributions of the type
mation and current phases in parents and offspring and(QF � O 2�)��2

q�� , where QF is the quadratic form in (A3)
a new phase block is sampled. Here a maximum of sixor (A4) (Wang et al. 1993; Sorensen and Gianola
phases were sampled jointly.2002).

Segregation indicators (T): T was usually updated to-Linkage disequilibrium parameters [t, p(Mk,j |Sk)]: The
gether with the QTL position, as explained below. Afully conditional distribution of t is not a known distribu-
new proposal for T was sampled conditioning on markertion and, thus, we resort to Metropolis-Hastings sam-
and phase information using Mendelian rules.pling. A new proposed age of mutation t new is accepted

with probability QTL position (�): This is one of the most critical
steps of the Bayesian procedure. A variety of strategies
have been proposed in the literature (Satagopan et

min �1,
p(M|S0 , t new, H, �)

p(M|S0 , t, H, �) � . (A5)
al. 1996; Heath 1997; Uimari and Hoeschele 1997;
Sillanpaa and Arjas 1998). In a typical sampling
scheme, individual S0 would be updated conditional onThe probabilities p(Mkj|Sk) contain the allele probabili-
the other genotypes, but this is a risky option as theties for each allele j of marker k conditional on the IBD
chain will get stuck easily (Janss et al. 1995). Uimari andstate of the marker with the original mutant haplotype.
Sillanpää (2001) proposed a dual sampling scheme. InThis variable is updated each iteration as follows. For

each base population individual, the probabilities that some iterations, � is updated using the acceptance ratio
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as described using a new position, �new, and both Tnew

min �1,
p(T|�new, H)

p(T|�, H) � . (A6) and �new were accepted with probability

min �1,
p(y|Tnew, S0, a, d, u, �, �2

e)
p(y|T, S0, a, d, u, �, �2

e)
� (A6�)However, using (A6) may prevent � from “jumping”

between adjacent marker intervals because the above
acceptance ratio is very sensitive to the percentage of (Uimari and Sillanpää 2001). Otherwise T and � re-
QTL recombinant haplotypes, which in turn depends mained unchanged. Here, sampling was normally per-
on the marker interval. In other iterations T and � formed via (A6�), except every five iterations when (A6)

was used.were updated simultaneously. A new T was generated


